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COMPLEX ENERGY NETWORKS OPTIMIZATION: PART I – DEVELOPMENT AND 
VALIDATION OF A SOFTWARE FOR OPTIMAL LOAD ALLOCATION 

 
M. A. Ancona, M. Bianchi, L. Branchini, A. De Pascale, F. Melino, A. Peretto, J. Rosati 

 
DIN – Alma Mater Studiorum, Università di Bologna 

Viale del risorgimento 2, 40136 Bologna, Italy 
 
 
 

ABSTRACT 
The growing diffusion of the distributed generation systems, 

due to the European and national legislations which impose the 
fossil fuel and greenhouse gas emissions reduction and the 
renewable sources exploitation, have led to an increase in the 
complexity of the existing energy networks. 

The main issue of the complex energy grids is their 
management, which consists in the resolution and optimization 
of the load allocation problem by minimizing the primary energy 
consumption and, thus, improving the overall efficiency. 

In this context, the aim of this paper is to develop and 
validate a non-linear algorithm suitable for the resolution of the 
load allocation problem. In detail, the software COMBO, which 
has been developed by the University of Bologna, is based on a 
non-heuristic algorithm and allows to optimize a complex energy 
network – characterized by electrical, thermal, cooling and fuel 
fluxes – by evaluating all the possible combinations of solutions. 
The objective function of the software consists in the 
minimization of the total cost of energy production, including not 
only the variable costs, but also the costs related to the 
environmental impact of the energy systems. In this paper the 
mathematical model of the algorithm at the basis of the software 
COMBO is presented and described in detail.  

Furthermore, the software has been validated by its 
application to a case study and comparing the results with the 
ones obtained with a previously developed software based on a 
genetic algorithm (heuristic non-linear method). 

 
Keywords: scheduling optimization, non-heuristic 

algorithm, complex energy network management, software 
development. 

 

NOMENCLATURE 
C cost [€] 
COP coefficient of performance [-] 
EER energy efficiency ratio [-] 
ITER iteration [-] 
l load [-] 
L load limit [-] 
NC number of combinations for each iteration [-] 
NS number of generation systems [-] 
OF fitness function [€] 
SC number of combinations for each system [-] 

TOL tolerance value [-] 
 
Acronyms 
A load matrix 
CHP combined heat and power 
EGO Energy Grid Optimizer 
LP Linear Programming 
MILP Mixed Integer Linear Programming 
MINLP Mixed Integer Non Linear Programming 
 
Greek symbols 
 matrix creation parameter [-] 
 system combination parameter [-] 
 corrective factor [-] 
 fuel [-] 
 
Subscripts and Superscripts 
E electricity 
F fictitious 
high higher 
i system number 
j combination number 
k iteration progressive number 
low lower 
M maintenance 
max maximum 
min minimum 
opt optimal 
step upper limit 
INTRODUCTION 

The last years have been characterized by a growing 
attention to the energy conversion efficiency improvement, 
mainly due to the increasing diffusion of distributed energy 
systems in most of the European countries as well as worldwide 
[1-5]. The main reason stands in the need to integrate the 
renewable resource generators with the traditional energy 
systems, in order to reduce the fossil fuel consumption and, thus, 
the greenhouse gas emissions [6-9]. On this purpose, in fact, 
many countries have forced strict constraints in order to reach 
these goals by stepped the existing legislations [10, 11]. 

