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Abstract: Matching surfaces is a challenging 3D Computer Vision problem typically addressed by
local features. Although a plethora of 3D feature detectors and descriptors have been proposed
in literature, it is quite difficult to identify the most effective detector-descriptor pair in a certain
application. Yet, it has been shown in recent works that machine learning algorithms can be used to
learn an effective 3D detector for any given 3D descriptor. In this paper, we present a performance
evaluation of the detector-descriptor pairs obtained by learning a 3D detector for the most popular 3D
descriptors. Purposely, we address experimental settings dealing with object recognition and surface
registration. Our results show how pairing a learned detector to a learned descriptors like CGF leads
to effective local features when pursuing object recognition (e.g., 0.45 recall at 0.8 precision on the
UWA dataset), while there is not a clear performance gap between CGF and effective hand-crafted
features like SHOT for surface registration (0.18 average precision for the former versus 0.16 for
the latter).

Keywords: 3D descriptors; object recognition; surface registration

1. Introduction

Surface matching is a fundamental task in 3D Computer Vision, key to the solution of
major applications such as object recognition and surface registration. Nowadays, most
surface matching methods follow a local paradigm based on establishing correspondences
between 3D patches referred to as features. The typical feature-matching pipeline consists of:
feature-detection to identify surface points surrounded by patches amenable to finding
correspondences, usually referred to as keypoints or feature points; feature-description to
encode the distinctive geometrical traits of a patch around a keypoint into a compact
representation, referred to as descriptor, while filtering out nuisances like noise, viewpoint
changes and point density variations; feature-matching to estblish feature correspondences
by comparing descriptors computed around keypoints, usually by means of the Euclidean
distance in the descriptor space.

Although over the last decades many 3D detectors and descriptors have been proposed
in literature, it turns out rather unclear how to effectively combine these proposals. Indeed,
unlike the related field of local image features, methods to either detect or describe 3D features
have been designed and proposed separately, alongside with specific application settings
and related datasets. This is also vouched by the main performance evaluation papers in the
field, which address either repeatability of 3D detectors designed to highlight geometrically
salient surface patches [1] or distinctiveness and robustness of popular 3D descriptors [2].
An attempt to investigate on the affinity between 3D detectors and descriptors can be found
in [3], where the authors highlight how, depending on the considered application scenario,
it may be possible to identify certain preferred detector-descriptor pairs.

More recently, however, [4,5] have proposed a machine learning approach that allows
for learning an optimal 3D keypoint detector for any given 3D descriptor so as to maximize
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the end-to-end performance of the overall feature-matching pipeline. The authors show
that this approach can handle effectively the diversity issues related to applications and
datasets. Moreover, their object recognition experiments show that, with the considered
descriptors (SHOT [6], SI [7], FPFH [8]), learning to detect specific keypoints leads to
better performance than relying on existing general-purpose handcrafted detectors (ISS [9],
Harris3D [10], NARF [11]).

By enabling an optimal detector to be learned for any descriptor, [5] sets forth a novel
paradigm to bridge the gap between 3D detectors and descriptors. This opens up the
question of which learned detector-descriptor pair may turn out most effective in the main
application areas. This paper tries to answer this question by proposing an experimental
evaluation of learned 3D features. In particular, we address object recognition and surface
registration, and compare the performance attained by learning a paired feature detector
for the most popular handcrafted 3D descriptors (SHOT [6], SI [7], FPFH [8], USC[12],
RoPS [13]) as well as for a recently proposed descriptor based on a deep learning approach
(CGF-32 [14]).

1.1. 3D Local Feature Detectors and Descriptors

This section reviews popular methods for detection and description of 3D local fea-
tures. Both tasks have been pursued through hand-crafted and learned approaches.

