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Abstract

The problem of devising an asymptotic observer for a given function of the state of a switching linear system in the presence
of unknown inputs is considered. Solvability is studied both in the case of sufficiently large dwell time and in that of dwell
time greater than a fixed threshold. A complete characterization of solvability in terms of necessary and sufficient conditions
is given in both cases. It is shown that the necessary and sufficient conditions can be checked in practice in the first case and,
under slightly more restrictive hypotheses, also in the second case by means of algorithmic procedures, which also provide
a method to synthesize the observer sought for. The employed methodology makes use of geometric concepts to reveal the
structural aspects of the problem and to derive its solutions. In particular, a key role is played by the novel notion of robust
conditioned invariant subspace that is minimal with respect to the properties of containing a given subspace and of being
externally stabilizable.

Key words: Switching linear systems; asymptotic observers; unknown-input observers; structural methods.

1 Introduction

A switching linear system Σσ consists of a finite family
{Σi, i∈I} of linear systems, called modes, and of a switch-
ing signal σ(t) that defines the active mode at each time
instant as well as the transition, at the so-called switch-
ing times, from one mode to another. Herein, switching
signals are assumed to be piecewise constant time func-
tions with values in a finite index set I that exhibit a
finite number of discontinuity points in each finite inter-
val. Linear switching systems can effectively model sev-
eral complex phenomena that arise in the behavior of me-
chanical and electrical systems, as well as in other appli-
cation areas. Examples are given by structural modifica-
tions due to abrupt changes in the mechanical configura-
tion, to the action of switches, to failure or degradation
of performances in subsystems or components.
In the framework of switching linear systems, a consid-
erable research effort has been devoted to the investiga-
tion of stability and stabilization issues as well as to the
study of classical control and estimation problems. This is
documented by the wide recent literature, which counts,
amongst others, a relevant number of surveys (Lin and
Antsaklis, 2009; Zhu and Antsaklis, 2015), journal special
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issues (Antsaklis and Nerode, 1998; Morse et al., 1999;
Di Bernardo et al., 2003; Cassandras and Giua, 2008;
Giua et al., 2011; Heemels and De Schutter, 2013; Fränzle
et al., 2018) and books (Van der Schaft and Schumacher,
2000; Savkin and Evans, 2002; Sun and Ge, 2005, 2011;
Zhao et al., 2017).
In particular, the problem of observing the full state of
a switching linear system and the problem of observing
a linear function of the state in the presence of unknown
inputs have been studied by several authors through dif-
ferent approaches. As to the design of full state observers
in case the input is known, in (Alessandri and Coletta,
2001), sufficient conditions for the existence of state ob-
servers which guarantee quadratic stability of the estima-
tion error dynamics are given in terms of LMIs, on the
assumption that the switching signal is known. Instead,
in (Pettersson, 2006), Lyapunov techniques are used to
tackle the full state estimation problem both in the case
of known switching signals and in that of unknown ones.
As to the estimation of a linear function of the state in
the presence of unknown inputs, system invertibility and
a parametrization of the observer gain are at the basis of
unknown input observer design for discrete-time switch-
ing systems in (Sundaram and Hadjicostis, 2006). High-
order sliding mode techniques are exploited in (Bejarano
and Pisano, 2011) and in (Bejarano et al., 2011), where
sufficient constructive conditions for the solution of the
unknown-input observation problem, either for arbitrary
switching signals or for a restricted class of switching
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signals, are stated under specific assumptions. A time-
varying state transformation is exploited to gather the
partial information derived from the individual modes
and obtain a reduced-order unknown-input observer in
(Defoort et al., 2012). Further developments along these
lines, made possible by the combination with sliding mode
techniques, are presented in (Van Gorp et al., 2014). Co-
ordinate transformations, together with Lyapunov and
LMI techniques, enable the synthesis of unknown input
observers in (Huang and Chen, 2014). Time-varying co-
ordinate transformations and dwell-time techniques are
employed in (Ma et al., 2017) with the same purpose.
In the papers cited above, the objective is to characterize
the existence of a suitable asymptotic observer through
sufficient conditions and to find viable methods for its
construction. Instead, in the first part of this work, the
solvability of the considered unknown input observation
problems is fully characterized by necessary and sufficient
conditions, which leverage on distinctive, structural and
qualitative properties of suitably defined subspaces of the
system state space. This is achieved by adopting a struc-
tural point of view, based on geometric notions and tools,
that, together with the theoretical results, is able to pro-
vide a complete computational support for the synthesis
of the desired unknown input observers.
In more details, two different formulations of the unknown
input observation problem are investigated in this work.
In the first formulation, the class of switching signals for
which a solution is sought for is not specified, meaning
that the estimation error is required to converge asymp-
totically to zero for sufficiently slow switching. In the sec-
ond, stronger formulation, the class of switching signals
is specified and the observer should guarantee asymptotic
convergence to zero of the estimation error for all switch-
ing signals in that class.
The first main theoretical contribution of the paper, in
Theorem 2, consists in stating necessary and sufficient
solvability conditions for both problems by means of a
structural condition and a qualitative one. This formula-
tion allows a deep insight into the structure of the prob-
lems, but it does not provide a direct procedure to check
the existence of solutions in concrete situations. In order
to overcome this difficulty, the solvability conditions are
formulated in an equivalent but more constructive way,
respectively in Theorem 3 for the slow switching case and,
under sliglthy more restrictive hypothesis, in Theorem 4
for the case in which the class of switching signals is spec-
ified. In this new formulations, the solvability conditions
are checkable by means of viable, algorithmic procedures,
which are based on the computation of specific subspaces
of the system state space and on the analysis of their prop-
erties and which also allow the practical construction of
solutions.
The key elements of our approach is the notion of robust
conditioned invariance that applies to the subspaces of the
state space of a switching system and that was described
in (Conte et al., 2017a). In the case of slow switching,
solvability of the unknown input observation problem is
characterized in terms of the minimal conditioned invari-
ant subspace in a suitable set that enjoys the property
of external stabilizability. The existence of such object is
proved by devising a viable algorithm for its construction,