As a consequence, the existing grids are becoming more 
complex both from the energy distribution and network 
management viewpoints [12, 13]. 
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The main challenge for these complex energy grids – 
characterized by the electrical, thermal, cooling and fuel fluxes 
– is the definition of optimal management criteria (i.e. the 
optimization of the energy systems scheduling during the whole 
year of operation) [14-16]. Generally, this problem has been 
addressed by the researchers through the development and 
implementation of algorithms based on approximate methods or 
exact mathematical methods [17-20]. As it concerns the 
approximate methods, they face the nonlinearities of some 
constraints and of the objective function by implementing 
random search techniques [21, 22]. This allows to find a good 
approximate solution of the problem with acceptable 
computational time. The approximate techniques include the 
heuristic methods [23, 24] – such as the constructive and the 
local search algorithms – and the metaheuristic methods [25] – 
such as the trajectory and the population-based algorithms. In the 
framework of complex energy network optimization, a widely 
used approximate technique among the heuristic methods is 
represented by the genetic algorithms which are based on the 
genetic rules of the population evolution and allow to solve 
nonlinear problems with a good-quality solution [26, 27]. 
Moreover, firefly algorithms – also belonging to this type of 
methods but more recently developed – represent a population-
based technique aimed to find the optimal solution by using a 
swarm intelligence approach [28]. 

With regard to the exact resolution methods, instead, they 
are able to provide the optimal solution of the problem but, in the 
case of highly complex problems, the computational time 
increases. Some exact methods are represented by enumerative 
algorithms, branch and bound [29] and linear programming (LP) 
[30]. Furthermore, the Mixed Integer Linear Programming 
(MILP) and Mixed Integer Non Linear Programming (MINLP) 
problems are exact resolution methods which are used for energy 
grid management and design [31]. In particular, the MILP 
problems are most widely used for the scheduling optimization 
of complex networks since, even if the nonlinearities of the 
problem are lost (being characterized by linear functions and 
discrete variables), they allow to find the exact solution [32-36]. 
On the other hand, the MINLP problems overcome the linearity 
of the MILP but the complexity of the problem and the high 
computational time needs to be improved [37-39]. 

The aim of this paper is the development of a novel software 
based on a non-heuristic algorithm, able to solve the non-linear 
problem of systems load allocation. In particular, the realized 
software, named COMBO, allows to create all the combinations 
of the energy systems loads and to evaluate each one of them 
with the main aim to find out the optimal solution, represented 
by the scheduling configuration which minimizes the fitness 
function. The latter – as will be better discussed in the following 
section – consists in the total energy production cost, taking into 
account also the so-called fictitious costs in order to consider the 
environmental aspects. 

Furthermore, in this paper, the validation of the developed 
software is presented. To this respect, a network at the service of 
a residential neighborhood has been considered and 
implemented within the COMBO software. Finally, the results 

of the simulations have been compared with the results obtained 
with the application to the same case study of a genetic 
algorithm. 

This paper represents the Part I of a wider study, 
representing the mathematical model of the developed software 
along with its validation. It will follow a Part II in which a case 
study concerning a residential neighborhood will be presented 
and analyzed with the software COMBO. 

 
COMPLEX ENERGY GRID OPTIMIZATION WITH THE 
SOFTWARE COMBO: MATHEMATICAL MODEL 

With the main purpose of evaluating the optimal scheduling 
of the production systems composing a complex energy network 
(characterized by electrical, thermal, cooling energy and fuel 
distribution), a new software, named COMBO, has been realized 
by the University of Bologna. 

In particular, the developed software is able to simulate an 
energy grid by defining the optimal load of each system – such 
as prime movers (Combined Heat and Power application or 
electrical engines), thermal generators (auxiliary boilers and heat 
pumps), cooling systems (compression and absorption chillers) 
and non-programmable renewable sources generators – by 
minimizing the total cost of the produced energy. In order to 
fulfill the electrical, thermal and cooling demand of the users of 
the network, a connection to both the electric grid and the gas 
distribution network is included. 

With reference to the algorithm operation, in Figure 1 the 
schematic flow chart of the software COMBO is presented. 

As can be seen from Figure 1, the software calculation core 
is based on a non-heuristic algorithm that consists in an iterative 
process aimed at creating and at evaluating all the possible load 
combinations to find out the optimal solution, namely the load 
allocation among the energy systems which minimizes the 
objective function. 