1.1.1. Hand-Crafted Feature Detectors

Keypoint detectors have traditionally been conceived to identify points that maximize
a saliency function computed on a surrounding patch. The purpose of this function is
to highlight those local geometries that turn out repeatedly identifiable in presence of
nuisances such as noise, viewpoint changes, point density variations and clutter. State-
of-the-art proposals mainly differ for the adopted saliency function. Detectors operate
in two steps: first, the saliency function is computed at each point on the surface, then
non-maxima suppression allows for sifting out saliency peaks. Intrinsic Shape Signature
(ISS) [9] computes the Eigenvalue Decomposition of the scatter-matrix of the points within the
supporting patch in order to highlight local geometries exhibiting a prominent principal
direction, Harris3D [10] extends the idea of [15] by deploying surface normals rather than
image gradients to calculate the saliency (i.e., Cornerness) function. Normal Aligned Radial
Feature (NARF) [11] was originally designed to operate on the range images but its usage
has been extended also to point clouds. The algorithm first selects stable surface points,
then highlights those stable points showing sufficient local variations. This leads to locate
keypoints close to boundaries.

1.1.2. Learned Feature Detectors

Unlike previous work in the field, Salti et al. [4] proposed to learn a keypoint detector
amenable to identify points likely to generate correct matches when encoded by the SHOT
descriptor. In particular, the authors cast keypoint detection as a binary classification
problem tackled by a Random Forest and show how to generate the training set as well
as the feature representation deployed by the classifier. Later, Tonioni et al. [5] have
demonstrated that this approach can be applied seamlessly and very effectively to other
popular descriptors such as SI [7] and FPFH [8].

1.1.3. Hand-Crafted Feature Descriptors

Many hand-crafted feature descriptors represent the local surface by computing
geometric measurements within the supporting patch and then accumulating values into
histograms. Spin Images (SI) [7] relies on two coordinates to represent each point in the
support: the radial coordinate, defined as the perpendicular distance to the line trough
the surface normal, and the elevation coordinate, defined as the signed perpendicular
distance to the tangent plane at the keypoint. The space formed by this two values is then
discretized into a 2D histogram. In 3D Shape Context (3DSC) [16] the support is partitioned
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by a 3D spherical grid centered at the keypoint with the north pole aligned to the surface
normal. A 3D histogram is built by counting up the weighted number of points falling
into each spatial bin along the radial, azimuth and elevation dimensions. Unique Shape
Context (USC) [12] extends 3DSC with the introduction of a unique and repeatable canonical
reference frame borrowed from [6]. SHOT [6], alike, deploys both a unique and repeatable
canonical reference frame as well as a 3D spherical grid to discretize the supporting patch
into bins along the radial, azimuth and elevation axes. Then, the angles between the normal
at the keypoint and those at the neighboring points within each bins are accumulated into
local histograms. Rotational Projection Statistics (RoPS) [13] uses a canonical reference frame
to rotate the neighboring points on the local surface. The descriptor is then constructed by
rotationally projecting the 3D points onto 2D planes to generate three distribution matrices.
Finally, a histogram encoding five statistics of distribution matrices is calculated. Fast
Point Feature Histograms (FPFH) [8] operates in two steps. In the first, akin to [17], four
features, refereed to as SPFH, are calculated using the Darboux frame and the surface
normals between the keypoint and its neighbors. In the second step, the descriptor is
obtained as the weighted sum between the SPFH of the keypoint and the SPFHs of the
neighboring points.

1.1.4. Learned Feature Descriptors

The success of deep neural networks in so many challenging image recognition tasks
has motivated research on learning representations from 3D data. One of the pioneering
works toward this direction is 3D Match [18], where the authors deploy a siamese network
trained on local volumetric patches to learn a local descriptor. The input to the network
consists of a Truncated Signed Distance Function (TSDF) defined on a voxel grid. A similar
approach is pursued in [19], where smoothed density values in a voxel grid are used
instead of the TSDF. Along the lines of the end-to-end computational paradigm advocated
by deep learning, PointNet [20] directly consumes point clouds as input. The authors
show that the network can learn a global descriptor suited to tasks like part segmentation,
classification and scene parsing. However, so far it has not been demonstrated whether
and how the PointNet architecture may be deployed to learn a local descriptor amenable to
the typical feature-matching pipeline. This is, in fact, exactly the goal pursued in [14], where
the authors deploy a fully-connected deep neural network together with a state-of-the-art
feature learning approach based on the triplet ranking loss [21,22] in order to learn a very
compact 3D descriptor, referred to as CGF-32. Unlike PointNet, their approach does not
rely on raw data but on the hand-crafted representation proposed in [16] canonicalized
by the local reference frame presented in [6]. A multi-view approach can also be adopted:
in [23] Li et al. integrate a differentiable renderer into a 2D neural network so to optimize
a multi-view representation in order to learn a local feature descriptor. A parallel line of
research, instead, tries to learn descriptors with unsupervised approaches and proposes to
employ the latent codeword of an encoder-decoder architecture as a 3D feature descriptor.
PPFFoldNet [24] and 3D-PointCapsNet [25] learn to reconstruct the 4-dimensional Point
Pair Feature [26,27] of a local patch by a FoldingNet [28] decoder. Differently, Spezialetti et
al. [29] reconstruct the 3D points of the input patch by means of a AtlasNet decoder [30]
from an equivariant embedding computed by a Spherical CNN encoder [31].

