
29 June 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Goal-directed graph construction using reinforcement learning / Darvariu Victor-Alexandru; Hailes
Stephen; Musolesi Mirco. - In: PROCEEDINGS - ROYAL SOCIETY. MATHEMATICAL, PHYSICAL AND
ENGINEERING SCIENCES. - ISSN 1471-2946. - ELETTRONICO. - 477:2254(2021), pp. 20210168.1-
20210168.18. [10.1098/rspa.2021.0168]

Published Version:

Goal-directed graph construction using reinforcement learning

Published:
DOI: http://doi.org/10.1098/rspa.2021.0168

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/870442 since: 2024-04-16

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1098/rspa.2021.0168
https://hdl.handle.net/11585/870442

Goal-directed graph construction using

reinforcement learning

Victor-Alexandru Darvariu1,2, Stephen Hailes1 and Mirco Musolesi1,2,3
1Department of Computer Science, University College London, London, UK

2The Alan Turing Institute, London, UK
3Department of Computer Science and Engineering, University of Bologna, Bologna, Italy

{v.darvariu, s.hailes, m.musolesi@ucl.ac.uk}

Abstract

Graphs can be used to represent and reason about systems and a
variety of metrics have been devised to quantify their global characteris-
tics. However, little is currently known about how to construct a graph
or improve an existing one given a target objective. In this work, we
formulate the construction of a graph as a decision-making process in
which a central agent creates topologies by trial and error and receives
rewards proportional to the value of the target objective. By means of
this conceptual framework, we propose an algorithm based on reinforce-
ment learning and graph neural networks to learn graph construction and
improvement strategies. Our core case study focuses on robustness to fail-
ures and attacks, a property relevant for the infrastructure and commu-
nication networks that power modern society. Experiments on synthetic
and real-world graphs show that this approach can outperform existing
methods while being cheaper to evaluate. It also allows generalization
to out-of-sample graphs, as well as to larger out-of-distribution graphs in
some cases. The approach is applicable to the optimization of other global
structural properties of graphs.

1 Introduction

Graphs are mathematical abstractions that can be used to model a variety of
systems, from infrastructure and biological networks to social structures. Vari-
ous methods for analysing networks have been developed: these have been often
used for understanding the systems themselves and range from mathematical
models of how families of graphs are generated [60, 4] to measures of centrality
for capturing the roles of vertices [10] and global network characteristics [44],
to name but a few.

A measure that has attracted significant interest from researchers and practi-
tioners is robustness [43] (sometimes called resilience), which is typically defined
as the capacity of the graph to withstand random failures, targeted attacks on
key nodes, or some combination thereof. A network is considered robust if a
large fraction (critical fraction) of nodes have to be removed before it becomes
disconnected [16], its diameter increases [2], or its largest connected component
diminishes in size [9]. Previous work has focused on the robustness of commu-
nication networks such as the Internet [17] and infrastructure networks used

1

0

1

9

2

5

3

4

6

7 8

S0 = (G0,∅)
F(G0) = 0.10

A0 = 3

0

1

9

2

5

3

4

6

7 8

S1 = (G1, {3})

R1 = 0.00
A1 = 2

0

1

9

2

8

5

3

4

6

7

S2 = (G2,∅)

R2 = 0.00
A2 = 1

0

1

9

2

8

5

3

4

6

7

S3 = (G3, {1})

R3 = 0.00
A3 = 4

0

1

9

2

4

8

5

3

7

6

S4 = (G4,∅)

R4 = 0.00
A4 = 3

0

1

9

2

4

8

5

3

7

6

S5 = (G5, {3})

R5 = 0.00
A5 = 6

0

1

9

2

4

8

5

3

7

6

S6 = (G6,∅)
F(G6) = 0.70
R6 = 0.60

Figure 1: Illustration of a Graph Construction MDP (GC-MDP) trajectory.
The agent is provided with a start state S0 = (G0,∅). It must make L =
3 edge additions over a sequence of 6 node selections (actions At), receiving
rewards Rt proportional to the value of an objective function F applied to the
graph. In this case, F quantifies the robustness of the network to targeted node
removal, computed by removing nodes in decreasing order of their degree and in
decreasing order of the labels if two nodes have the same degree. We observe an
improvement of the robustness of the graph from F(G0) = 0.1 to F(G6) = 0.7.
Actions and the corresponding edges are highlighted.

for transportation and energy distribution [14], for which resilience is a key
property.

In many practical cases, an initial network is given and the only way of im-
proving its robustness is through the modification of its structure. This prob-
lem was first approached by considering edge addition or rewiring, based on
random and preferential (w.r.t. node degree) modifications [9]. Alternatively, a
strategy has been proposed that uses a “greedy” modification scheme based on
random edge selection and swapping if the resilience metric improves [48]. An-
other line of work focuses on the spectral decomposition of the graph Laplacian,
and using properties such as the algebraic connectivity [57] and effective graph
resistance [58] to guide modifications. While simple and interpretable, these
strategies may not yield the best solutions or generalise across networks with
varying characteristics and sizes. Certainly, better solutions may be found by
exhaustive search, but the time complexity of exploring all the possible topolo-
gies and the cost of computing the metric render this strategy infeasible. With
the goal of discovering better strategies than existing methods, we ask whether
generalisable network construction strategies for improving robustness can be
learned.

Starting from this motivation, we formalise the process of graph construction
and improvement as a Markov Decision Process (MDP) in which rewards are
proportional to the value of a graph-level objective function. We consider two
objective functions that quantify robustness as the critical fraction of the net-
work in the presence of random failures and targeted attacks. Inspired by recent
successes of RL in solving combinatorial optimisation problems on graphs [6, 32],
we make use of Graph Neural Network (GNN) architectures [26] together with
the Deep Q-Network (DQN) [41] algorithm. Recent work in goal-directed graph
generation and improvement considers performing edge additions for adversar-
ially attacking GNN classifiers [19] and generating molecules with certain de-
sirable properties using domain-specific rewards [64]. In contrast, to the best
of our knowledge, this is the first time that RL is used to learn how to con-
struct a graph such as to optimise a global structural property. While in this
paper we focus on robustness, other intrinsic global properties of graphs, such

2

as efficiency [34] or communicability [22], could be used as optimisation targets.
The contribution of this paper is twofold. Firstly, we propose a framework

for improving global structural properties of graphs, by introducing the Graph
Construction Markov Decision Process (GC-MDP). Secondly, focusing on the
robustness of graphs under failures and attacks as a core case study, we offer
an in-depth empirical evaluation that demonstrates significant advantages over
existing approaches in this domain, both in terms of the quality of the solutions
found as well as the time complexity of model evaluation. Since this approach
addresses the problem of building robust networks with a DQN, we name it
RNet–DQN.

