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Random matrices are nowadays classical tools for modeling multianten-
na wireless channels. Scattering phenomena typical of cellular frequencies
and channel reciprocity features led to the adoption of matrices sampled
either from the Gaussian Unitary Ensemble (GUE) or from more general
Polynomial Ensembles (PE). Such matrices can be used to model the ran-
dom impairments of the radio channel on the transmitted signal over a
wireless link whose transmitter and receiver are both equipped with an-
tenna arrays. The exploitation of the millimeter-wave (mmWave) frequency
band, planned for 5G and beyond mobile networks, prevents the use of GUE
and PE elements as candidate models for channel matrices. This is mainly
due to the lack of scattering richness compared to microwave-based trans-
missions. In this work, we propose to model mmWave Multi-Input–Multi-
Output (MIMO) systems via products of random Vandermonde matrices.
We illustrate the physical motivation of our model selection, discuss the
meaning of the parameters and their impact on the spectral properties of
the random matrix at hand, and provide both a list of results of immediate
use for performance analysis of mmWave MIMO systems, as well as a list
of open problems in the field.
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1. Introduction

Random matrix theory has been introduced as a mathematical tool for
modeling and analysis of wireless multiantenna communications since the
earliest stages of development and prototyping of such a technology [1].
A fully detailed model of a point-to-point link between a transmitter and
a receiver both equipped with linear antenna arrays requires the character-
ization of a product of random matrices whose entries are function of not
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necessarily independent random variables, tied up to the scattering phenom-
ena typical of the exploited cellular frequencies [2]. However, most of the
practical scenarios of interest have been successfully analyzed relying on rea-
sonable simplifications of the channel dynamics [3–6], leading to the adoption
of matrices sampled either from the GUE or from PE as channel matrices.
Indeed, more sophisticated transmission schemes, featuring relay-aided and
network-encoded ones, have been adequately modeled in the multiantenna
setting by means of sums and products of random matrices from the men-
tioned ensembles (see e.g. [7, 8]). Therefore, analytical performance analysis
and compact design guidelines discussion have been possible by virtue of the
availability of explicit expressions for the spectral statistics of the involved
channel matrices.

However, starting from 5G, the use of mmWave frequencies is planned:
thanks to the large bandwidth available in the 30–300 GHz spectrum,
mmWave has imposed itself as one of the main enablers for ultra-broadband
communications. Nonetheless, such a technology poses some serious hurdles
that need to be overcome. First, and more prominently, the high attenu-
ation to which mmWave communications are prone [9], which requires the
use of large antenna arrays (made possible by the small wavelength, hence
the small elements size) and directional beamforming. Second, it has been
observed that a mmWave channel is characterized by few strong paths, along
which it is essential that both the access node and the user terminal align
their beams [10].

The need for modeling such propagation phenomena and technical strate-
gies prevents the use of GUE and PE elements as channel matrices, thus a
good candidate model is still missing. Such a model should encompass the
main features of a signal transmission taking place in the mentioned fre-
quency band, on top of all poor scattering and blocking effects due to the
different ratio between the wavelength of interest and the size of objects of
daily use.

In this work, we propose to model mmWave MIMO systems via products
of random Vandermonde matrices. We illustrate the physical motivation of
our model selection, discuss the meaning of the parameters and their impact
on the spectral properties of the random matrix at hand. We also provide
a list of existing results of immediate use for basic performance analysis of
mmWave MIMO systems, as well as a list of array geometries of interest,
for which the adoption of generalized1 Vandermonde models would provide
a suitable analytical channel representation.

1 By generalized Vandermonde matrices, we refer to the random matrix models re-
ported in [11, Sec. III.D].
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2. System model

We focus on a point-to-point MIMO communication system where the
transmitter and the receiver are equipped with NT and NR antennas, re-
spectively. At each signaling interval, the communication is described by
the input–output relationship

y = Hx+ n , (1)

where

— x is a random vector of size NT and covariance E[xxH] = Es
NT

I, repre-
senting the information that the transmitter sends to the receiver;

— H is the NR ×NT random channel matrix;

— y is the received signal vector of length NR, and

— n represents additive Gaussian noise with covariance E[nnH] = N0I.