2. Materials and Methods

In this section, we first briefly summarize the methodology proposed in [5] to learn
a descriptor-specific keypoint detector, which is used as the keypoint detector in this
evaluation due to its ability to learn effective keypoints for each decriptor, and then we
review the evaluation methodology used to test descriptors for object recognition and
surface registration.
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2.1. Keypoint Learning

In order to carry out the performance evaluation proposed in this paper, for most
local descriptors reviewed in Section 1.1 we did learn the corresponding optimal detector
according to the keypoint learning methodology [5]. We provide here a brief overview of
this methodology and refer the reader to [4,5] for a detailed description.

The idea behind keypoint learning is to learn to detect keypoints that can yield good
correspondences when coupled with a given descriptor. To this end, keypoint detection is
cast into binary classification, i.e., a point can either be good or not as concerns undergoing
matching by the given descriptor, and a Random Forest [32] is used as classifier. The
reasons to select Random Forests as classifier to perform keypoint detection as classification
includes: they have been used to successfully solve several computer vision problems,
and 3D keypoint detection in particular [33]; they are among the fastest classifiers as
regards run-time prediction, especially when dealing with complex classification functions;
Random Forest can be seamlessly extended to perform multi-class classification, which is
exploited in [5] to generalize the KPL framework to handle multiple support sizes. The
second trait is particularly relevant when using a classifier as a keypoint detector, as the
prediction must be carried out at every point of the input cloud.

Learning the classifier requires defining the training set, i.e., both positive (good-to-
match) and negative (not-good-to-match) samples, as well as the feature representation.
As for positive samples, the method tries to sift out those points that, when described by
a chosen descriptor, can be matched correctly across different 2.5D views of a 3D object.
Thus, starting from a set of 2.5D views {Vi}, i = 1, . . . , N of an object from a 3D dataset,
each point p ∈ Vi in each view Vi is embedded by the chosen descriptor, d = φ(p), where φ
represents the descriptor algorithm. Then, for each view Vi, a subset of overlapping views
Vi is selected based on an overlap threshold τ,

Vi = {Vj :
∣∣Vi ∩Vj

∣∣ ≥ τ}. (1)

A two-step positive samples selection is performed on Vi and each overlapping view
Vj ∈ Vi. In the first step, for each view Vj ∈ Vi a list of correspondences between descriptors

D j
i is created by searching for each descriptors dk = φ(pk), ∀pk ∈ Vi the nearest neighbor

in the descriptor space between all descriptors dm = φ(pm), ∀pm ∈ Vj. Formally,

D j
i = {(dk, dl) : dk = φ(pk) ∀pk ∈ Vi ∧ dl = argmin

dm : dm=φ(pm),pm∈Vj

‖dk − dm‖2}. (2)

A preliminary list of positive samples Pj
i for view Vi is created by taking only those

points that have been correctly matched in Vj, i.e., the points belonging to the matched
descriptors in the two views correspond to the same 3D point of the object according to
threshold ε:

Pj
i = {pk ∈ Vi : ‖Ti pk − Tj pl‖2 < ε ∀(dk, dl) ∈ D

j
i}, (3)

where Ti and Tj denote the ground-truth transformations that, respectively, bring Vi and
Vj into a canonical reference frame.