The remainder of the paper is structured as follows. We provide the defi-
nitions of the GC-MDP and the robustness measures in Section 2. Section 3
describes state and action representations for deep RL using GNNs. We present
our experimental setup in Section 4, and discuss our main results in Section 5.
In Section 6 we review and compare the key works in this area. Finally, we
conclude and offer a discussion of avenues for future work in Section 7.

2 Robust Graph Construction as a Decision Mak-
ing Problem

MDP Preliminaries. An MDP is one possible formalisation of a decision
making process. The decision maker, called an agent, interacts with an envi-
ronment. When in a state s ∈ S, the agent must take an action a out of the set
A(s) of valid ones, receiving a reward r governed by the reward function R(s, a).
Finally, the agent finds itself in a new state s′, depending on a transition model
P that governs the joint probability distribution P (s′, a, s) of transitioning to
state s′ after taking action a in state s. This sequence of interactions gives rise to
a trajectory. The agent’s goal is to maximise the expected (possibly discounted)
sum of rewards it receives over all the trajectories. The tuple (S,A,P,R, γ)
defines this MDP, where γ ∈ [0, 1] is a discount factor. We also define a pol-
icy π(a|s), i.e., a distribution of actions over states, which fully determines the
behaviour of the agent. Given a policy π, the action-value function Qπ(s, a)
is defined as the expected return when starting from s, taking action a, and
subsequently following policy π.

Modelling Graph Construction. Let G(N) be the set of labelled, undi-
rected, unweighted graphs with N nodes; each such graph G = (V,E) consists
of a vertex set V and edge set E. Let G(N,m) be the subset of G(N) with
|E| = m. We also let F : G(N) → [0, 1] be an objective function, and L ∈ N be
a modification budget. Given an initial graph G0 = (V,E0) ∈ G(N,m0), the aim
is to perform a series of L edge additions to G0 such that the resulting graph
G∗ = (V,E∗) satisfies:

G∗ = argmax
G′∈G′

F(G′),

where G′ = {G = (V,E) ∈ G(N,m0+L) | E0 ⊂ E}.
This combinatorial optimisation problem can be cast as a sequential decision-

making process. In order to enable scaling to large graphs, the agent has to

3

select a node at each step, and an edge is added to the graph after every two
decisions [19]. Tasks are episodic; each episode proceeds for at most 2L steps.
A trajectory visualisation is shown in Figure 1. Formally, we define the Graph
Construction MDP (GC-MDP) as follows:

1. State: The state St is a tuple (Gt, σt) containing the graph Gt = (V,Et)
and an edge stub σt. σt can be either the empty set ∅ or the singleton
{v}, where v ∈ V .

2. Action: At corresponds to the selection of a node in V . Letting the degree
of node v be dv, available actions are defined as:

A(St = ((V,Et),∅)) = {v ∈ V | dv < |V | − 1}
A(St = ((V,Et), {σt})) = {v ∈ V | (σt, v) /∈ Et}

3. Transitions: The transition model is defined as P (St = s′|St−1 = s,At−1 =
a) = δStS′ ,

where S′ =

{
((V,Et−1 ∪ (σt−1, a)) ,∅) , if 2 | t
((V,Et−1) , {a}) , otherwise

4. Reward : The reward Rt is defined as follows1:

Rt =

{
F(Gt)−F(G0), if t = 2L

0, otherwise

Definition of Objective Functions for Robustness. We are interested in
the robustness of graphs as objective functions. Given a graph G, we let the
critical fraction p(G, ξ) ∈ [0, 1] be the minimum fraction of nodes that have to
be removed from G in some order ξ for it to become disconnected (i.e., have
more than one connected component). Connectedness is a crucial operational
constraint and the higher this fraction is, the more robust the graph can be said
to be. 2 The order ξ in which nodes are removed can have an impact on p, and
corresponds to different scenarios: random removal is typically used to model
arbitrary failures, while targeted removal is adopted as a model for attack .
Formally, we consider both random permutations ξrandom of nodes in G, as well
as permutations ξtargeted, which are subject to the constraint that nodes must
appear in the order of their degree, i.e.,

∀v, u ∈ V. ξtargeted(v) ≤ ξtargeted(u) ⇐⇒ dv ≥ du

We define the objective functions F in the following way:

1Since F is very expensive to estimate, we deliberately only provide the reward at the
end of the episode in order to make the training feasible computationally, to the detriment
of possible credit assignment issues. Intermediate rewards based on the true objective or a
related quantity represent a middle ground which we leave for future work.

2We note that while connectedness is required for the specific objective functions considered
in this work, it is not required by either the GC-MDP formulation or the learning mechanism
itself. Other robustness objectives that quantify, e.g., the size of the largest connected com-
ponent are also applicable, as are fundamentally different objectives.

4

1. Expected Critical Fraction to Random Removal :

Frandom(G) = Eξrandom
[p(G, ξrandom)]

2. Expected Critical Fraction to Targeted Removal :

Ftargeted(G) = Eξtargeted
[p(G, ξtargeted)]

We use Monte Carlo (MC) sampling for estimating these quantities. For
completeness, Algorithm 1 in the Supplementary Material describes how the
simulations are performed. In the remainder of the paper, we use Frandom(G)
and Ftargeted(G) to indicate their estimates obtained in this way. We highlight
that evaluating an MC sample has time complexity O(|V | × (|V | + |E|)): it
involves checking connectedness (an O(|V | + |E|) operation) after the removal
of each of the O(|V |) nodes. Typically, many such samples need to be used to
obtain a low-variance estimate of the quantities. Coupled with the number of
possible topologies, the high cost renders even shallow search methods infeasible
in this domain.

3 Learning to Build Robust Graphs with Func-
tion Approximation

While the problem formulation described in Section 2 may allow us to work
with a tabular RL method, the number of states quickly becomes intractable –
for example, there are approximately 1057 labelled, connected graphs with 20
vertices [45]. Thus, we require a means of considering graph properties that are
label-agnostic, permutation-invariant, and generalise across similar states and
actions. Graph Neural Network architectures address these requirements. In
particular, we use a graph representation based on a variant of structure2vec
(S2V) [18], a GNN architecture inspired by mean field inference in graphical
models. 3 Given an input graph G = (V,E) where nodes v ∈ V have feature
vectors xv, its objective is to produce for each node v an embedding vector
µv that captures the structure of the graph as well as interactions between
neighbours. This is performed in several rounds of aggregating the features of
neighbours and applying an element-wise non-linear activation function such as
the rectified linear unit. For each round k ∈ {1, 2, ...,K}, the network simulta-
neously applies updates of the form:

µ(k+1)
v = relu

(
θ(1)xv + θ(2)

∑
u∈N (v)

µ(k)
u

)

where N (v) is the neighbourhood of node v. We initialise embeddings with

µ
(0)
v = 0 ∀v ∈ V , and let µv = µ

(K)
v . Once node-level embeddings are obtained,

permutation-invariant embeddings for a subgraph S can be derived by summing

3The problem formulation does not depend on the specific GNN or RL algorithm used.
While further advances developed by the community in these areas [39, 28] can be incorpo-
rated, in this paper we focus on aspects specific to the challenges of optimising the global
properties of graphs.