In detail, the input section consists in the definition of: 
 users’ energy demand (electrical, thermal, cooling and 

mechanical power required by the users connected to 
the network); 

 prime movers (number, typology, size and main 
characteristics, such as the electrical and thermal 
design power output, off-design behavior, design 
efficiency, etc.); 

 heating and cooling systems (number, typology, size, 
efficiency, etc.); 

 renewable source generators (performances, peak 
power, etc.); 

 tariff scenario (cost of the fuel, cost of purchased and 
sold electricity, etc.); 

 internal parameters of the algorithm (number of 
iterations, tolerance value, etc.). 
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Figure 1 – Schematic flow chart of the software. 

 
The output is the optimal load of each non-renewable 

generation system connected to the network, along with the 
minimized total cost of energy production. 

As it regards the core of the calculation, a detailed 
description is given in the following paragraphs. 

 
Creation of the combinations 

The optimization method underlying the COMBO software 
consists in an iterative process aimed at creating and at exploring 
all the possible load combinations of the energy systems 
composing a certain network, in order to find out the optimal 
solution in terms of optimal systems load allocation and energy 
production cost minimization. 

As a starting point, at each kth iteration (ITERk), the total 
number of combinations 𝑁𝐶 (j=1,…,NC) to be evaluated is 
defined with the following equation: 

 
𝑁𝐶௞ = 𝑆𝐶ேௌ   (1) 

 
in which 𝑁𝑆 (I=1,…,NS) indicates the total energy systems 

number and the term 𝑆𝐶 refers to the total number of 
combinations for a single energy system, defined as: 

 

𝑆𝐶௜,௞ = ቜ1 +
ቀ௅೓೔೒೓೔,ೖ

ି௅೗೚ೢ೔,ೖቁ

௅ೞ೟೐೛
ቝ   (2) 

 
being 𝐿௛௜௚௛  and 𝐿௟௢௪ the higher and lower parameter limits 

for the load range definition and 𝐿௦௧௘௣ the step for the range 
solution investigation. All these parameters are defined at the 
beginning as input. 

Therefore, according to the flow chart of Figure 1 and the 
previous equations, the developed algorithm generates the loads 
matrix 𝐴 = [𝑁𝐶 × 𝑁𝑆] in which all the combinations are listed: 

 

𝐴௞ =

⎣
⎢
⎢
⎡

𝑙ଵ,ଵ 𝑙ଵ,ଶ … 𝑙ଵ,ேௌ

⋮ ⋱ 𝑙௝,௜ ⋮

⋮ … ⋱ ⋮
𝑙ே஼,ଵ 𝑙ே஼,ଶ … 𝑙ே஼,ேௌ⎦

⎥
⎥
⎤ ⬚

⬚
⬚
|𝑘

 

 
where the general element 𝑙௝,௜ is defined at each kth iteration 

according to the following equation: 
     

𝑙௝,௜ೖ
= 𝑙௜,௠௜௡ + ቈ൫𝑙௜,௠௔௫ + 𝑙௜,௠௜௡൯ ⋅

ቄଵାቒቂఈିቀఉ⋅ቒ
ഀ

ഁ
ቓቁቃቓቅ⋅ఝభ⋅ఝమ

௟ೞ೟೐೛
቉  (3) 

 
where 𝑙௜,௠௜௡ and 𝑙௜,௠௔௫ indicate respectively the minimum 

and maximum load values of the ith system and 𝑙௦௧௘௣ is the step 
for the load solutions investigation. The parameter 𝛽 
corresponds to the combinations that can be created for a single 
system (as well as 𝑆𝐶 of Eq.2), while 𝛼 can be expressed as: 

 

𝛼 = ቔ
௝ିଵ

ௌ஼೔షభቕ    (4) 

 
with j and i that refer respectively to the considered jth 

combination and ith system. 
Furthermore, the terms 𝜑ଵ, 𝜑ଶ of Eq.3 correspond to the 

corrective factors for the matrix loads definition which can be 
defined as: 