The list is then filtered keeping only points corresponding to local minima of the
descriptor distance within a radius εnms. In the second step, the list of positive samples is
further refined by keeping only the points in Vi that can be matched correctly also in the
others overlapping views Vk,k 6=j ∈ Vi that have not been used in the first step. Negative
samples are extracted on each view, picking random point between those points which
are not included in the positive set. A distance threshold εneg is used to avoid a negative
being too close to a positive and to balance the positive and negative sets. As far as
the representation input to the classifier is concerned, the method relies on histograms
of normal orientations inspired by SHOT [6]. However, to avoid computation of the
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local Reference Frame while still achieving rotation invariance, the spherical support is
divided by considering only Nr subdivisions along the radial dimension so as to compute
a histogram for each spherical shell thus obtained. Hence, similarly to SHOT, the feature
vector for a given point p is obtained by quantizing and accumulating into a histogram
with Nb bins the angle between the normal at p and those at the points within the spherical
shells resulting from the Nr radial subdivisions.

2.2. Evaluation Methodology

The performance evaluation proposed in this paper is aimed at comparing different
learned detector-descriptor pairs while addressing two main application settings, namely
object recognition and surface registration. In this section, we highlight the key traits and
nuisances which characterize the two tasks, present performance evaluation metrics used
in the experiments and, finally, provide the relevant implementation details.

2.2.1. Object Recognition

In typical object recognition settings one wishes to recognize a set of given 3D models
into scenes acquired from an unknown vantage point and featuring an unknown arrange-
ment of such models. Peculiar nuisances in this scenario are occlusions and, possibly,
clutter, as objects not belonging to the model gallery may be present in the scenes.

According to the protocol adopted in [4,5], to evaluate the effectiveness of the consid-
ered learned detector-descriptor pairs we rely on descriptor matching experiments. An
overview of how descriptor matching is performed in our object recognition experiments
is depicted in Figure 1.

Figure 1. Overview of the local feature matching pipeline for 3D object recognition.

Specifically, for both datasets, we run keypoint detection on synthetically rendered
views of all models. Then, we compute and store into a single kd-tree all the corresponding
descriptors. Keypoints are detected and described also in the set of scenes provided
with the dataset, {Sj}, j = 1, . . . , S. Eventually, a correspondence is established for each
scene descriptor by finding the nearest neighbor descriptor within the models kd-tree
and thresholding the distance between descriptors to accept a match as valid. Correct
correspondences can be identified based on knowledge of the ground-truth transformations
which bring views and scenes into the canonical reference frames linked to models by
checking whether the matched keypoints lay within a certain distance ε. Indeed, denoted
as (k j, kn,m) a correspondence between a keypoint k j detected in scene Sj and a keypoint
kn,m detected in the n-th view of model m, as Tj,m the transformation from Sj to model m,
as Tn,m the transformation from the n-th view and the canonical reference frame of model
m, the set of correct correspondences for scene Sj is given by:
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Cε
j = {(k j, kn,m) : ‖Tj,mk j − Tn,mkn,m‖ ≤ ε}. (4)

This allows for calculating True Positive and False Positive matches for each scene
and, by averaging across scenes, for each of the considered datasets. Like in [4,5], the final
results for each dataset are provided as Recall vs. 1-Precision curves, with curves obtained
by varying the threshold on the distance between descriptors.

2.2.2. Surface Registration

The goal of surface registration is to align into a common 3D reference frame several
partial views (usually referred to as scans) of a 3D object obtained by a certain optical
sensor. This is achieved through rather complex procedures that, however, typically rely
on a key initial step, referred to as Pairwise Registration, aimed at estimating the rigid
motion between any two views by a feature-matching pipeline. Thus, in surface registration,
3D feature detection, description and matching are instrumental to attain an as good
as possible set of pairwise alignments between the views which then undergoes further
processing to get the final global alignment. Differently from object recognition scenarios,
the main nuisances deal with missing regions, self-occlusions, limited overlap area between
views and point density variations. An overview of how pair-wise correspondences are
attained in a typical surface registration pipeline is depicted in Figure 2.

Figure 2. Overview of the local feature matching pipeline for surface registration.