5

the node-level embeddings: µ(S) =
∑
vi∈S µvi . The node features xv are one-

hot 2-dimensional vectors representing whether v is the edge stub, and their use
is required to satisfy the Markovian assumption behind the MDP framework
(the agent “commits” to selecting v, which is now part of its present state).
Each state contains at most one edge stub.

In Q-learning [59], the agent estimates the action-value function Q(s, a) in-
troduced earlier, and derives a deterministic policy that acts greedily with re-
spect to it. The agent interacts with the environment and updates its estimates
according to:

Q(s, a)← Q(s, a) + α[r + γ max
a′∈A(s′)

Q(s′, a′)−Q(s, a)]

During learning, exploratory random actions are taken with probability ε. In
the case of high-dimensional state and action spaces, approaches that use a
neural network to estimate Q(s, a) have been successful in a variety of domains
ranging from general game-playing to continuous control [41, 37]. In particular,
we use the DQN algorithm: a sample-efficient method that improves on neural
fitted Q-iteration [46] by use of an experience replay buffer and an iteratively
updated target network for action-value function estimation. Specifically, we
use two parametrisations of the Q-function depending on whether the state St
contains an edge stub:

Q(St = (Gt,∅), At) = θ(3)relu (θ(4) [µAt
, µ(Gt)])

Q(St = (Gt, {σt}), At) = θ(5)relu (θ(6) [µσt
, µAt

, µ(Gt)])

where [·, ·] represents concatenation. This lets the model learn combinations
of relevant node features (e.g., that connecting two central nodes has high Q-
value). The use of GNNs has several advantages: firstly, the parameters Θ =
{θ(i)}6i=1 can be learned in a goal-directed fashion for the RL objective, allowing
for flexibility in the learned representation. Secondly, the embeddings have the
potential to generalise to larger graphs since they control how to combine node
features of neighbours in the message passing rounds and are not restricted
to graphs of a particular size. We note that the underlying S2V parameters
θ(1), θ(2) are shared between the two Q-function parametrisations.

4 Experimental Setup

Learning Environment. We build a learning environment that allows for the
definition of an arbitrary graph objective function F and provides a standard-
ised interface for agents. Our implementation of the environment, RNet–DQN
and baseline agents, and experimental suite is provided as a code repository
containing Docker image blueprints that enable the reproduction of the results
presented herein (up to hardware differences), including the relevant tables and
figures. The instructions about how to obtain, configure, and run the code are
provided in the Supplementary Material.

Baselines. We compare against the following approaches:

• Random: This strategy randomly selects an available action.

6

• Greedy : This strategy uses lookahead and selects the action that gives the
biggest improvement in the estimated value of F over one edge addition.

• Preferential : Previous works have considered preferential additions be-
tween nodes with the two lowest degrees [9], connecting a node with the
lowest degree to a random node [57] or connecting the two nodes with the
lowest degree product [58], i.e., adding an edge between the vertices v, u
that satisfy argminv,u dv · du. We find the latter works best in all settings
tested, and refer to it as LDP.

• Fiedler Vector (FV): The concept of Fiedler Vector was introduced by
[23] and for robustness improvement by [57]. This strategy adds an edge
between the vertices v, u that satisfy argmaxv,u |yv − yu|, where y is the
Fiedler vector i.e., the eigenvector of the graph Laplacian L corresponding
to the second smallest eigenvalue.

• Effective Resistance (ERes): The concept of effective resistance was intro-
duced by [20] and for robustness improvement as a local pairwise approxi-
mation by [58]. This strategy selects vertices v, u that satisfy argmaxv,u Ωv,u.

Ωv,u is defined as (L̂−1)vv + (L̂−1)uu − 2(L̂−1)vu, where L̂−1 is the pseu-
doinverse of L.

• Supervised Learning (SL): We consider a supervised learning baseline by
regressing on F to learn an approximate F̂ . We use the same S2V archi-
tecture as RNet–DQN, which we train using MSE loss instead of the Q-
learning loss. To select actions for a graphG, the agent considers all graphs
G′ that are one edge away, selecting the one that satisfies argmaxG′ F̂ .

Neural Network Architecture. For all experiments, we use an S2V em-
bedding vector of length 64. The neural network architecture used for RNet–
DQN and SL is formed of state-action embeddings obtained using S2V followed
by a multi-layer perceptron; the single output unit corresponds to the Q(s, a)
estimate for RNet–DQN and the predicted F̂ for SL respectively. Details of
hyperparameters used for the two learning-based models are provided in the
Supplementary Material.

Evaluation Protocol. We evaluate RNet–DQN and baselines both on syn-
thetic and real-world graphs. We allow agents a number of edge additions L
equivalent to a percentage τ of total possible edges. As an evaluation met-
ric, we report the cumulative reward obtained by the agents, which quantifies
the improvement in the objective function value between the final and original
graphs. Specifically, in the context of the robustness metrics used, the values
provided measure the difference in the expected fraction of nodes that need to
be removed for the network to become disconnected. Training is performed
separately for each graph family, objective function F , and value of L. Where
an agent is non-deterministic (either through intrinsic stochasticity or need for
training), we repeat its evaluation (and training where applicable, starting from
a different random initialisation of the network weights) to compute confidence
intervals. For the learned models, we record both average and maximum perfor-
mance. No hyperparameter tuning is performed due to computational budget

7

constraints. Details about the experimental settings are provided in the Sup-
plementary Material.

Synthetic Graphs. We consider graphs generated through the following mod-
els:

• Erdős–Rényi (ER): A graph sampled uniformly out of G(N,m) [21]. We

use m = 20
100 ∗

N∗(N−1)
2 , which represents 20% of all possible edges.

• Barabási–Albert (BA): A growth model where n nodes each attach pref-
erentially to M existing nodes [4]. We use M = 2.