 

𝜑ଵ =
ቀ௅೓೔೒೓೔,ೖ

ି௅೗೚ೢ೔,ೖቁ

ே஼ିଵ
   (5) 

 
𝜑ଶ = 𝐿௟௢௪௜,௞

− 𝜑ଵ   (6) 

 
After the matrix has been defined, the software analyzes all 

the combinations in order to point out the optimal one 
𝑐௢௣௧ೖ

(𝑙௜,௢௣௧ೖ
). Then, with the aim to find a more accurate 

solution, at the kth+1 iteration, for each system, a new load range 
is defined around the optimal one of the kth iteration by creating 
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the load matrix 𝐴௞ାଵ. To this respect, the software calculates a 
new range of solutions by redefining the higher and lower limits 
of the ITERk+1 according to the following equations: 

 
𝑙௜,௨௣ೖశభ

= 𝑙௜,௢௣௧ೖ
+ Δ𝑙   (7) 

 
𝑙௜,ௗ௢௪௡ೖశభ

= 𝑙௜,௢௣௧ೖ
− Δ𝑙  (8) 

 
where the term Δ𝑙 allows to define the upper and lower loads 

limits in order to refine the optimal solution at the kth+1 iteration. 
To this respect, the interval Δ𝑙 decreases at each iteration. In fact, 
as can be observed from the previous equations, this range is 
defined each time as a function of the considered iteration, 
making the optimal combination more accurate. 

Therefore, by considering the ITERk, after the definition of 
the new load solution range, the algorithm elaborates the matrix 
and analyzes all the combinations on the basis of an objective 
function 𝑂𝐹௢௣௧

௞  (see Figure 1) that will be described in the 
following of the paper. 

The iterative procedure of the developed algorithm ends if 
all the iterations (ITERmax), defined at the beginning of the 
calculation, have been processed and analyzed or if the absolute 
value of the difference between the optimal objective functions 
of the kth iteration and of the k-1 iteration is lower than a given 
tolerance value (𝑇𝑂𝐿): 

 
ห𝑂𝐹௢௣௧

௞ − 𝑂𝐹௢௣௧
௞ିଵห ≤ 𝑇𝑂𝐿   (9) 

 
 

Energy systems modelling 
The energy systems calculation (see Figure 1) consists in the 

evaluation of the power generated by each energy system. 
To this purpose, with the developed algorithm all the energy 

systems can be modeled with nonlinear efficiency curves (as a 
function of the load) which can be defined in the input section. 
An example of non-dimensional electrical and thermal efficiency 
curves of a CHP unit and of non-dimensional thermal efficiency 
trend of an auxiliary boiler are shown respectively in Figure 2 
and in Figure 3 as function of the system’s load [40]. On the basis 
of the performance curves, the produced electrical, thermal and 
cooling power and the fuel introduced into the prime movers 
and/or auxiliary boilers are calculated in order to determine the 
total produced power.  

Therefore, the resulting total produced power is compared 
with the users demand, to point out (if there is) the non-produced 
power – which means the non-fulfillment of the users demand – 
or, conversely, if a surplus of power occurs – which means that 
the users demand is satisfied but with energy dissipations. On 
this regard, as it will be seen in the objective function definition, 
the developed algorithm elaborates the optimal solution by 
minimizing and/or nullifying the total dispersed and the non-
produced energies. 
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Figure 2 – Electrical and thermal efficiency of the internal 
combustion engine as function of the load. 
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Figure 3 – Thermal efficiency of the auxiliary boiler as 
function of the load. 

 
Moreover, since the developed software operates the 

systems calculation by maintaining the non-linearity of the 
problem constrains and since it potentially explores all the 
possible loads combinations, COMBO can find out the exact 
solution of the problem. Obviously, it requires a longer 
computational time for example with respect of the genetic 
algorithms. 