Thus, given a set of M real scans available for a test model, we compute all the
possible N = M(M−1)

2 view pairs {Vi, Vj}. For each pair, we run keypoint detection on both
views. Due the partial overlap between the views, a keypoint belonging to Vi may have no
correspondence in Vj. Hence, denoted as Ti and Tj the ground-truth transformations that,
respectively, bring Vi and Vj into a canonical reference frame, we can compute the set Oi,j
that contains the keypoints in Vi that have a corresponding point in Vj. In particular, given
a keypoint ki ∈ Vi:

Oi,j = {ki : ‖Tiki −N (Tiki, TjVj)‖ ≤ εovr} (5)

where N (Tiki, TjVj) denotes the nearest neighbor of Tiki in the transformed view TjVj. If
the number of points in Oi,j is less than 20% of the keypoints in Vi, the pair (Vi, Vj) is not
considered in the evaluation experiments due to insufficient overlap. Conversely, for all the
view pairs (Vi, Vj) exhibiting sufficient overlap, a list of correspondences between all the
keypoints detected in Vi and all the keypoints extracted from Vj is established by finding
the nearest neighbor in the descriptor space via kd-tree matching. Then, given a pair of
matched keypoints (ki, k j), ki ∈ Vi, k j ∈ Vj, the set of correct correspondences, Cε

i,j, can be
identified based on the available ground-truth transformations by checking whether the
matched keypoints lay within a certain distance ε in the canonical reference frame:



AI 2021, 2 235

Cε
i,j = {(ki, k j) : ‖Tiki − Tjk j‖ ≤ ε} (6)

Then, the precision of the matching process can be computed as a function of the
distance threshold ε [14]:

precisioni,j(ε) =

∣∣∣Cε
i,j

∣∣∣∣∣Oi,j
∣∣ (7)

The precision score associated with any given model is obtained by averaging across
all view pairs. We also average across all test models so as to get the final score associated
the Laser Scanner dataset.

Eventually, we point out that rather than showing the precision as a function of the
distance threshold ε, we provide the score for a fixed and tight distance threshold value, the
same value used to establish upon correctness of matches in object recognition experiments.
Indeed, as highlighted in [14], the truly meaningful precision score is that dealing with a
distance threshold tight enough to sift out useful correspondences in the addressed scenario.
According to our experience, the adopted common threshold for the object recognition and
surface registration experiments fulfills this requirement in both settings. Moreover, we
think that having the same threshold value in both experiments renders the results more
easily comparable.

2.2.3. Datasets

Akin to [5], in our experiments on object recognition we rely on the following popular
datasets (see also Figure 3):

• UWA dataset, introduced by Mian et al. [34]. This dataset consists of 4 full 3D models
and 50 scenes wherein models significantly occlude each other. To create some clutter,
scenes contain also an object which is not included in the model gallery. As scenes are
scanned by a Minolta Vivid 910 scanner, they are corrupted by real sensor noise.

• Random Views dataset, based on the Stanford 3D scanning repository (3 http://
graphics.stanford.edu/data/3Dscanrep/ accessed on 14 November 2020) and origi-
nally proposed in [1]. This dataset comprises 6 full 3D models and 36 scenes obtained
by synthetic renderings of random model arrangements. Scenes feature occlusions
but no clutter. Moreover, scenes are corrupted by different levels of synthetic noise.
In the experiments we consider scenes with Gaussian noise equal to σ = 0.1 mesh
resolution units.

  

  Figure 3. Scene from the UWA (left) and Random Views (right) datasets.

As far as surface registration is concerned, we use the Laser Scanner dataset, pro-
posed in [14]. This dataset includes 8 public-domain 3D models, i.e., 3 taken from the
AIM@SHAPE repository (Bimba, Dancing Children and Chinese Dragon), 4 from the Stanford
3D Scanning Repository (Armadillo, Buddha, Bunny, Stanford Dragon) and Berkeley Angel [35].
According to the protocol described in [14], training should be carried out based on syn-
thetic views generated from Berkeley Angel, Bimba, Bunny and Chinese Dragon, while the test

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
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data consists of the the real scans available for the remaining 3 models (Armadillo, Buddha
and Stanford Dragon). Figure 4 reports exemplar scans from the Laser Scanner test set. We
follow the split into train and test objects proposed by the authors.

    

  

Figure 4. Laser Scanner dataset: scans from Armadillo, Buddha and Stanford Dragon.