which can be used for checking solvability and, possibly,
for constructing solutions. In the case in which the class
of switching signals is specified, under a slightly restric-
tive structural assumption, solvability is characterized in
terms of the maximal conditioned invariant subspace in
a suitable set and by giving a practical characterization
of its external stabilizability. Also in this case, we give a
procedure to construct such object, which can be used for
checking solvability and, possibly, for constructing solu-
tions.
Some, earlier results on the design of unknown input ob-
servers for switching linear systems in the conceptual
framework of the structural approach were presented in
(Conte et al., 2017b). The class of observers considered in
that paper as possible solutions of a general unknown in-
put observation problem is strictly smaller than the class
of observer considered here, causing the solvability condi-
tions found there to be strictly more restrictive than those
given here. For the same reason, the results as well as the
theoretical issues and the computational tools presented
in this paper turn out to be more complex than those dis-
cussed in (Conte et al., 2017b), although they are of the
same nature, and new arguments are required to confirm
their validity. Moreover, Theorem 2 gives a deep insight
into the structure of the general unknown input observa-
tion problem that cannot be obtained from the results of
the previous conference paper.
The paper is organized as follows. In Section 2, the class
of switching linear systems dealt with is introduced and
some basic facts about their stability are reviewed. In Sec-
tion 3, the unknown input observation problem is formally
stated, making distinction between the case where the
class of switching signals for which the observation error
asymptotically convergences to zero is not specified (Un-
known Input Observation Problem or UIOP) and that in
which asymptotic convergence is required to hold for all
switching signals in an assigned class (Strong Unknown
Input Observation Problem or SUIOP). In Section 4, the
geometric notions of robust conditioned invariance and
of external stabilizability for a subspace of the system
state space are introduced and then used to state and to
prove, in Theorem 2, the necessary and sufficient solv-
ability conditions for both problems.The “if” part of the
proof of the theorem provides a viable procedure to con-
struct an observer that solves the problem, starting from
the existence of a subspace that satisfies the conditions of
the statement. In Section 5, the solvability conditions are
formulated in a more constructive way for the UIOP, in
Theorem 3, and for the SUIOP, in Theorem 4, with the
advantage of stating conditions that can be practically
checked. This is obtained by introducing, in Proposition
5, a number of geometric objects that enjoy special struc-
tural properties. The existence of such objects, which are
the extremal elements in suitable lattices of robust con-
ditioned invariant subspaces, is proved in Section 6 by
providing algorithmic procedures to construct them. In
Section 7, a characterization of the qualitative, crucial
property of external stabilizabilty of a robust conditioned
invariant subspace is introduced. A worked out numeri-
cal example aimed at illustrating how to apply the pro-
cedure, based on the previous theoretical results, for the
synthesis of an unknown input observer is presented in
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Section 8. Finally, Section 9 contains concluding remarks
and directions for future work.
Notation: The symbols R, R+ and Z+ are used to de-
note the sets of real numbers, non negative real numbers
and non negative integer numbers, respectively. Real vec-
tor spaces and subspaces are denoted by calligraphic let-
ters, like V. The quotient space of a vector space X over
a subspace V ⊆X is denoted by X/V. The subspace or-
thogonal to a given subspace V is denoted by V⊥. Linear
maps between vector spaces and the associated matrices
are denoted by the same slanted capital letters, like A.
Therefore, the statements A∈Rp×q and A :Rq→Rp are
consistent. The image and the kernel of A are denoted by
ImA and KerA, respectively. The image of a subspace V
under a map A is simply denoted by AV. The transpose
of A is denoted by A>. The symbols In, 0m×n and 0n are
respectively used for the identity matrix of dimension n,
for the m×n zero matrix and for the n-dimensional zero
vector (subscripts are omitted if the dimensions are clear
from the context).