In general, the statistics of the channel matrix deeply affect the per-
formance of the communication system. In the literature, several channel
models have been analyzed, taking into account important geometric and
system parameters, such as the carrier frequency, the presence or absence
of reflecting obstacles, and the movement of both the transmitter and the
receiver. In our work, we consider the channel model in [12, Eq. (3)] which is
well-suited for mmWave communications and for the case where the anten-
nas at both the transmitter and the receiver are organized in a uniform linear
array (ULA). This model is an extension to the Saleh–Valenzuela geometric
model [13] and the matrix H is given by2

H =

√
NTNR

L

L∑
`=1

α`u`v
H
` = gUDV H . (2)

Equation (2) describes a propagation environment where the signal is scat-
tered by L clusters/paths with no near-field impairments at the receiver.

The term g =
√

NTNR
L accounts for the normalization of the channel en-

ergy, U = [u1, . . . ,uL] is a matrix of size NR × L, V = [v1, . . . ,vL] has
size NT × L, and D = diag(α1, . . . , αL). Following [12], we assume the
coefficients α` to be i.i.d. complex random variables with zero-mean and

2 The model described hereinafter has already been exploited in [14], where the empha-
sis is on the performance of practical transmission strategies, leading to the analysis
of a reduced-rank version of the random matrix product we focus on throughout our
work.
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unit variance. Furthermore, u` and v` represent the transmit and receive
steering vectors corresponding to the `th path. If the transmit and receive
antennas are ULAs, then

u` =

√
1

NR

[
1, e jkdR cos (φR,`), . . . , e j(NR−1)kdR cos (φR,`)

]T
,

v` =

√
1

NT

[
1, e jkdT cos (φT,`), . . . , e j(NT−1)kdT cos (φT,`)

]T
, (3)

where dT and dR denote the distances between adjacent transmit and receive
antenna elements, respectively, k = 2π/λ, φR,` is the Angle of Arrival from
the `th propagation cluster, and φT,` is the Angle of Departure to the `th
propagation cluster. We assume the angles φR,` and φT,`, ` = 1, . . . , L to be
i.i.d. random variables with probability density functions (p.d.f.) symmetric
around their mean, as done in [15, Table I] and [16]. Although the angles
φT,`, ` = 1, . . . , L can be considered as i.i.d. random variables, for every `, the
angle φR,` could be strongly correlated to φT,`. Such a correlation depends
on the geometry of the problem and on the ULAs orientations. Therefore,
in general, the Vandermonde matrices U and V are not independent.

3. Channel matrix statistics

Under our assumptions, both U as well as V are, disregarding the nor-
malization factors

√
1
NR

and
√

1
NT

, random Vandermonde matrices with
entries lying on the unit circle [11, Eq.(1)], and phases given by ωR,` =
kdR cos(φR,`) and by ωT,` = kdT cos(φT,`), respectively.

The statistical properties of the matrix HHH are known to dictate the
ultimate (information-theoretic) performance of MIMO systems [3, and ref-
erences therein]. Therefore, hereinafter we summarize results from the lit-
erature on random Vandermonde matrices, which will be useful in the re-
mainder of the paper. Currently, a tractable analysis of random matrices
whose columns have the structure in (3) is only available when both NR, NT

and L grow large at the same rate, i.e., when the ratios NR/L and NT/L
asymptotically tend to positive, finite values. Most of our analysis will as-
sume instead that the number of antennas at both the transmitter and the
receiver, as well as the number of paths, are finite.