2.2.4. Implementation

For all handcrafted descriptors considered in our evaluation, i.e., FPFH, ROPS,
SHOT, SI, and USC, we use the implementation available in PCL [36], which relies
on the original parameter settings proposed by the authors. As for the learned de-
scriptor, i.e., CGF-32, we use the public implementation made available by the au-
thors [14]. As for the Keypoint Learning (KPL) framework described in Section 2.1,
we use the publicly available original code for the generation of the training set (http:
//github.com/CVLAB-Unibo/Keypoint-Learning accessed on 14 November 2020.) to-
gether with the OpenCV (opencv.org) implementation of Random Forest classifier. We also
keep all the KPL hyperparameters to the values proposed by the authors in [5]. Accordingly,
each Forest consists of 100 trees of maximum depth equal to 25 while the minimum number
of samples to stop splitting a node is 1. During the detection phase, each point of an unseen
point cloud is passed through the Random Forest classifier which produces a score. A point
is identified as a keypoint if it exhibits a local maximum of the scores in a neighborhood of
radius rnms and the score is higher than a threshold smin.

For each descriptor considered in our evaluation, we train its paired detector according
to the KPL framework. As a result, we obtain six detector-descriptor pairs, referred to from
now on as KPL-CGF32, KPL-FPFH, KPL-ROPS, KPL-SHOT, KPL-SI, KPL-USC.

In object recognition experiments, the training data for all detectors are generated
from the 4 full 3D models present in the UWA dataset. Purposely, according to the KPL
methodology [4,5], for each model we render views from the nodes of an icosahedron
centered at the centroid. Some of the generated views are presented in the Figure 5.

  

Figure 5. A 3D model and some rendered views from UWA.

Then, the detectors are used in the scenes of the UWA dataset as well as in those of the
Random Views dataset. Thus, similarly to [4,5], we do not retrain the detectors on Random
Views in order to test the ability of the considered detector-descriptor pairs to generalize
well to unseen models in object recognition settings. A coherent approach was pursued for
the CGF-32 descriptor. As the authors do not provide a model trained on the UWA dataset,
we trained the descriptor on the synthetically rendered views of the 4 UWA models using
the code provided by the authors and following the protocol described in the paper in

http://github.com/CVLAB-Unibo/Keypoint-Learning
http://github.com/CVLAB-Unibo/Keypoint-Learning
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order to generate the data needed by their learning framework based on the triplet ranking
loss. Thus, KPL-CGF32 was trained on UWA models and, like all other detector-descriptor
pairs, tested on both UWA and Random Views scenes.

In surface registration experiments we proceed according to the protocol proposed
in [14]. Hence, detectors are trained with rendered views of the train models provided
within the Laser Scanner dataset (Angel, Bimba, Bunny, Chinese Dragon) and tested on the real
scans of the test models (Armadillo, Buddha, Stanford Dragon). As CGF-32 was trained exactly
on the above mentioned train models [14], to carry out surface registration experiments
we did not retrain the descriptor but used the trained network published by the authors
(https://github.com/marckhoury/CGF accessed on 14 November 2020).

The values of the main parameters of the detector-descriptor pairs used in the experi-
ments are summarized in Tables 1 and 2. Accordingly to [5], we used the same support size
for all descriptors rdesc and all detectors rdet across all the datasets. As it can be observed
from Table 1, train parameters for Random Views dataset are not specified as we did not
train a new KPL detector on this dataset.

As regards the parameters used in surface registration, since models belong to different
repository, we report parameters grouped by model. Test parameters for Angel, Bimba,
Bunny and Chinese Dragon are not reported as they are only used in train. Similarly, we
omit train parameters for Armadillo, Buddha and Stanford Dragon. Due to the different
shape of the models in the dataset, τ is tuned during the train stage so that the number of
overlapping views remains constant across all models.

Table 1. Parameters for object recognition datasets. All metric values are in millimeters.

Dataset rdesc rdet τ ε εnms εneg rnms smin

UWA 40 20 0.85 7 4 2 4 0.8
Random Views 40 20 - 7 - - 4 0.8

Table 2. Parameters for surface registration dataset. All metric values are in millimeters.