 
Objective Function definition 

In order to find out the optimal solution, once all the 
combinations have been listed in the matrix 𝐴, for each iteration 
(ITERk), the algorithm analyzes all the possible combinations, 
on the basis of a defined objective function (𝑂𝐹). In particular, 
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the 𝑂𝐹 consists in the total cost of the energy production and can 
be defined with the following expression: 

 
𝑂𝐹 = 𝐶ఒ + 𝐶ெ + 𝐶ா + 𝐶ி   (9) 

 
where the term 𝐶ఒ indicates the total cost of the fuel 

introduced into the prime movers and/or into the auxiliary 
boilers, 𝐶ெ denotes the total cost of maintenance for the 
considered systems, 𝐶ா refers to the total cost of the purchased 
electricity and 𝐶ி represents the so called fictitious costs which 
are used in order to consider in addition to the economic ones. 
The so-defined objective function takes into account the same 
contributes of the software EGO (previously developed by the 
Authors to solve the scheduling optimization problem and based 
on genetic algorithms [40, 41]), namely the maintenance, fuel, 
electricity purchase ad fictitious costs, but differs for the 
definition of the fictitious costs. Indeed, while in the software 
EGO the fictitious costs include the heat dissipations through the 
chimney and the electricity introduction into the grid, in the 
software COMBO the fictitious costs have been defined with the 
main purpose of avoiding the electrical, thermal, cooling and, if 
present, mechanical energy non-production in order to ensure the 
fulfilment of the users energy needs. 

As a consequence, the fictitious costs do not take into 
account the surplus of energy that can characterize some 
solutions, due to the combinatorial nature of the developed 
algorithm. In fact, depending on the nature of the energy surplus 
– which may be due to the employment of the prime movers, 
auxiliary boilers, etc. – it is accounted within the terms 𝐶ఒ or 𝐶ா 
and the term 𝐶ெ of Eq.9. In more detail, if the energy surplus is 
due to the prime movers and/or to the auxiliary boiler operations, 
it will results in an increase of the fuel introduced into the energy 
systems and, thus, in an increase in the fuel costs 𝐶ఒ. Otherwise, 
if the energy surplus is due, to the heat pump or compression 
chiller employment, it will be accounted as an increase in the 
costs of the electricity purchase for its operation by means within 
the term 𝐶ா. Obviously, the use of an energy system involves 
some maintenance costs which are evaluated within the objective 
function (Eq.9) with the term 𝐶ெ. 

With respect to the fictitious costs, therefore, they are 
evaluated in the software COMBO as follows: 

 
𝐶ி = 𝐶௧௛,ே௉ + 𝐶௖,ே௉ + 𝐶௠௘௖,ே௉  (10) 

 
where the terms 𝐶௧௛,ே௉, 𝐶௖,ே௉ and 𝐶௠௘௖,ே௉ stand respectively 

for the non-produced thermal, cooling and mechanical energy. 
Furthermore, three virtual machines – which do not concur 

for the energy demand fulfilment – have been defined with the 
main purpose of quantify the non-produced energy by converting 
it in the equivalent amount of electricity purchase from the 
national grid beyond the energy systems size and the energy 
loads of each one. In particular, an electric engine, a heat pump 
and a compressor chiller have been defined and assumed to be 
fed by the purchase of electricity from the national grid. 

More in detail, being 𝜉 ா,௣௨௥ the specific costs of the 
electrical energy purchased from the national grid to feed the 
virtual machines, each term of the fictitious costs expression can 
be further explicated. To this respect, the costs associated to the 
thermal energy non-production 𝐶௧௛,ே௉ can be expressed as: 

 

𝐶௧௛,ே௉ =
ொ೟೓,ಿು

஼ை௉∗ ⋅ 𝜉 ா,௣௨௥    (11) 

 
where 𝑄௧௛,ே௉ is the non-produced thermal power and the 

term 𝐶𝑂𝑃∗ represents the Coefficient of Performance of the 
virtual heat pump. 