3.1. Moments and eigenvalues

Let A be a (properly normalized) N ×M random matrix and let λ1, . . . ,
λM be the random eigenvalues of AHA. Then, the nth asymptotic moment
of A is defined as
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An = limE
[
1

M
Tr
{(

AHA
)n}]

=

∫
λnfA(λ) dλ (4)

whenever the limit exists. In (4), the limit is computed by assuming that
N,M → ∞ while the ratio N/M is kept finite. Moreover, fA(·) is the
limiting spectral distribution of AHA. The expression for fA(·) depends on
the distribution and on the correlation between the entries of A.

WhenA is a random Vandermonde matrix whose columns are as in (3), a
closed-form expression for fA(λ) is still unknown. However, the expression
of the moments in (4), which depend on the distribution of the phases ω, can
be obtained as described in [11, Theorem I] and in [17–19]. In general, the
existence of all the moments in (4) is not sufficient to guarantee the existence
of a limiting probability measure having these moments. Nevertheless, for
random Vandermonde matrices, the convergence of the empirical eigenvalue
distribution to a limiting probability measure, supported on [0,+∞), has
been proven in [20].

In the case of mmWave links, the channel matrix H in (2) is given by a
mixed product of two random Vandermonde matrices and a random diagonal
matrix. Therefore, the computation of its moments is more challenging than
that of a single Vandermonde matrix. In our scenario, the nth asymptotic
moment of HHH, Hn, can be computed as

Hn = limE
[

1

NT
Tr

{(
1

L
HHH

)n}]
= lim g2nE

[
1

NT
Tr

{(
1

L
V DHUHUDV H

)n}]
= lim

Nn−1
T Nn

R

Ln
E
[
Tr
{(

DHUHUDV HV
)n}]

, (5)

where the limit is computed by assuming that NT, NR, L → ∞, while the
ratios NT/L and NR/L are kept finite. The term 1

L appearing in (5) is a
normalization factor ensuring the convergence of the limit. Histograms of
the limiting eigenvalue distribution of our channel matrix in both cases of
scalar and Gaussian D are depicted in figure 1.

A combinatorial description of the mixed moments of independent Van-
dermonde matrices and diagonal matrices appears in [11, Theorem 7], which
provides expressions of the form of

lim
1

L
E
[
Tr
{
D1V

H
i1V i2D2V

H
i2V i3 · · ·DnV

H
inV i1

}]
, (6)

where {i1, . . . , in} ∈ {1, . . . , n}. However, equations (5) and (6) differ under
many aspects. First of all, in [11, Theorem 7] all the considered Vander-
monde matrices are independent of each other and have the same size, while
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(a) D = I [11].
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(b) Gaussian case, D = diag(α1, . . . , αL) with α` ∼ CN (0, I).

Fig. 1. Spectral density of HHH.

in (5) the matrices U and V may be correlated and have a different num-
ber of rows. Moreover, (6) considers the more general case where n random
diagonal matrices are available, while in our case, we have a single matrix D.

In the non-asymptotic case, i.e., when the size of the involved matrices
is finite, we are interested in the evaluation of the following expression:

E
[
Tr
(
HHH

)n]
=
∑
`,k

E
[
α`1α

∗
k1 . . .α`nα

∗
kn

]
E
[(
V HV

)
`1,k1

. . .
(
V HV

)
`n,kn

]

×E
[(

UHU
)
`1,k1

. . .
(
UHU

)
`n,kn

]
, (7)

where the expectation factorizes by virtue of the independence among the
factors in (2). The sum in (7) is over the vectors of integers ` = [`1, . . . , `n]
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and k = [k1, . . . , kn], where `j , kj ∈ {1, . . . , L}, and j = 1, . . . , n. Our
assumptions on the elements of the matrix D, allow us to simplify the above
expression by applying Wick’s formula [21].

To conclude our discussion on the spectral statistics of the mixed product
of Vandermonde and diagonal matrices, we recall that the spectrum of the
channel matrix H is expected to have an unbounded support according to
the results reported in [22, Sec.VI]. In particular, the largest eigenvalue of
HHH is expected to scale with the matrix size.