2 Switching Linear Systems

A continuous-time switching linear system Σσ is a dy-
namical system described by the equations

Σσ ≡

{
ẋ(t) = Aσ(t) x(t) +Bσ(t) u(t),

y(t) = Cσ(t) x(t),
(1)

where t∈R+ is the time, x∈X =Rn the state, u∈U =Rm
the input, y ∈Y =Rp the output. Letting I = {1, . . . , N}
denote a finite index set, the function σ :R+→ I is a
piecewise-constant, left continuous function that rep-
resents the time-driven switching signal. For any value
i∈ I, Ai, Bi, Ci are real matrices of suitable dimensions.
In particular, Bi is assumed to be full column-rank and
Ci full row-rank for all i∈ I. The time-invariant linear
systems

Σi ≡

{
ẋ(t) = Ai x(t) +Bi u(t),

y(t) = Ci x(t),
with i ∈ I,

are called the modes of Σσ. The indexed family
Σ = {Σi}i∈ I is said the family of modes and the active
mode at the time t is specified by the value of σ(t)∈ I.
The discontinuity points of σ are referred to as the switch-
ing times. For any switching signal σ, the dwell time,
henceforth denoted by τσ, is defined as the lower bound
of the set of the lengths of the time intervals between
two consecutive switching times. The symbol Sα, where
α∈R+, denotes the set of the switching signals such that
τσ ≥α. With a slight abuse of notation, S0 denotes the
set of the switching signals that only cause finitely many
switches in any time interval of finite length, so to avoid
Zeno phenomena.
Given σ ∈ S0, the discontinuity points of σ form a fi-
nite or countable, ordered set Tσ = {t0 = 0, t1, t2, ...}.
With this notation, given σ ∈ S0, an initial state
x(0) = x0 ∈ X and an input function u(t) defined over

the interval [0, t̄), the solution x(t) to the state equations
of (1) can be recursively defined for any t ∈ [0, t̄] by

x(t) = eAik
(t−tk−1)x(tk−1) +

∫ t

tk−1

eAik
(t−τ)Biku(τ)dτ

where t ∈ (tk−1, tk] and σ(t) = ik for t ∈ (tk−1, tk].
Since x(t) depends on the choice of σ and on t,
x(0) and u(t) over [0, t), we will use the notation
x(t) = φσ(t, x(0), u(τ)|[0,t)).

Definition 1 A switching linear system Σσ is said to be
globally asymptotically stable over Sα if its state goes to 0
as the time goes to infinity, for any initial condition and
for any switching signal σ ∈Sα.

Stability of switching systems depends on the stability
properties of the modes and also on the switching sig-
nal. Asymptotic stability of all the modes is not sufficient
to imply global asymptotic stability for arbitrary switch-
ing (see, e.g., Lin and Antsaklis, 2009). However, global
asymptotic stability is guaranteed if all the modes are
asymptotically stable and the switching signal is suitably
constrained, as is specified in the following theorem.

Theorem 1 (see Morse, 1996, Lemma 2) Let all the
modes Σi, with i∈ I, of Σσ be asymptotically stable. Then,
there exists α ∈ R+ such that Σσ is globally asymptotically
stable over Sα.