Model Name rdesc rdet τ ε εnms εneg εovr rnms smin

Angel 40 20 0.85 7 4 2 - - -
Bimba 40 20 0.85 7 4 2 - - -
Bunny 40 20 0.65 7 4 2 - - -
Chinese Dragon 40 20 0.65 7 4 2 - - -
Armadillo 40 20 - 7 - - 2 4 0.5
Buddha 40 20 - 7 - - 2 4 0.5
Stanford Dragon 40 20 - 7 - - 2 4 0.5

3. Results and Discussion

In this section, we report experimental results and discuss them. Compared to the
most recent evaluation in the field [2], our results allow to assess the performance of the
recently proposed KPL methodology based on machine learning as a keypoint detector
(which is not considered in [2]) when paired with descriptors or when tested on datasets
not considered in [5]. Moreover, we also include a learned descriptor (CGF) in the pool of
compared methods, while [2] only consider hand-crafted methods. The main limitation
of our study is the smaller number of datasets and acquisition modalities with respect
to [2], although on the other hand we rely on real partial scans for the surface registration
experiment, while only one synthetic dataset, obtained by creating virtual views of the
UWA dataset model gallery, is used in [2].

3.1. Object Recognition

The results on the UWA dataset are shown in Figure 6. First, we wish to highlight
how the features based on descriptors which encode just the spatial densities of points

https://github.com/marckhoury/CGF
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around a keypoint outperform those relying on higher order geometrical attributes (such as,
e.g., normals). Indeed, KPL-CGF32, KPL-USC and KPL-SI yield significantly better results
than KPL-SHOT and KPL-FPFH. These results are coherent with the findings and analysis
reported in the performance evaluation by Guo et al. [2], which pointed out the former
feature category being more robust to clutter and sensor noise. It is also worth observing
how the representation based on the spatial tessellation and point density measurements
proposed in [16] together with the local reference frame proposed in [6] turn out particularly
amenable to object recognition, as it is actually deployed by both features yielding neatly
the best performance, namely KPL-CGF32 and KPL-USC. Yet, learning a dataset-specific
non-linear mapping by a deep neural network on top of this good representation does
improve performance quite a lot, as vouched by KPL-CGF32 outperforming KPL-USC by a
large margin. Indeed, the results obtained in this paper by learning both a dataset-specific
descriptor as well as its paired optional detector, i.e., the features referred to as KPL-CGF32,
turn out significantly superior to those previously published on UWA object recognition
dataset (see [4,5]).
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Figure 6. Object recognition results on UWA dataset.

In [5], the results achieved on Random Views by the detectors trained on UWA prove
the ability of the KPL methodology to learn to detect general rather than dataset-specific
local shapes amenable to provide good matches alongside with the paired descriptor, and
even more effectively, in fact, than the shapes found by handcrafted detectors. Thus, when
comparing the different descriptors, we can assume here that descriptors are computed on
the best available patches and results highlight the ability to handle the specific nuisances
of the Random Views dataset. As shown in Figure 7, KPL-FPFH and KPL-SHOT outperform
KPL-USC, KPL-CGF32 and KPL-SI. Again, this is coherent with previous findings reported
in literature (see [2,5]), which show how descriptors based on higher order geometrical
attributes turn out more effective on Random Views due to the lack of clutter and real sensor
noise. As for KPL-CGF32, although its performances are still overall better than those of
the other descriptors based on point densities, we observe quite a remarkable performance
drop compared to the UWA dataset, much larger, indeed, than the feature sharing the very
same input representation, i.e., KPL-USC. This suggests that the non-linear mapping learnt
by KPL-CGF32 is highly optimized to tell apart the features belonging to the objects present
in the training dataset (i.e., UWA) but turn out quite less effective when applied to unseen
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features, like those found on the objects belonging to Random Views. This domain shift issue
is quite common to learned representations and may yield to less stable performance across
different datasets than handcrafted representations.
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Figure 7. Object recognition results on Random Views dataset.

3.2. Surface Registration

First, we deem it worth pointing out how, unlike object recognition settings, in surface
registration it is never possible to train any supervised machine learning operator, either
detector or descriptor, on the very same objects that would then be processed at test time.
Indeed, should one be given either a full 3D model or a set of scans endowed with ground-
truth transformations, as required to train 3D feature detectors (i.e., KPL) or descriptors
(e.g., CGF-32), there would be no need to carry out any registration for that object. Surface
registration is about stitching together several scans of a new object than one wishes to
acquire as a full 3D model. As such, any supervised learning machinery is inherently prone
to the domain shift issue.