Regarding the smallest eigenvalue of HHH, an estimation of the proba-
bility mass in zero can be obtained according to what reported in [22, Sec.VI].
Numerical investigation on the spectral support of the matrix HHH, as well
as an analytical study of bounds on its largest eigenvalue, are still subject
of ongoing work.

3.2. Discussion on the application of free probability

Random Vandermonde matrix models considered in [11] and mixed prod-
ucts as per (2) can be studied with the help of a recent extension of the free
probability, the so-called traffic-freeness [25]. Such a theory applies to ran-
dom matrices whose distribution is invariant under unitary transformations
given by random permutation matrices. Otherwise stated, traffic-freeness ex-
tends to permutation-invariant random matrices some of the results available
for Haar-invariant random matrices. Explicit reference to mixed products
of random Vandermonde and deterministic matrices is made in [23, 24], but
none of the available works deal with the case of mixed products of indepen-
dent Vandermonde matrices. A promising research direction is constituted
by the extension of the results in [24] to matrix products of the type in (2).
Furthermore, we believe that exploiting a link between mmWave MIMO
models and the theory of asymptotic liberation [26]3 could lead to an ad-
vancement in establishing analytical machineries and tools providing more
compact results on 5G-and-beyond communication.

4. Mutual information statistics

Let us assume that full channel state information (CSI) (i.e., the ma-
trix H) is available at the receiver, while the transmitter has no access
to CSI and allocates the available input power uniformly across the trans-
mit antennas. Under these assumptions, the ergodic capacity of the MIMO
channel (1) is given by

3 Our conjecture stems from the fact that asymptotic liberation theory has already
turned helpful in the study of mixed products of Fourier matrices appearing in doubly-
selective fading scenarios (see [26, 27]).
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C(γ) = E
[
log
∣∣∣I + γHHH

∣∣∣] , (8)

where γ = Es/(NTN0). Since a closed-form expression for (8) is still un-
known, we separately investigate the behavior of the ergodic capacity in two
extreme SNR regimes, namely for very low and very high values of γ, and
summarize the findings in the next subsections.

4.1. Low-power regime

For low values of the input power, the spectral efficiency of a MIMO
channel is easier to analyze w.r.t. the corresponding capacity. Such spectral
efficiency can be expressed in terms of the value of transmitted energy per-bit
Eb/N0, i.e.,

C

(
Eb
N0

)
= C(γ) , (9)

with the value of γ provided by the solution to [28, Eq. (7)]

Eb
N0

=
NTNRγ

E
[
Tr
{
HHH

}]
C(γ)

.

According to [28], an affine expansion of the spectral efficiency of anNR×NT

MIMO system, operating at low values of the transmitted SNR, can be
obtained upon evaluation of the first- and second-order moment of the self-
adjoint channel matrix HHH as

C

(
Eb
N0

)
= S0

(
Eb
N0
− Eb
N0

∣∣∣∣
min

)
, (10)

where

S0 =
2NR

ζ
(
HHH

) , (11)

Eb
N0

∣∣∣∣
min

=
NT log 2

E
[
Tr
{
HHH

}] . (12)

In (11), the term S0 (also referred to as low-power slope) depends on the
so-called dispersion of the channel matrix which, for a square matrix A of

size N , is defined as ζ(A) = N E[Tr{A2}]
E2[Tr{A}] .

The low-power behavior of (8) is fully captured by the following Propo-
sition:
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Proposition 4.1 Given a mmWave MIMO channel as in (2), the low-power
slope can be written as

S0 =
1

NT

2NRL

2 + L−1
N2

R
(NR + ψR) +

L−1
N2

T
(NT + ψT)

, (13)

where

ψT =

NT∑
h=1

NT∑
h′=1,h′ 6=h

E
[
e j

2πdT
λ

(h−h′)(cosφT,i−cosφT,j)
]

and

ψR =

NR∑
h=1

NR∑
h′=1,h′ 6=h

E
[
e j

2πdR
λ

(h−h′)(cosφR,i−cosφR,j)
]
.