The proof of Theorem 1 given in (Morse, 1996, Lemma 2)
shows that if, for all i ∈ I, we have ||eAit|| ≤ e(ai−λit) for
some ai, λi ∈ R, with λi > 0, for all t ≥ 0, then Σσ is
globally asymptotically stable, in particular, over Sα for
α ≥ maxi∈I ai/λi. We speak, in that case, of slow switch-
ing.
Stability over Sα for a given α is more difficult to be char-
acterized. Sufficient conditions in terms of LMIs can be
found in (Chesi et al., 2012) and in the references therein.

3 Unknown-Input Observer Problems

Given the switching linear system Σσ described by (1),
where the input u(t) is assumed to be unknown, and a
family of matrices H = {Hi, Hi ∈Rq×n}i∈ I , the obser-
vation problem in the presence of the unknown input
consists in finding, if possible, an asymptotic estimate,
denoted by w(t), of the state function Hσ(t) x(t), by ex-
ploiting the knowledge of the output y(t) and of the ac-
tive mode Σσ(t) of the switching linear system Σσ. Since
the instantaneous knowledge of the active mode of Σσ is
equivalent to the knowledge, at the time t, of the value
taken by σ at the same time t for all t∈R+, it will hence-
forth be said that σ is assumed to be measurable.
The estimatew(t) is regarded as the output of a switching
linear system ΣOσ, the candidate observer, described by

ΣOσ ≡

{
ż(t) = AOσ(t) z(t) +BOσ(t) y(t),

w(t) = COσ(t) z(t) +DOσ(t) y(t).
(2)
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The real vector spaces Z =Rr andW =Rq represent the
state space and the output space of ΣOσ, respectively. The
fundamental properties of the estimatew(t) are expressed
by considering the so-called estimation error, which is
defined by

e(t) = w(t)−Hσ(t) x(t). (3)

The main requirements on ΣOσ are that the time evolu-
tion of e(t) is not influenced by the input u(t) and that
e(t) goes asymptotically to 0 as t goes to +∞ for all σ
belonging to a set Sα of interest. This means that w(t)
converges to Hσ(t)x(t) as t goes to +∞ independently of
u(t) for all σ belonging to Sα. The set Sα can be defined
by assigning explicitely α or by asking that the previous
requirement is satisfied for α sufficiently large, i.e. for suf-
ficiently slow switching.
By writing e(t) = φσ(t, x(0), z(0), u(τ)|[0,t)), we state for-
mally the above requirement about independence of the
evolution of e(t) from u(t) as follows:

R.1 For all σ̄ ∈ S0, all x0 ∈ X , all z0 ∈ Z and all pairs of
input signals u1(t) and u2(t), one has, for all t ∈ R+,

φσ̄(t, x0, z0, u1(τ)|[0,t)) = φσ̄(t, x0, z0, u2(τ)|[0,t)).

and the requirement about asymptotic convergence to 0
of e(t) as follows:

R.2 For all σ̄ ∈ Sα with α given or, respectively, with α
sufficiently large, all x0 ∈ X , all z0 ∈ Z and all input
signals u(t), one has

limt→+∞φσ̄(t, x0, z0, u(t)|[0,t)) = 0.

It is also quite natural to ask for global asymptotic sta-
bility over Sα (either for a given α or for α sufficiently
large) of the observer ΣOσ, which is used in practice to
obtain the desired estimate. In the rest of the paper we
will consider only candidate observers which satisfy such
condition.
A further natural requirement on ΣOσ is that for any state
x0 ∈X there exists a state z0 ∈Z such that, initializing
Σσ at t = 0 in x(0) =x0 and ΣOσ in z(0) = z0, one has
e(t) = 0 for all t∈R+, for all the input signals u(·) and
for all the switching signals σ ∈S0. Actually, this means
that, if x(0) is known, the observer can be initialized in
such a way that its output coincides with the function
Hσ(t)x(t) to be estimated. Without loss of generality, we
can also assume that the state space ΣOσ has only as
many elements as needed to fulfil the former condition.
We state formally the above requirement as follows.

R.3 There exists a linear map P :X →Z, with ImP =Z,
such that for all σ̄ ∈ S0, all x0 ∈ X and all input
signals u(t), one has, for all t∈R+,

e(t) = φσ̄(t, x0, Px0, u(τ)|[0,t)) = 0.