We consider graphs with |V | = 20, allowing agents to add a percentage of
the total number of edges equal to τ ∈ {1, 2, 5}, which yields L ∈ {2, 5, 10}. For
RNet–DQN and SL, we train on a disjoint set of graphs Gtrain. We periodically
measure performance on another set Gvalidate, storing the best model found.
We use |Gtrain| = 104 and |Gvalidate| = 102. The performance of all agents is
evaluated on a set Gtest with |Gtest| = 102 generated using the ER and BA
models. In order to evaluate out-of-distribution generalisation, we repeat the
evaluation on graphs with up to |V | = 100 (only up to |V | = 50 for Greedy
and SL due to computational cost, see next section) and scale m (for ER) and
L accordingly. For non-deterministic agents, evaluation (and training, where
applicable) is repeated across 50 random seeds.

Real-World Graphs. In order to evaluate our approach on real-world graphs,
we consider infrastructure networks (for which robustness is a critical property)
extracted from two datasets: Euroroad (road connections in mainland Europe
and parts of Western and Central Asia [67, 33], |V | = 1174) and Scigrid (a
dataset of the European power grid [40], |V | = 1479). We split these graphs
by the country in which the nodes are located, selecting the largest connected
component in case they are disconnected. We then select those with 20 ≤
|V | ≤ 50, obtaining 6 infrastructure graphs for Scigrid and 8 for Euroroad.
The partitioning and selection procedure yields infrastructure graphs for the
following countries:

• Euroroad : Finland, France, Kazakhstan, Poland, Romania, Russia, Turkey,
Ukraine.

• Scigrid : Switzerland, Czech Republic, United Kingdom, Hungary, Ireland,
Sweden.

Since, in this context, the performance on individual instances matters more
than generalisability, we train and evaluate on each graph separately (effectively,
the sets Gtrain,Gvalidate,Gtest all have cardinality 1 and contain the same
graph). SL is excluded for this experiment since we consider a single network.
Evaluation is repeated across 10 random seeds.

5 Results

In Table 1, we present the results of our experimental evaluation for synthetic
graphs. We also display the evolution of the validation loss during training

8

Random LDP FV ERes Greedy SL RNet–DQN
Objective G L avg best avg best

Frandom BA 2 0.018±0.001 0.036 0.051 0.053 0.033 0.048±0.002 0.057 0.051±0.001 0.057
5 0.049±0.002 0.089 0.098 0.106 0.079 0.099±0.003 0.122 0.124±0.001 0.130
10 0.100±0.003 0.158 0.176 0.180 0.141 0.161±0.008 0.203 0.211±0.001 0.222

ER 2 0.029±0.001 0.100 0.103 0.103 0.082 0.094±0.001 0.100 0.098±0.001 0.104
5 0.071±0.002 0.168 0.172 0.175 0.138 0.158±0.002 0.168 0.164±0.001 0.173
10 0.138±0.002 0.238 0.252 0.253 0.217 0.221±0.005 0.238 0.240±0.001 0.249

Ftargeted BA 2 0.010±0.001 0.022 0.018 0.018 0.045 0.022±0.002 0.033 0.042±0.001 0.047
5 0.025±0.001 0.091 0.037 0.077 0.077 0.055±0.003 0.077 0.108±0.001 0.117
10 0.054±0.003 0.246 0.148 0.232 0.116 0.128±0.014 0.217 0.272±0.002 0.289

ER 2 0.020±0.002 0.103 0.090 0.098 0.149 0.102±0.002 0.118 0.122±0.001 0.128
5 0.050±0.002 0.205 0.166 0.215 0.293 0.182±0.008 0.238 0.268±0.001 0.279
10 0.098±0.003 0.306 0.274 0.299 0.477 0.269±0.016 0.374 0.461±0.003 0.482

Table 1: Mean cumulative reward per episode obtained by the agents on syn-
thetic graphs with |V | = 20, grouped by objective function, graph family, and
number of edge additions L. Each reported value represents the improvement
in the expected critical fraction between the final and initial graphs.

in Figure 2. Out-of-distribution generalisation results are shown in Figure 3.
The results for real-world graphs are provided in Table 2. Additionally, Fig-
ure 4 displays examples of the original and improved topologies found by our
approach.

Main Findings. We summarise our findings as follows:
RNet–DQN provides competitive performance, especially for longer action se-
quences. Across all settings tested, RNet–DQN performed significantly better
than random. On synthetic graphs, the best model obtained the highest perfor-
mance in 8 out of 12 settings tested, while the average performance is at least
89% of that of the best-performing configuration. For BA graphs, RNet–DQN
obtained the best performance across all tasks tested. For ER graphs, ERes
performed slightly better when considering Frandom; for Ftargeted the greedy
baseline performed better for shorter sequences. For real-world graphs, RNet–
DQN obtained the best performance across all tasks.
Strategies for improving Frandom are easier to learn. The performance gap
between the trained model and the baselines is smaller for Frandom, suggesting
it is less complex to learn. This is also supported by the evaluation losses
monitored during training, which show performance improves and plateaus more
quickly. For Frandom the network with randomly initialised parameters already
yields policies with satisfactory results, and training brings a small improvement.
In contrast, the improvements for Ftargeted are much more dramatic.
Out-of-distribution generalisation only occurs for Frandom. The performance
on larger out-of-distribution graphs is preserved for the Frandom objective, and
especially for BA graphs we observe strong generalisation. The performance for
Ftargeted decays rapidly, obtaining worse performance than the baselines as the
size increases. The poor performance of the greedy policy means the Q(s, a)
estimates are no longer accurate under distribution shift. There are several
possible explanations, e.g., the inherent noise of estimating Frandom makes the
neural network more robust to outliers, or that central nodes impact message
passing in larger graphs differently. We think investigating this phenomenon is
a worthwhile future direction of this work, since out-of-distribution generalisa-
tion does occur for Frandom and evaluating the objective functions directly is
prohibitively expensive for large graphs.

9

Random LDP FV ERes Greedy RNet–DQN
Objective Dataset Instance avg best

Frandom Euroroad Finland 0.080±0.019 0.133 0.163 0.170 0.162 0.161±0.015 0.189
France 0.057±0.016 0.149 0.181 0.163 0.151 0.178±0.013 0.202
Kazakhstan 0.107±0.018 0.165 0.191 0.180 0.160 0.179±0.010 0.203
Poland 0.082±0.033 0.186 0.170 0.201 0.140 0.196±0.014 0.230
Romania 0.076±0.025 0.196 0.170 0.243 0.203 0.207±0.013 0.235
Russia 0.084±0.016 0.135 0.224 0.157 0.187 0.199±0.017 0.230
Turkey 0.092±0.023 0.191 0.198 0.198 0.191 0.215±0.011 0.247
Ukraine 0.071±0.017 0.158 0.186 0.151 0.098 0.163±0.022 0.205