The cooling non-production cost, instead, is calculated as 
follows: 

 
 

𝐶௖,ே௉ =
௉೎,ಿು

ாாோ∗ ⋅ 𝜉 ா,௣௨௥    (12) 

 
in which the term 𝑃௖,ே௉ defines the non-produced cooling power 
while 𝐸𝐸𝑅∗ represent the virtual compressor chiller Energy 
Efficiency Ratio. 

The cost due to the non-production of mechanical power, 
which is represented by the term 𝐶௠௘௖,ே௉ in Eq.10, is calculated 
with the following equation: 

 

𝐶௠௘௖,ே௉ =
௉೘೐೎,ಿು

ఎಶಾ
∗ ⋅ 𝜉 ா,௣௨௥    (13) 

 
being 𝑃௠௘௖,ே௉ the mechanical power non-produced and 𝜂ாெ

∗  the 
electromechanical efficiency of the virtual electric engine. 

Finally, with respect to the non-production of electrical 
energy, it has to be underlined that it is evaluated, within the 
objective function of Eq.9, as an increase in the total cost of the 
purchased electricity (namely the term 𝐶ா). In more detail, taking 
into account the specific cost of the electricity purchase – 
represented with the 𝜉 ா,௣௨௥, according to the previously 
equations – the total cost of the electricity purchased from the 
grid is defined as follows: 

 
𝐶ா = 𝑃ா௅,ே௉ ⋅ 𝜉 ா,௣௨௥    (14) 

 
where the term 𝑃ா௅,ே௉ represents the non-produced electrical 
energy. 

As aforementioned, once the fitness functions have been 
evaluated, the software points out the combination with the 
minimum value and use this for the successive iteration. 

 
TEST AND VALIDATION OF THE SOFTWARE COMBO 

With the main purpose of validating the developed software 
presented in this paper, a neighborhood network has been 
considered as case study. In order to evaluate a year of operation 
of the network, three typical days have been individuated – 
representative of wintertime, summertime and mid-season – for 
the network simulations. In addition, the same grid has been 
implemented and analyzed with EGO, a software based on 
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genetic algorithms, in order to compare the results obtained from 
the two software. In the following section the case study is 
presented along with the main input for the calculation. 
Furthermore, the software EGO, which has been used for the 
comparison, is briefly described and the results of the validation 
are presented. 

 
Case study: a residential neighborhood network 

The energy grid considered for the validation of the 
developed software is a small-medium neighborhood network 
consisting of 13 residential buildings – which includes 960 
households – and 4 tertiary users – two schools, 1 day-hospital 
structure and a supermarket – for a total of 17 users to be fulfilled 
[42]. With respect to the analysis of the network, three typical 
days have been identified. In detail, summertime, wintertime and 
mid-season typical behavior has been considered by taking into 
account the typical weather conditions in the North of Italy. In 
particular, in Figure 4, Figure 5 and Figure 6 the electrical, 
thermal and cooling profiles, namely the energy required from 
all the users, of each considered typical day have been 
respectively shown [42]. 
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Figure 5 – Hourly thermal needs of the network for the 
three typical days. 
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three typical days. 

 
The energy network set as case study is equipped with two 

identical internal combustion engines (working as CHP units), 
characterized by a rated electrical power equal to 730 kW each. 
Furthermore, natural gas auxiliary boilers and a heat pump are 
included for the thermal power production and compression and 
absorption chillers for the cooling power production. The main 
characteristics of the aforementioned energy systems are listed 
in Table 1. 

 
Table 1: Main parameters of the energy production systems. 