Any map P :X →Z such that R.3 holds is said to be an
exact initialization map. Moreover, ΣOσ is said to be ex-
actly initialized if, for any given initial condition x(0) =x0

of Σσ, the initial condition of ΣOσ is set to z(0) =P x0.
Note that R.1 and R.3 are structural requirements, since

their formulation does not involve any constraint on the
dwell time. Instead, R.2 is a qualitative requirement that
makes sense either for a given α or for α sufficiently large
and, in both cases, the set of the dwell times of the con-
sidered switching signals has a lower bound. Accordingly,
the unknown-input observation problem can be given two
different statements, depending on whether α is a-priori
assigned or not, as follows.

Problem 1 (Unknown-Input Observation Prob-
lem) Let the switching linear system Σσ and the family
of linear maps H = {Hi, Hi :X →Rq}i∈ I be given. Let
the switching signal σ be measurable. The Unknown-Input
Observer Problem (UIOP) consists in finding an observer
ΣOσ of the form (2) such that the qualitative require-
ment R.2 is satisfied for some α ∈ R+, together with the
structural requirements R.1 and R.3.

Problem 2 (Strong Unknown-Input Observation
Problem) Let the switching linear system Σσ, the family
of linear maps H = {Hi, Hi :X →Rq}i∈ I and a posi-
tive real constant α be given. Let the switching signal
σ be measurable. The Strong Unknown-Input Observer
Problem (SUIOP) consists in finding an observer ΣOσ
of the form (2) such that the qualitative requirement R.2
is satisfied for the given α, together with the structural
requirements R.1 and R.3.

Remark 1 In (Conte et al., 2017b), the authors consid-
ered a more restrictive formulation of the unknown input
observation problem for switching systems by limiting the
observer to have strictly proper modes, instead of proper
modes as in (2). That choice allowed a simpler develop-
ment of the theory, but, in the light of the present paper, it
appears to be unnecessarily restrictive, since it prevents to
exploit fully in the construction of an observer the infor-
mation contained in y(t). As a result, the solvability con-
ditions found in (Conte et al., 2017b) are more restrictive
than those given here in Theorem 2.

4 Solution to the unknown input observation
problems

In this section, necessary and sufficient solvability condi-
tions for the unknown-input observation problems stated
above are presented in structural terms. In this regard,
it is worth mentioning that the structural notions and
some of the geometric objects illustrated here have been
first considered in the framework of parameter depending
systems in Basile and Marro (1987); Conte et al. (1991).
More recently, they were considered in relation to obser-
vation problems in (Conte et al., 2017b,a).

4.1 Structural notions

The structural notion that is most relevant to the inves-
tigation of the unknown-input observation problems con-
sidered herein is that of conditioned invariance. A sub-
space SR⊆X is said to be a (robust) conditioned invariant
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subspace for Σσ if SR is a conditioned invariant subspace
for all the modes of Σσ: i.e., if

Ai(SR ∩KerCi) ⊆ SR for all i ∈ I. (4)

In the papers (Basile and Marro, 1987; Conte et al., 1991),
where the concepts of invariance (i.e., invariance with re-
spect to the system dynamics and controlled invariance,
since the problem tackled therein was a decoupling prob-
lem) were first defined for families of linear time-invariant
systems, these notions were distinguished from the classic
ones by the adjective robust. In this work, the switching
linear systems for which the considered invariance prop-
erties hold are always specified. Thus, the adjective robust
becomes redundant and, when speaking of conditioned
invariant subspaces, it is dropped, although we keep the
subscript R.
Given a conditioned invariant subspace SR for Σσ, an in-
dexed family of linear maps G = {Gi, Gi :Y→X}i∈ I
such that

(Ai +Gi Ci)SR ⊆ SR for all i ∈ I (5)

is said to be a friend of SR.

Proposition 1 A subspace SR ⊆ X is a conditioned in-
variant subspace for Σσ if and only if there exists an in-
dexed family of linear maps G = {Gi, Gi :Y→X}i∈ I such
that (5) holds.