Scigrid Switzerland 0.050±0.035 0.191 0.160 0.174 0.182 0.198±0.017 0.226
Czech Republic 0.091±0.020 0.242 0.239 0.252 0.214 0.334±0.020 0.375
United Kingdom 0.111±0.020 0.263 0.273 0.290 0.224 0.321±0.022 0.379
Hungary 0.051±0.029 0.176 0.179 0.175 0.117 0.148±0.017 0.185
Ireland 0.090±0.014 0.208 0.211 0.213 0.177 0.201±0.013 0.228
Sweden 0.097±0.029 0.187 0.213 0.195 0.197 0.213±0.022 0.276

Ftargeted Euroroad Finland 0.069±0.018 0.149 0.112 0.112 0.307 0.273±0.009 0.300
France 0.032±0.019 0.199 0.120 0.120 0.074 0.218±0.006 0.228
Kazakhstan 0.052±0.021 0.161 0.137 0.124 0.229 0.236±0.014 0.257
Poland 0.010±0.008 0.101 0.114 0.084 0.108 0.230±0.008 0.248
Romania 0.029±0.021 0.167 0.056 0.126 0.148 0.238±0.021 0.270
Russia 0.000±0.000 0.000 0.000 0.053 0.000 0.110±0.036 0.155
Turkey 0.044±0.021 0.126 0.155 0.126 0.143 0.233±0.018 0.264
Ukraine 0.031±0.023 0.074 0.037 0.083 0.135 0.164±0.006 0.178

Scigrid Switzerland 0.030±0.024 0.000 0.103 0.098 0.045 0.128±0.006 0.139
Czech Republic 0.038±0.026 0.116 0.116 0.116 0.163 0.242±0.027 0.284
United Kingdom 0.070±0.047 0.190 0.095 0.184 0.207 0.252±0.027 0.326
Hungary 0.027±0.028 0.190 0.000 0.129 0.143 0.190±0.000 0.190
Ireland 0.047±0.023 0.101 0.084 0.106 0.079 0.259±0.011 0.288
Sweden 0.061±0.021 0.142 0.121 0.201 0.094 0.232±0.008 0.261

Table 2: Results obtained on real-world graphs, split by graph instance. Each
reported value represents the improvement in the expected critical fraction be-
tween the final and initial graphs.

Performance on real-world graphs is comparatively better wrt. the baselines.
This is expected since training is performed separately for each graph to be
optimised.

Time Complexity. We also compare the time complexities of all approaches
considered below.

• RNet–DQN : O(|V |+ |E|) operations at each step: constructing node and
graph-level embeddings and, based on these embeddings, performing the
forward pass in the neural network to estimate Q(s, a) for all valid actions.

• Random: O(1) for sampling, assuming the environment checks action va-
lidity.

• Greedy : O(|V |4 × (|V | + |E|)). The improvement in F is estimated for
all O(|V |2) possible edges. For each edge, this involves O(|V |) MC sim-
ulations. As described in Section 2, each MC simulation has complexity
O(|V | × (|V |+ |E|)).

• LDP : O(|V |2): computing the product of node degrees.

• FV, ERes: O(|V |3), since they involve computing the eigendecomposition
and the Moore-Penrose pseudoinverse of the graph Laplacian respectively
(may be faster in practice).

• SL: O(|V |2 × (|V |+ |E|)). F̂ is predicted for O(|V |2) graphs that are one
edge away, then an argmax is taken.

10

0.0 0.8 1.6 2.4 3.2 4.0
timestep ×104

0.00

0.05

0.10
G
v
a
li
d
a
te

p
er

fo
rm

an
ce

Frandom, Barabási–Albert
L

=
2

0.0 0.8 1.6 2.4 3.2 4.0
timestep ×104

Frandom, Erdős–Rényi

0.0 0.8 1.6 2.4 3.2 4.0
timestep ×104

Ftargeted, Barabási–Albert

0.0 0.8 1.6 2.4 3.2 4.0
timestep ×104

Ftargeted, Erdős–Rényi

0.0 0.2 0.4 0.6 0.8 1.0
timestep ×105

0.0

0.1

0.2

G
v
a
li
d
a
te

p
er

fo
rm

an
ce

L
=

5

0.0 0.2 0.4 0.6 0.8 1.0
timestep ×105

0.0 0.2 0.4 0.6 0.8 1.0
timestep ×105

0.0 0.2 0.4 0.6 0.8 1.0
timestep ×105

0.0 0.4 0.8 1.2 1.6 2.0
timestep ×105

0.2

0.4

G
v
a
li
d
a
te

p
er

fo
rm

an
ce

L
=

10

0.0 0.4 0.8 1.2 1.6 2.0
timestep ×105

0.0 0.4 0.8 1.2 1.6 2.0
timestep ×105

0.0 0.4 0.8 1.2 1.6 2.0
timestep ×105

Figure 2: Performance on Gvalidate for synthetic graphs as a function of training
steps. Note the different x-axes scales for each row: more training steps are
typically required for longer edge addition sequences.

It is worth noting that the analysis above does not account for the cost
of training, the complexity of which is difficult to determine as it depends on
many hyperparameters and the specific characteristics of the problem at hand.
The approach is thus advantageous in situations in which predictions need to
be made quickly, over many graphs, or the model transfers well from a cheaper
training regime. We also remark that, even though the method requires an
upfront cost for training, this can be seen as a constant term if the number of
problem instances over which we would like to obtain predictions is large. These
characteristics are shared with other emergent work that tackles combinatorial
optimisation with machine learning [32, 7].

6 Related Work and Discussion

Network Resilience. Network resilience was first quantified by the aver-
age shortest path distance as a function of the number of removed nodes [2].
Analysing two scale-free communication networks, the authors found that this
type of network has good robustness to random failure but is vulnerable to tar-
geted attacks. A more extensive investigation [29] analysed the robustness of
several real-world networks as well as some generated by synthetic models using
a variety of attack strategies. Another area of interest is the analysis of the phase
transitions of the graph in terms of connectivity under the two attack strategies
[16, 17]. Optimal network topologies have also been discovered – for exam-
ple, under the objective of resilience to both failures and attacks, the optimal
network has a bi-modal or tri-modal degree distribution [54, 52]. There exists
evidence to suggest that the topological robustness of infrastructure systems is
correlated to operational robustness [49]. More broadly, the resilience of systems
is highly important in structural engineering and risk management [15, 24].

11

20 40 60 80 100
|V |

0.0

0.1

0.2

0.3

G
te
st

p
er

fo
rm

an
ce

Frandom, Barabási–Albert
τ

=
1.