Moreover, the term Eb/N0|min is given by

Eb
N0

∣∣∣∣
min

=
log 2

NR
. (14)

This result was obtained by particularizing (7) to n = 1 and n = 2. A
detailed investigation of the low-power regime behavior of mmWave MIMO
links requires the explicit evaluation of the phase-dependent parameters ap-
pearing at the denominator of S0. As a preliminary remark, we observe
that for a single-input–single-output channel (i.e. for NR = NT = 1) with
L = 1, S0 = 1. On the other hand, keeping the assumption of single-
antenna equipped terminals, the expression of the low-power slope reduces
to S0 = 1

1+L−1
2L

(ψT+ψR)
, and, by letting L grow unbounded, in turn, to

S0 = 1

1+
(ψT+ψR)

2

.

4.2. High-SNR analysis

An affine expansion of the capacity for high SNR values can be written
as (see [29] for details)

I(γ) = S∞(γ − L∞) ,

where the high-SNR slope, S∞, is given by the rank of H. In our case, a
typical assumption is to consider L < min{NR, NT} so that S∞ = L. The
high-SNR power offset, L∞, is given by [29, Formula (131)]

L∞ = log2NT −
1

L
E log2

∣∣∣HHH
∣∣∣ .
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Since H = gUDV H, the term E
[
log2 |HHH|

]
can be rewritten as

E
[
log2

∣∣∣HHH
∣∣∣] = 2NT log2 g + LE log2 |α|2

+E
[
log2

∣∣∣V HV
∣∣∣]+ E

[
log2

∣∣∣UHU
∣∣∣] .

In particular, for the case NR = NT = L, one can write the high-SNR power
offset in compact form hinging upon [22, Formula (17)], which leads to

E
[
log2

∣∣∣V V H
∣∣∣] = L(L− 1)θT − log L , (15)

E
[
log2

∣∣∣UUH
∣∣∣] = L(L− 1)θR − log L , (16)

where
θT = E

[
log
∣∣∣1− e jkdT(cosφT,i−cosφT,j)

∣∣∣]
and

θR = E
[
log
∣∣∣1− e jkdR(cosφR,i−cosφR,j)

∣∣∣] .
5. Beyond linear array geometry

We will now describe how the geometric channel model in (2) can be
represented when the transmitter and/or the receiver are equipped with
array arrangements different from linear. In order to do so, we will provide
new expressions of the transmit (or equivalently receive) steering vector u`
(v`). Without loss of generality, we omit the subscript ` in (3) indicating
the path and we will refer to a generic steering vector a(θ, φ), where (θ, φ)
is the Direction of Arrival (Departure), θ ∈ [0, π] is the elevation angle and
φ ∈ [0, 2π] the azimuth.

The following array geometries are going to be considered:

1. Uniform Planar Array (UPA);

2. Uniform Circular Array (UCA);

3. Uniform Cylindrical Array (UCylA).

5.1. Uniform Planar Arrays

With reference to Fig. 2, we assume that the UPA [30] lies on the yz-plane
(broadside to θ = π/2, φ = 0) with Nz antennas along the z-axis and Ny

antennas along y-axis, N = NzNy. We can first write the Nz × 1 steering
vector of the ULA on z-axis az(θ) with spacing dz among antennas as

az(θ) =
[
1, e jkdz cos θ, . . . , e jkdz(Nz−1) cos θ

]T
. (17)
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Fig. 2. Uniform Planar Array.