Proof. Note that (4) is equivalent toA>i S⊥R ⊆S⊥R + ImC>i
for all i∈ I. Then, given a matrix P> whose columns form
a basis of S⊥R , the previous inclusion is equivalent to the
existence of an indexed family of pairs of real matrices
{(Li,Mi)}i∈ I such that

A>i P
> = P>L>i + C>i M

>
i for all i ∈ I. (6)

By transposing (6) and taking, for any i∈ I, a matrix Gi
such that P Gi =−Mi, one gets

P (Ai +Gi Ci) = Li P for all i ∈ I. (7)

Since P> is a basis matrix of S⊥R , (7) implies P (Ai +
Gi Ci)SR =Li P SR = {0} for all i∈ I, which, in turn, im-
plies (5), since P is full row rank. Conversely, given a
friend G = {Gi, Gi :Y→X}i∈ I of SR, let Mi =−P Gi
and construct Li, with i∈ I, by solving the set of linear
equations (6). Since, as seen above, (6) is equivalent to
(5), the thesis follows.

It is important to remark that the proof of the equiv-
alence between conditioned invariance and existence of
a friend in the framework of switching linear systems
provides an algorithmic procedure for deriving a friend
G = {Gi, Gi :Y→X}i∈ I of SR from the indexed family
{(Li,Mi)}i∈ I and viceversa.
Any friend G = {Gi, Gi :Y→X}i∈ I of a conditioned in-
variant subspace SR for Σσ can be seen as a family of out-
put injections which, applied to the corresponding modes
of Σσ, define a new switching linear system

ΣG
σ ≡

{
ẋ(t) = (Aσ(t) +Gσ(t) Cσ(t))x(t) +Bσ(t) u(t),

y(t) = Cσ(t) x(t).

By (5), the subspace SR is invariant for the switching
linear system ΣG

σ . Thus, ΣG
σ induces a switching linear

dynamics on the subspace SR and a switching linear dy-
namics on the quotient space X/SR. The former will
be denoted by ΣG

σ |SR and the latter will be denoted by
ΣG
σ |X/SR .

Proposition 2 Let SR ⊆ X be a conditioned invari-
ant subspace for Σσ and let P> be a matrix whose
columns are a basis of S⊥R . Then, given a friend
G = {Gi, Gi :Y→X}i∈ I of SR, the switching linear dy-
namics induced by ΣG

σ on X/SR is described, up to a
change of basis in X/SR, by the indexed family of ma-
trices {Li}i∈ I , where {(Li,Mi)}i∈ I is a family of pairs
which satisfy (6) with Mi = −PGi for all i ∈ I.

Proof. The modes of ΣG
σ are described by

ΣG
i ≡

{
ẋ(t) = (Ai +Gi Ci)x(t) +Bi u(t),

y(t) = Ci x(t),
with i ∈ I.

By applying the change of basis x=T ξ= [P>S]ξ, where
P> is a matrix whose columns are a basis of S⊥R and S is
a matrix whose columns are a basis of SR, one gets

ΣG
i ≡

{
ξ̇(t) = A′i ξ(t) +B′i u(t),

y(t) = C ′i ξ(t),
with i ∈ I,

where, in particular,

A′i =T−1(Ai +Gi Ci)T =

[
A′11i 0

A′21i A
′
22i

]
for all i ∈ I.

The lower block-triangular form of A′i shows that, for all
i∈ I, the matrix A′11i describes the dynamics induced by
ΣG
i on X/SR, while A′22i describes that induced on SR.

Let Π :X →X/SR denote the canonical projection. It is
easy to see that A′11i Π = ΠT−1(Ai +CiGi)T and, since
ΠT−1 =P , also that A′11i P =P (Ai +CiGi). Hence,
as P is a full row rank matrix, the comparison of the
latter equation with (7) proves that A′11i =Li, where
{(Li,Mi)}i∈ I , with Mi =−P Gi for all i∈ I, is a family
of pairs which satisfy (6).

The notions of external stabilizability and external α-
stabilizability of a conditioned invariant subspace SR can
now be introduced as follows.

Definition 2 A conditioned invariant subspace SR for
Σσ is said to be

− externally stabilizable if there exists a friend
G = {Gi, Gi :Y→X}i∈ I of SR such that the dynam-
ics induced by ΣG

σ on X/SR is globally asymptotically
stable over Sα for some α ∈ R+;

− externally α-stabilizable if, given α≥ 0, there exists a
friend G = {Gi, Gi :Y→X}i∈ I of SR such that the dy-
namics induced by ΣG

σ on X/SR is globally asymptot-
ically stable over Sα.
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4.2 Solvability conditions

Using the notions introduced above, we can now state the
necessary and sufficient conditions for the solvability of
the UIOP and the SUIOP.