0
RNet–DQN

Random

LDP

FV

ERes

Greedy

SL

20 40 60 80 100
|V |

Frandom, Erdős–Rényi

20 40 60 80 100
|V |

Ftargeted, Barabási–Albert

20 40 60 80 100
|V |

Ftargeted, Erdős–Rényi

20 40 60 80 100
|V |

0.2

0.4

G
te
st

p
er

fo
rm

an
ce

τ
=

2.
5

20 40 60 80 100
|V |

20 40 60 80 100
|V |

20 40 60 80 100
|V |

20 40 60 80 100
|V |

0.2

0.4

0.6

G
te
st

p
er

fo
rm

an
ce

τ
=

5.
0

20 40 60 80 100
|V |

20 40 60 80 100
|V |

20 40 60 80 100
|V |

Figure 3: Performance on out-of-distribution synthetic graphs as a function of
graph size, grouped by target problem and percentage of edge additions τ . For
RNet–DQN and SL, models trained on graphs with |V | = 20 are used.

Graph Neural Networks and Combinatorial Optimisation. Neural net-
work architectures able to deal not solely with Euclidean but also with manifold
and graph data have been developed in recent years [12], and applied to a vari-
ety of problems where their capacity for representing structured and relational
information can be exploited [5]. A sub-category of such approaches are Mes-
sage Passing Neural Networks (MPNN) [26], often referred to as Graph Neural
Networks (GNN) instead. Significant progress has been achieved in machine
learning for combinatorial optimisation problems [7], such as Minimum Vertex
Cover and the Travelling Salesman Problem by framing them as a supervised
learning [56] or RL [6] task. Combining GNNs with RL algorithms has yielded
models capable of solving several graph optimisation problems with the same ar-
chitecture while generalising to graphs an order of magnitude larger than those
used during training [32]. The problem as formulated in this paper is a combi-
natorial optimisation problem, related to problems in network design that arise
in operations research [1] – albeit with a different objective.

Graph Generation. Similarities exist between the current work and the
area of graph generative modelling, which tries to learn a generative model
of graphs [35, 65, 36] in a computationally efficient way given some existing
examples. This generation, however, is not necessarily conditioned by an objec-
tive that captures a global property to be optimised. Other lines of work target
constructing, ab initio, graphs that have desirable properties: examples include
neural architecture search [66, 38] and molecular graph generation [30, 64, 11].

12

Frandom(G) = 0.077
Ftargeted(G) = 0.037

Frandom(G) = 0.232 Ftargeted(G) = 0.256

Road Network, France

Frandom(G) = 0.067
Ftargeted(G) = 0.033

Frandom(G) = 0.242 Ftargeted(G) = 0.186

Road Network, Russia

Frandom(G) = 0.080
Ftargeted(G) = 0.023

Frandom(G) = 0.425 Ftargeted(G) = 0.278

Power Grid, Czech Republic

Figure 4: Several examples of the solutions found by RNet–DQN on real-world
graphs. Each row of the illustration shows the original network on the left, while
the central and right panels show the network optimised for resilience to random
and targeted removals, respectively. Objective function values are shown un-
derneath. The solutions for Frandom typically assign more connections to a few
central nodes, notably discovering the hub pattern in the third example. For
Ftargeted the added edges are spread around the network, reducing the impact
of attacks. However, the algorithm might discover more complex patterns that
are not directly interpretable, as shown in the solutions for the first example
network.

The concurrent work GraphOpt [53] tackles the inverse problem: given a graph,
the goal is to learn the underlying objective function that leads to its generation.
This is achieved with maximum entropy inverse RL and GNNs.

13

Relationship to RL–S2V. Our work builds on RL–S2V, a method that was
applied for the construction of adversarial examples against graph classifiers [19].
However, it is worth noting that there are a series of key differences with re-
spect to that approach. First, RL–S2V is not designed to address the problem
of constructing robust graphs or, more generally, learning to construct graphs
according to a given goal. Secondly, there are two key algorithmic differences to
RL–S2V with respect to the GC-MDP formulation: the reward function used,
which in this case quantifies a global property of the graph itself, as well as
the definition of the action spaces and the transition model, which account for
excluding already-existing edges (RL–S2V ignores this, leading to some of the
edge budget being wasted). Since the values of structural properties we consider
are increasing in the number of edges (the complete graph has robustness 1),
RNet–DQN generally yields strictly better performance results.

7 Conclusion and Outlook

In this work, we have addressed the problem of improving a graph structure
given the goal of maximising the value of a global objective function. We have
framed it for the first time as a decision-making problem and we have for-
malised it as the Graph Construction MDP (GC-MDP). Our approach, named
RNet–DQN, uses Reinforcement Learning and Graph Neural Networks as key
components for generalisation. As a case study, we have considered the prob-
lem of improving graph robustness to random and targeted removals of nodes.
Our experimental evaluation on synthetic and real-world graphs shows that, in
certain situations, this approach can deliver performance superior to existing
methods, both in terms of the solutions found (i.e., the resulting robustness of
the graphs) and time complexity of model evaluation. Further, we have shown
the ability to transfer to out-of-sample graphs, as well as the potential to transfer
to out-of-distribution graphs larger than those used during training.

Extensions. The proposed approach can be applied to other problems based
on different definitions of robustness or considering fundamentally different ob-
jective functions such as efficiency [34], path diversity [27], and assortativity [42],
which are of interest in various biological, communication, and social networks.
Since our formulation and algorithm are objective-agnostic, we expect they are
applicable out-of-the-box for other objectives, even those for which no strong
baselines are currently known. As such, this approach may be a useful tool for
the discovery of new graph improvement algorithms for objectives that can be
evaluated programatically, either in closed form or via simulations. Potential
limitations might be related to the complexity of the objective functions and
the related computational demands. We also view the interpretability of the ap-
proach, which is less straightforward than those based on known mathematical
concepts such as the Fiedler vector, to be an important research direction. Since
there is an active interest in the interpretability of both GNNs and RL [63, 55],
we consider that there is scope for developing techniques that are tailor-made
for explaining policies learned by RL on graphs.

Operationalisation. Beyond considering other objectives, in order to oper-
ationalise the proposed algorithm, it is possible to integrate a variety of re-

14

finements, which can include capturing heterogeneous edge costs (e.g., different
capacities per link in a communication network), extending the action space to
support heterogenous edge types (e.g., addition of different types of edges with
specific characteristics), and integrating domain-specific link constraints (e.g.,
planarity). For critical scenarios, it is also possible to verify that the resulting
solutions satisfy some given formal properties and constraints [25]. Further-
more, considering multi-criteria objective functions [47] is important for cases
where properties of the solutions must be balanced [31]. Various choices exist
for representing this trade-off and should be captured on a case-by-case basis
depending on the application: for example, a linear combination may be suffi-
cient in certain situations, while others are characterised by economies of scale.
We also remark that our formulation captures operational scenarios in which
the cost of constructing a link is significantly greater than the cost of its main-
tenance (e.g., as with road networks). Our method can also be adapted for
situations in which operational cost is instead greater by formulating a rewiring
operation that keeps the number of links constant.