Internal Combustion Engine (each) 
Fuel Type  Natural Gas 
Design Electric Power [kW] 730 
Design Thermal Power [kW] 778 
Design Electrical Efficiency [-] 0.4161 
Design Thermal Efficiency [-] 0.4425 

Auxiliary Boilers 
Design Thermal Power [kW] 11˙600 
Design Thermal Efficiency [-] 0.80 

Heat Pump 
Design Thermal Power [kW] 20˙000 
COP [-] 4 

Compression Chillers 
Design Cooling Power [kW] 2˙200 
EER [-] 4 

Absorption Chillers 
Design Cooling Power [kW] 2˙000 
EER [-] 0.67 

 
The software EGO 

The software EGO has been previously developed by the 
Authors with the purpose to define the optimal load allocation of 
the energy systems of a given energy distribution network. The 
calculation core of this software is based on a genetic algorithm, 
which follows the rules of evolution by creating a population of 
individuals in order to find a good solution of the problem. As 
aforementioned, the software EGO is based on the minimization 
of a fitness function (based on the total cost of energy 
production) with a general expression equal to the one presented 
in Eq.9, but with a different definition of the fictitious costs term. 
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This is due to the strategy at the basis of the software, which 
already allows to avoid the non-fulfillment of the users’ needs 
by the employment of the back-up systems (auxiliary boilers, 
electrical grid and compression chillers). Further detail 
concerning the mathematical model of software EGO can be find 
in [40, 41]. In order to validate the software presented in this 
paper, the selected case study has been implemented both with 
COMBO and with EGO. The results of the simulations obtained 
with the two software have been then compared as will be shown 
in the following. 

 
Results and discussion 

In this section the results of the software validation are 
presented considering the three typical days. In particular, the 
comparison between COMBO and EGO, in terms of 
computational time and number of solutions evaluated by each 
software, are shown respectively in Figure 7 and Figure 8. 

On one hand, with reference to the computational time of 
Figure 7, it can be noted that COMBO takes longer time for the 
problem resolution if compared to EGO. Overall, the calculation 
time required by EGO is in the order of few seconds (ranges from 
2 to 5 seconds for a single simulated hour) while for COMBO it 
varies from a few tens of seconds (ranges from 20 to 46 seconds 
for each simulated hour). 

On the other hand, however, the number of solutions 
analyzed by COMBO is much higher than the one evaluated by 
EGO, as can be seen in Figure 8. In particular, the number of 
solutions analyzed by COMBO for the single case (namely a 
single hour) is in the order of the million (and more precisely a 
value equal to 1˙176˙490 for each hour) against the 21˙000 
solutions evaluated each hour by EGO. As a consequence, from 
the combined analysis of the results shown in Figure 7 and in 
Figure 8 it appears that COMBO evaluates from 25.5 to about 
58.8 thousand solutions per second while EGO investigates a 
number of solutions per second ranging between 4.2 and 10.5 
thousand. On the basis of these results, and in particular on the 
computational time (in Figure 7), it can be derived that COMBO 
is probably more suitable for the network design and/or 
forecasted scheduling, while for the real-time management of the 
grid is more appropriate the software EGO. 
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Figure 7 – Computational time of COMBO and EGO. 
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Figure 8 – Number of solutions analyzed by COMBO and 
EGO as a function of the typical day. 

 
In Figure 9, the absolute value of the difference between the 

objective function (including fictitious costs) and the cost of 
energy production is presented. This parameter – which has been 
named cost-gap – takes into account the reliability of COMBO 
(or EGO). In fact, it denotes how the load allocation performed 
by the software differs from the constrains of the desired 
strategy, which is defined by means of the fictitious costs. It 
follows that, if the software respects all the constraints, the 
corresponding value of the cost-gap is equal to zero. The cost-
gap values are presented in Figure 9 with reference to each 
typical day. These values suggest a strong agreement for both 
COMBO and EGO between the objective function value and the 
effective cost of energy generation. 
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Figure 9 – Costs gap for the software COMBO and EGO, 
as a function of the typical day. 