Theorem 2 Let the switching linear system Σσ, the fam-
ily of linear maps H = {Hi, Hi :X →Rq}i∈ I and the pos-
itive real constant α be given. Then, the UIOP defined by
Σσ and H and, respectively, the SUIOP defined by Σσ, H
and α are solvable if and only if there exists a conditioned
invariant subspace SR with ImBi ⊆ SR for all i ∈ I such
that

S) SR ∩KerCi ⊆ KerHi for all i ∈ I (structural condi-
tion);

Q) SR is externally stabilizable or, respectively, exter-
nally α-stabilizable (qualitative condition).

In order to prove Theorem 2, it is convenient to introduce,
in relation to a candidate observer ΣOσ of the form (2),
the auxiliary variable

eaux(t) = z(t)−P x(t), (8)

whose value at t= 0 is the initialization error z(0)−P x(0).
Moreover, it is useful to state the following two proposi-
tions.

Proposition 3 Given a switching linear system Σσ of the
form (1), a family of linear maps H = {Hi, Hi : X →
Rq} and a candidate observer ΣOσ of the form (2), let
P : X → Z be a linear map such that R.3 holds. Then, P
satisfies

Hi = COiP +DOiCi for all i ∈ I. (9)

Proof. R.3 implies, in particular,

e(0) = φσ(0, x0, Px0, u(0))

= COσ(0)z(0) +DOσ(0)y(0)−Hσ(0)x0

= COσ(0)Px0 +DOσ(0)Cσ(0)x0 −Hσ(0)x0

= (COσ(0)P +DOσ(0)Cσ(0) −Hσ(0))x0 = 0

for all x0 ∈X and for all σ ∈S0. Taking σ in such a way
that σ(0) = i, the thesis follows.

Then, taking into account (1), (2), (3), (8) and (9), the
estimation error e(t) can be modeled as the output of the
switching linear system ΣEσ described by

ΣEσ ≡


ėaux(t) = AOσ(t)eaux(t)− P Bσ(t) u(t) +

(BOσ(t) Cσ(t) − P Aσ(t) +AOσ(t) P )x(t)

e(t) = COσ(t) eaux(t)

.

(10)

Proposition 4 Given a switching linear system Σσ of the
form (1), a family of linear maps H = {Hi, Hi : X →
Rq} and a candidate observer ΣOσ of the form (2), let

P : X → Z be a linear map such that requirement R.3 is
fulfilled. Then the requirement R.1 is fulfilled if and only
if ΣEσ is an autonomous switching linear system: i.e., its
state evolution is not affected by any exogenous inputs.

Proof. Since we assume that ΣOσ has no unobservable
states, also ΣEσ, having the same dynamics and the same
output map of ΣOσ, has no unobservable states. Then,
it is easy to see that u(t) does not influence the time
evolution of e(t) (i.e.R.1 is fulfilled) if and only if u(t) does
not influence the time evolution of eaux(t) either directly,
i.e through the input channel defined by PBσ(t)u(t), or
indirectly, i.e. through the forced component of x(t) and
the input channel defined by (BOσ(t) Cσ(t) − P Aσ(t) +
AOσ(t) P ). In other terms, if and only if

P Bi = 0 for all i ∈ I (11)

BOi Ci − P Ai +AOi P = 0 for all i ∈ I (12)

or, equivalently, if and only if ΣEσ is an autonomous sys-
tem.

4.3 Proof of Theorem 2

If. Let P be a q × n matrix with full row rank such that
Ker P = SR, so that, denoting by Z =Rn−q the quotient
space X/SR, P : X → Z is the projection of X onto
it. Since SR ∩ KerCi ⊆ KerHi for all i∈ I, there exist
matrices COi and DOi, of suitable dimensions such that

COiP + DOi Ci = Hi, for all i ∈ I. (13)

Moreover, as seen in Proposition 2, for any friend
G = {Gi, Gi :Y→X}i∈ I , the dynamics induced on Z
by that of ΣG

σ is described by a family of matrices
L = {Li, Li ∈Rq×q}i∈ I such that {(Li,−PGi)}i∈ I is a
family of pairs which satisfy (6) and

LiP = P (Ai +GiCi), for all i∈ I. (14)

Choose G = {Gi, Gi :Y→X}i∈ I in such a way that the
dynamics induced on Z by that of ΣG

σ is globally asymp-
totically stable over Sα for all α sufficiently large or, re-
spectively, for the given α and consider the observer sys-
tem