Broader Applications. The approach described in this work can be used to
improve the properties of a variety of human-made infrastructure systems, such
as communication networks, transportation networks, and power grids. We also
envisage potential applications in biological (e.g., hypothesis testing for under-
standing the characteristics of brain networks [13]), ecological (e.g., design of
more resilient ecosystems [61]) and social networks (e.g., design of organisa-
tional structures [62]). As far as biological networks are concerned, the brain
is hypothesised to optimise a trade-off between efficiency and wiring cost [13].
Our method could be used in order to test different hypotheses related to the
resulting structure of brain networks over evolutionary times and also during
their development. Indeed, the evolution of such networks in time has been
captured (for example, Sulston et al. [51] mapped the development of the C.
elegans connectome). This can be achieved by applying the optimisation pro-
cedure for different objective functions and comparing the obtained networks
to the “ground truth”. With respect to the potential application in ecosystem
management, the graph formalisation can be used to model interactions between
species in a given environment. As such, our method has potential applications
to study, in simulation, the impact of introducing or removing species from an
ecosystem so as to achieve a desired outcome. Specifically, in the context of
robustness, we can consider optimising the resilience of an ecosystem to intrin-
sic or extrinsic shocks, a task of fundamental importance [3]. The dynamics of
interactions between species may be modelled in simulation using well known
models of e.g., predator-prey mechanics [8]. With respect to social networks, for
example, our method can be applied to derive optimal communication strategies
and related team structures so as to optimise a given objective for an organ-
isation. Finally, there are also potential applications for networks of artificial
agents (i.e., robots). There is a significant body of work in the robotics litera-
ture that treats the problem of maintaining robust communication in a network
of agents working together to complete a task in an environment that contains
obstacles or adversaries. For instance, [50] uses properties of the graph Lapla-
cian (namely, the Fiedler vector and its associated eigenvalue) to ensure the
underlying communication network remains robust. Since we have empirically

15

shown superior performance to using the Fiedler vector, our approach could also
lead to gains in this deployment scenario.

Data access. The original real-world datasets used in this research (Scigrid,
Euroroad) are publicly available and were retrieved via the Scigrid project web-
site https://www.power.scigrid.de/pages/downloads.html and KONECT
http://konect.cc/ respectively. They can be downloaded from their respec-
tive portals without registration. Scigrid is licensed under the Open Database
License (ODbL) v1.0, while Euroroad is license-free. The scripts and instruc-
tions used to extract the subgraphs corresponding to individual countries in the
infrastructure networks are available in the code repository, which is part of the
Supplementary Material.

Author contributions. V.-A.D., S.H., M.M. designed and developed the
study, reviewed the results, and wrote the manuscript. V.-A.D. wrote the im-
plementation and performed the data analysis. All authors gave final approval
for publication and agree to be held accountable for the work performed therein.

Competing interests. The authors declare no competing interests with re-
spect to this work.

Funding. This work was supported by The Alan Turing Institute under the
UK EPSRC grant EP/N510129/1.

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin, and M. R.
Reddy. Chapter 1 Applications of network optimization. In Handbooks
in Operations Research and Management Science, volume 7 of Network
Models, pages 1–83. Elsevier, 1995.

[2] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Error and at-
tack tolerance of complex networks. Nature, 406(6794):378–382, 2000.

[3] Stefano Allesina, Antonio Bodini, and Mercedes Pascual. Functional links
and robustness in food webs. Philosophical Transactions of the Royal So-
ciety B: Biological Sciences, 364(1524):1701–1709, 2009.

[4] Albert-László Barabási and Réka Albert. Emergence of Scaling in Random
Networks. Science, 286(5439):509–512, 1999.

[5] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Álvaro Sánchez-
González, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti,
David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive
biases, deep learning, and graph networks. arXiv:1806.01261, 2018.

[6] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy
Bengio. Neural Combinatorial Optimization with Reinforcement Learning.
arXiv:1611.09940, 2016.

16

https://www.power.scigrid.de/pages/downloads.html
http://konect.cc/

[7] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine Learning for
Combinatorial Optimization: a Methodological Tour d’Horizon. European
Journal of Operational Research, 290:405–421, 2021.

[8] Alan A Berryman. The origins and evolution of predator-prey theory. Ecol-
ogy, 73(5):1530–1535, 1992.

[9] Alina Beygelzimer, Geoffrey Grinstein, Ralph Linsker, and Irina Rish. Im-
proving Network Robustness by Edge Modification. Physica A, 357:593–
612, 2005.

[10] Monica Bianchini, Marco Gori, and Franco Scarselli. Inside PageRank.
ACM Trans. Internet Technol., 5(1):92–128, February 2005.

[11] John Bradshaw, Brooks Paige, Matt J. Kusner, Marwin H. S. Segler,
and José Miguel Hernández-Lobato. A Model to Search for Synthesizable
Molecules. In NeurIPS, 2019.

[12] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre
Vandergheynst. Geometric Deep Learning: Going beyond Euclidean data.
IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[13] Ed Bullmore and Olaf Sporns. The economy of brain network organization.
Nature Reviews Neuroscience, 13(5):336–349, 2012.

[14] Hale Cetinay, Karel Devriendt, and Piet Van Mieghem. Nodal vulnerability
to targeted attacks in power grids. Applied Network Science, 3(1):34, 2018.

[15] Gian Paolo Cimellaro, Andrei M. Reinhorn, and Michel Bruneau. Frame-
work for analytical quantification of disaster resilience. Engineering Struc-
tures, 32:3639–3649, 2010.

[16] Reuven Cohen, Keren Erez, Daniel ben Avraham, and Shlomo Havlin.
Resilience of the Internet to Random Breakdowns. Physical Review Letters,
85(21):4626–4628, 2000.

[17] Reuven Cohen, Keren Erez, Daniel ben Avraham, and Shlomo Havlin.
Breakdown of the Internet under Intentional Attack. Physical Review Let-
ters, 86(16):3682–3685, 2001.

[18] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent
variable models for structured data. In ICML, 2016.

[19] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and
Le Song. Adversarial attack on graph structured data. In ICML, 2018.

[20] W. Ellens, F.M. Spieksma, P. Van Mieghem, A. Jamakovic, and R.E.
Kooij. Effective graph resistance. Linear Algebra and its Applications,
435(10):2491–2506, 2011.

[21] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ.
Math. Inst. Hung. Acad. Sci, 5(1):17–60, 1960.

[22] Ernesto Estrada and Naomichi Hatano. Communicability in complex net-
works. Physical Review E, 77(3):036111, 2008.