Secondly, we denote with ay(θ, φ) the Ny×1 the steering vector of the ULA
that lies on the y-axis with spacing dy

ay(θ, φ) =
[
1, e jkdy sin θ sinφ, . . . , e jkdy(Ny−1) sin θ sinφ

]T
. (18)

Then, we define the Nz ×Ny array manifold matrix AUPA = az(θ)a
T
y (θ, φ)

AUPA =

 1 . . . e jkdy(Ny−1) sin θ sinφ

...
. . .

...
e jkdz(Nz−1) cos θ . . . e jk[dz(Nz−1) cos θ+dy(Ny−1) sin θ sinφ]

 . (19)

Finally, the N × 1 steering vector aUPA(θ, φ) can be expressed as

aUPA(θ, φ) = vec
(
AT

UPA

)
, (20)

where vec(·) indicates the vectorization of a matrix. If the transmitter (or
equivalently the receiver) is equipped with a UPA, we can therefore redefine
U (or V ) in (2) as

U = [aUPA(θ1, φ1), . . . ,aUPA(θl, φl), . . . ,aUPA(θL, φL)] , (21)

where (θl, φl) indicates the Direction of Departure (Arrival) corresponding
to the `-path.

5.2. Uniform Circular Array

For the case of the circular array [30, 31], we assume that the UCA lies
in the xy-plane as shown in Fig. 3 with Nc antennas and radius R. Antennas
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are then spaced 2πR
Nc

along the arc. The corresponding Nc×1 steering vector
aUCA(θ, φ) can be expressed as

aUCA(θ, φ)=

[
e jkR sin θ cosφ, e

jkR sin θ cos
(
φ− 2π

Nc

)
, . . . , e

jkR sin θ cos
(
φ−2πNc−1

Nc

)]T
.

(22)
It can be noted that if the steering vector u` (v`) is defined as in (22),
then U = [aUCA(θ1, φ1), . . . ,aUCA(θL, φL)] is a generalized Vandermorde ma-
trix [11].

Fig. 3. Uniform Circular Array.

5.3. Uniform Cylindrical Array

By stacking multiple UCAs along z, we can form a cylindrical array
[31–33], as shown in Fig. 4. The UCylA is made of Nz horizontal ring sub-
arrays with radius R, spaced vertically dz, and with Nc elements per ring,
N = NcNz. Let us define the Nz × 1 steering vector of the ULA lying on
the z-axis

aULA(θ) =
[
e−jkdz

Nz−1
2

cos θ, . . . , e jkdz
Nz−1

2
cos θ

]T
, (23)

where the difference with respect to (17) of the planar case is the phase
reference point, which is the center of the cylinder. We define the Nz ×Nc

array manifold matrix AUCylA = aULA(θ)a
T
UCA(θ, φ)

AUCylA =

e
jk[R sin θ cosφ−dz Nz−1

2 cos θ] . . . e jk[R sin θ cos (φ−2πNc−1
Nc

)−dz Nz−1
2 cos θ]

...
. . .

...
e jk[R sin θ cosφ+dz

Nz−1
2 cos θ] . . . e jk[R sin θ cos (φ−2πNc−1

Nc
)+dz Nz−1

2 cos θ]

 .
(24)

In the same way as (20), the final N × 1 steering vector aUCylA(θ, φ) is
equal to vec(AT

UCylA). Therefore, U = [aUCylA(θ1, φ1), . . . ,aUCylA(θL, φL)],
and similarly to the UCA case, U is a generalized Vandermorde matrix.
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Fig. 4. Uniform Cylindrical Array.

6. Conclusion

Given the relevance of random matrices in the modeling mmWave MIMO
channels, we reported some interesting results that are available in the lit-
erature and that can be readily used for the performance analysis of 5G
and beyond communication systems. We started by highlighting the need
for novel tools to model mmWave links, then we observed that mmWave
MIMO channel can be represented as a mixed product of random Vander-
monde matrices and random diagonal matrices. We underlined the open
issues and emphasized the impact of different antenna array geometries on
the structure of the matrices modeling the channel.
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