 
Finally, in Figure 10, the hourly cost of energy production 

for each typical day is shown. As it can be seen, different results 
have been obtained, depending on the typical day. In particular, 
while during wintertime and middle season the solutions 
obtained from the software EGO entail a higher total cost of 
energy production with respect to COMBO, a different behavior 
can be seen for summertime where the total cost of energy 
production resulting from EGO almost coincides with the one 
resulting from COMBO. 
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Figure 10 – Hourly profile of the energy production costs, 
as a function of the typical day and for the two analyzed 
software. 

 
This evidence can be explained considering the different 

construction of the objective function of the two algorithms and, 
in particular, the different definition of the fictitious costs. In 
fact, as is described in the previous section, the fictitious costs of 
the software EGO are defined by taking into account both the 
energy surplus and the energy non-production. On the other 
hand, the fictitious costs of the software COMBO consider the 
only non-produced energy since the energy surplus is accounted 
as an increase in the other terms of the objective function (see 
Eq.9). As a consequence, the difference in terms of costs, 
resulting from EGO and from COMBO (see Figure 10) is due to 
the virtuous behavior from the environmental and/or electricity 
grid stability viewpoints. This is a consequence of the different 
way in which the two software asses both the thermal energy 
dissipation (from the prime movers and not recovered) and the 
electricity fed into the grid. 

According to the tariff scenario chosen for this analysis, the 
approach at the basis of the software COMBO results more 
convenient from an economic point of view, as strongly evident 
from Figure 10a. 

Furthermore, it can be deduced that, on the basis of the 
boundary conditions and the tariff scenario, the different 
approaches of the two software may lead to a lower total cost of 
energy production considering the load allocation proposed by 
COMBO or EGO, depending in particular on the ratio between 
the purchased electricity and fuel cost. According to these 
results, further analysis will be carried out in order to reach a 
higher flexibility in the management of the energy systems with 
both the software. As a consequence, the same flexibility (i.e. a 
higher robustness of the algorithm) could be achieved for both 
forecast and real time control decision problems. 

 
CONCLUSIONS 

This paper represents the Part I of a wider study on complex 
energy networks optimization. In particular, in this first part, the 
mathematical model of an in-house developed software is 
presented along with its validation. The software, called 
COMBO, has been realized with the main purpose of evaluating 
the optimal load allocation between the energy systems 
connected to a complex electrical, thermal, cooling energy and 
fuel distribution network. In more detail, COMBO is based on a 

non-linear algorithm which allows to potentially analyze all the 
possible loads combinations, among the considered energy 
systems, to guarantee the fulfillment of the users’ energy needs. 
At the basis of the developed optimization algorithm stands an 
iterative procedure, leading to the minimization of the total costs 
of energy production accounting the economic aspects. The 
software has been tested and validated by its application to a case 
study, represented by a residential neighborhood, and comparing 
the obtained results (in terms of performance parameters) with 
the results of the software EGO, previously developed by the 
Authors and based on genetic algorithms. The comparison has 
been carried out considering a whole year of operation of the 
network, divided into three typical days representative of 
wintertime, mid-season and summertime. The results show that 
the software COMBO allows to investigate a greater number of 
solutions with respect to EGO, but with longer computational 
time. However, considering the number of solutions evaluated 
for the unit of time step, it must be highlighted that COMBO 
evaluates from 25.5 to 58.8 thousand solutions per second, while 
EGO investigates a number of solutions per second ranging 
between 4.2 and 10 thousand. As a consequence, COMBO is 
probably more suitable for the network design and/or forecasted 
scheduling, while for the real-time management of the grid is 
more appropriate the software EGO. Furthermore, considering 
the results in term of total cost of energy production, it can be 
noted that the different approach of the software COMBO (with 
respect to the software EGO) affects these results. In more detail, 
the difference between the results obtained with the two software 
is mainly due to the definition of the fictitious costs of the 
objective function. 

Starting from the obtained results, further investigation will 
be made in the future to evaluate the more suitable strategy. 
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