17

[23] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathe-
matical Journal, 23(2):298–305, 1973.

[24] Alexander A. Ganin, Emanuele Massaro, Alexander Gutfraind, Nicolas
Steen, Jeffrey M. Keisler, Alexander Kott, Rami Mangoubi, and Igor
Linkov. Operational resilience: Concepts, design and analysis. Scientific
Reports, 6(1):1–12, 2016.

[25] Javier Garćıa and Fernando Fernández. A Comprehensive Survey on Safe
Reinforcement Learning. Journal of Machine Learning Research, 16(42):44,
2015.

[26] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. Neural Message Passing for Quantum Chemistry. In
ICML, 2017.

[27] Nikola Gvozdiev, Stefano Vissicchio, Brad Karp, and Mark Handley. On
low-latency-capable topologies, and their impact on the design of intra-
domain routing. In SIGCOMM, 2018.

[28] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg
Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and
David Silver. Rainbow: Combining Improvements in Deep Reinforcement
Learning. In AAAI, 2018.

[29] Petter Holme, Beom Jun Kim, Chang No Yoon, and Seung Kee Han. Attack
vulnerability of complex networks. Physical Review E, 65(5), 2002.

[30] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction Tree Vari-
ational Autoencoder for Molecular Graph Generation. In ICML, 2018.

[31] Ralph L. Keeney, Howard Raiffa, and Richard F. Meyer. Decisions with
multiple objectives: preferences and value trade-offs. Cambridge University
Press, 1993.

[32] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learn-
ing combinatorial optimization algorithms over graphs. In NeurIPS, 2017.

[33] Jérôme Kunegis. KONECT: the Koblenz network collection. In WWW
Companion, 2013.

[34] Vito Latora and Massimo Marchiori. Efficient Behavior of Small-World
Networks. Physical Review Letters, 87(19):198701, 2001.

[35] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia.
Learning Deep Generative Models of Graphs. In ICML, 2018.

[36] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L.
Hamilton, David Duvenaud, Raquel Urtasun, and Richard S. Zemel. Ef-
ficient Graph Generation with Graph Recurrent Attention Networks. In
NeurIPS, 2019.

[37] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
et al. Continuous control with deep reinforcement learning. In ICLR, 2016.

18

[38] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and
Koray Kavukcuoglu. Hierarchical representations for efficient architecture
search. In ICLR, 2018.

[39] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman.
Provably Powerful Graph Networks. In NeurIPS, 2019.

[40] Wided Medjroubi, Ulf Philipp Müller, Malte Scharf, Carsten Matke, and
David Kleinhans. Open Data in Power Grid Modelling: New Approaches
Towards Transparent Grid Models. Energy Reports, 3:14–21, 2017.

[41] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[42] M. E. J. Newman. Assortative mixing in networks. Physical Review Letters,
89(20), 2002.

[43] M. E. J. Newman. The Structure and Function of Complex Networks.
SIAM Review, 45(2), 2003.

[44] M. E. J. Newman. Networks. Oxford University Press, 2018.

[45] OEIS Foundation. The on-line encyclopedia of integer sequences, 2020.

[46] Martin Riedmiller. Neural Fitted Q Iteration – First Experiences with a
Data Efficient Neural Reinforcement Learning Method. In ECML, 2005.

[47] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley. A Survey of
Multi-Objective Sequential Decision-Making. Journal of Artificial Intelli-
gence Research, 48:67–113, 2013.

[48] Christian M. Schneider, André A. Moreira, Joao S. Andrade, Shlomo
Havlin, and Hans J. Herrmann. Mitigation of malicious attacks on net-
works. PNAS, 108(10):3838–3841, 2011.

[49] Ricard V. Solé, Mart́ı Rosas-Casals, Bernat Corominas-Murtra, and Sergi
Valverde. Robustness of the European power grids under intentional attack.
Physical Review E, 77(2):026102, 2008.

[50] Ethan Stump, Ali Jadbabaie, and Vijay Kumar. Connectivity management
in mobile robot teams. In 2008 IEEE International Conference on Robotics
and Automation, pages 1525–1530. IEEE, 2008.

[51] John E Sulston, Einhard Schierenberg, John G White, and J Nichol Thom-
son. The embryonic cell lineage of the nematode caenorhabditis elegans.
Developmental Biology, 100(1):64–119, 1983.

[52] Toshi Tanizawa, Gerald Paul, Reuven Cohen, Shlomo Havlin, and H. Eu-
gene Stanley. Optimization of network robustness to waves of targeted and
random attacks. Physical Review E, 71(4), 2005.

[53] Rakshit Trivedi, Jiachen Yang, and Hongyuan Zha. GraphOpt: Learning
Optimization Models of Graph Formation. In ICML, 2020.

19

[54] André X. C. N. Valente, Abhijit Sarkar, and Howard A. Stone. Two-
Peak and Three-Peak Optimal Complex Networks. Physical Review Letters,
92(11), 2004.

[55] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli,
and Swarat Chaudhuri. Programmatically interpretable reinforcement
learning. In ICML, 2018.

[56] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer Networks. In
NeurIPS, 2015.

[57] Huijuan Wang and Piet Van Mieghem. Algebraic connectivity optimization
via link addition. In Proceedings of the Third International Conference
on Bio-Inspired Models of Network Information and Computing Systems
(Bionetics), 2008.

[58] Xiangrong Wang, Evangelos Pournaras, Robert E. Kooij, and Piet
Van Mieghem. Improving robustness of complex networks via the effec-
tive graph resistance. The European Physical Journal B, 87(9):221, 2014.

[59] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine
Learning, 8(3-4):279–292, 1992.

[60] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-
world’ networks. Nature, 393(6684):440, 1998.

[61] Walter E. Westman. Measuring the inertia and resilience of ecosystems.
BioScience, 28(11):705–710, 1978.

[62] John Wreathall. Properties of resilient organizations: an initial view. In
Resilience Engineering, pages 275–285. CRC Press, 2017.

[63] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure
Leskovec. Gnnexplainer: Generating explanations for graph neural net-
works. In NeurIPS, 2019.

[64] Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec. Graph
Convolutional Policy Network for Goal-Directed Molecular Graph Genera-
tion. In NeurIPS, 2018.

[65] Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure
Leskovec. GraphRNN: Generating Realistic Graphs with Deep Auto-
regressive Models. In ICML, 2018.

[66] Barret Zoph and Quoc V. Le. Neural Architecture Search with Reinforce-
ment Learning. In ICLR, 2017.

[67] L. Šubelj and M. Bajec. Robust network community detection using bal-
anced propagation. The European Physical Journal B, 81(3):353–362, 2011.

20