As shown in Figure 8, when averaging across all test objects, the detector-descriptor
pair based on the learned descriptor CGF-32 provides the best performance, which con-
firms the findings reported in [14] where the authors introduce CGF-32 and prove its good
registration performance on Laser Scanner. It is worth highlighting here that, as we evaluate
detector-descriptor pairs, our results are determined by both the repeatability of the detec-
tor as well as the effectiveness of the descriptor, whilst the registration experiments in [14],
according to the established descriptor evaluation methodology (e.g., [2,6]) assume an ideal
feature detector, i.e., the feature points are mapped from one view into another by the
available ground-truth transformation. This different experimental settings explain the dif-
ference between the precision values in Figure 8 and those reported in [14]. Figure 8 shows
also that, compared to the features based on handcrafted descriptors, and in particular
KPL-SHOT, the gain provided by KPL-CGF32 is not as substantial as we did found in object
recognition experiments (see Figure 6). Moreover, looking at the results on the individual
test objects, reported in Figures 9–11, one may observe how KPL-CGF32 outperforms the
feature pairs based on handcrafted descriptors only on Buddha, with KPL-SHOT yielding
better results on Stanford Dragon and both KPL-SHOT as well as KPL-USC comparing
favourably to KPL-CGF32 on Armadillo. This last experiment is particularly interesting due
to CGF-32 consisting in a non-linear mapping learnt on top of the input representation
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deployed by USC. Unlike in object recognition, though, this mapping can only be learnt on
different objects than those seen at test time and, hence, because of the domain shift, may
not always turn out beneficial.
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Figure 8. Surface registration results on the Laser Scanner dataset.
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Figure 9. Surface registration results on Armadillo.
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Figure 10. Surface registration results on Buddha.

Figure 11. Surface registration results on Stanford Dragon.

4. Conclusions and Future Work

Object recognition settings turn out quite amenable to deploy learned 3D features.
Indeed, one can train upon a set of 3D objects available beforehand, e.g., due to scanning
by some sensor or as CAD models, and then seek to recognize them into scenes featuring
occlusions and clutter. These settings allow for learning a highly specialized descriptor
alongside its optimal paired detector so to achieve excellent performance. In particular,
the learned pair referred to in this paper as KPL-CGF32 sets the new state of the art on
the UWA benchmark dataset, being able to achieve 0.45 recall at 0.8 precision. Although
the learned representation may not exhibit comparable performance when transferred to
unseen objects, in object recognition it is always possible to retrain on the objects at hand
to improve performance. An open question left to future work concerns whether the input
parametrization deployed by CGF-32 may enable to learn an highly effective non-linear
mapping also in datasets characterized by different nuisances (e.g., Laser Scanner) or one
should better try to learn 3D representations directly from raw data, as vouched by the
success of deep learning from image recognition. Features based on learned representations,
such as KPL-CGF32, are quite effective also in surface registration, where it delivers 0.18
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precision on the Laser Scanner dataset, the highest value attained in our study, although
this scenario is inherently more prone to the domain shift issue such that features based
on handcrafted descriptors, like in particular KPL-SHOT and KPL-USC, turn out still very
competitive and delivers similar performance (0.16 precision for the former on the same
dataset).

We believe that these findings may pave the way for further research on the recent field
of learned 3D representations, in particular in order to foster addressing domain adaptation
issues, a topic investigated more and more intensively in nowadays deep learning literature
concerned with image recognition (see e.g., [37]). Indeed, 3D data are remarkably diverse
in nature due to the variety of sensing principles and related technologies and we witness
a lack of large training datasets, e.g., at a scale somehow comparable to ImageNet, that
may allow learning representations from a rich and varied corpus of 3D models. Therefore,
how to effectively transfer learned representations to new scenarios seems a key issue to
the success of machine/deep learning in the most challenging 3D Computer Vision tasks.

Finally, KPL has established a new framework whereby one can learn an optimal
detector for any given descriptor. In this paper we have shown how applying KPL to a
learned representation (CGF-32) leads to particularly effective features (KPL-CGF32), in
particular when pursuing object recognition. Yet, according to the KPL training protocol,
the descriptor (e.g., CGF-32) has to be learnt before its paired detector: one might be willing
to investigate on whether and how a single end-to-end paradigm may allow learning both
components jointly so as to further improve performance.
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