ΣOσ ≡

{
ż(t) = Lσ(t)z(t)− PGσ(t)y(t)

w(t) = COσ(t)z(t) +DOσ(t)y(t)
(15)

with z ∈Z, which is of the form (2) for AOσ(t) = Lσ(t)

and BOσ(t) = −PGσ(t). The estimation error e(t) =
w(t)−Hσ(t)x(t) can be expressed as the output of a suit-
able switching linear system by introducing the auxiliary
variable eaux(t) = z(t)− Px(t). In fact, by (13), we have
e(t) = w(t)−Hσ(t)x(t) = COσ(t)z(t) +DOσ(t)Cσ(t)x(t)−
Hσ(t)x(t) = COσ(t)z(t) − COσ(t)Px(t) = COσ(t)eaux(t)
and the evolution of eaux(t) is described by ėaux(t) =
Lσ(t)z(t) − PGσ(t)Cσ(t)x(t) − P (Aσ(t)x(t) + Bσ(t)u(t)).
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Since ImBi ⊆ SR = Ker P , we have PBi = 0 and, there-
fore, using (14) we obtain the auxiliary error system

ΣEσ ≡

{
ėaux(t) = Lσ(t)eaux(t)

e(t) = COσ(t)eaux(t)
(16)

Equation (16) shows that R.1 is satisfied since ΣEσ is an
autonomous system and that R.2 is satisfied since ΣEσ is
globally asymptotically stable over Sα for α sufficiently
big or, respectively, for the given α. Moreover, choosing
z(0) = Px(0), we have e(t) = 0 for all t∈R+, for all σ ∈S0

and for all input signals u(t) and, therefore, also R.3 is
satisfied.
Only if. Let ΣOσ be an observer of the form (2) such that
requirements R.1, R.3 are satisfied and requirement R.2
is satisfied for α sufficiently big or, respectively, for the
given α. Consider the auxiliary variable eaux(t) = z(t)−
Px(t), where the matrix P that verifies (9) is determined
by R.3, and the auxiliary error system ΣEσ is given by
(10). By R.1 and (10) we have

PBi = 0

PAi −BOiCi −AOiP = 0 for all i∈ I.
(17)

The second equality in (17) implies

PAi(Ker P ∩KerCi) =

(BOiCi +AOiP )(Ker P ∩KerCi) = {0}
for all i∈ I,

(18)

which is equivalent to Ai(KerP ∩ KerCi) ⊆ KerP for
all i∈ I. Therefore, SR = Ker P is a conditioned invari-
ant subspace for Σσ which contains ImBi for all i∈ I.
Since Im P =Z, we can write BOi = −PGi for suitable
matrices Gi for all i∈ I. So, the second equality in (17)
gives P (Ai +GiCi) = AOiP for all i∈ I which says that
G = {Gi, Gi :Y→X}i∈ I is a friend of SR and that the
dynamics induced on X/SR by that of ΣG

σ is described by
the family of matrices {AOi}i∈ I . Since the dynamics of
ΣOσ is described by the same family of matrices and it is
globally asymptotically stable over Sα for α sufficiently
big or, respectively, for the given α, SR is proved to be
externally stabilizable or, respectively, α-externally sta-
bilizable. Finally, since Hi = COiP +DOiCi for all i ∈ I
by Proposition 3, we have SR ∩ KerCi ⊆ KerHi for all
i∈ I.

Remark 2 It is important to note that the “If” part of
the proof of Theorem 2 shows how to construct, under
the structural condition S), an observer ΣOσ of the form
(2), which solves the UIOP or, respectively, the SUIOP if
the qualitative condition Q), in the appropriate formula-
tion, is satisfied. If this is not the case, ΣOσ is not glob-
ally asymptotically stable, but if it is correctly initialized
at z(0) = Px(0) it generates an output w(t) that equals
Hσ(t)x(t), i.e. we have w(t) = Hσ(t)x(t) for all t ∈ R+.
This means that under the structural condition S) the value
of Hσ(t)x(t) can be computed also in presence of unknown

inputs, provided that the initial condition x(0) of Σσ is
known.

Remark 3 Note that Theorem 2 gives a complete charac-
terization of solvability of the considered observation prob-
lems without assuming any restrictive hypothesis, like e.g.
that of being bounded, on the unknown input u(t). This is
one of the advantages offered by the point of view based
on structural notions, whose geometric nature does not
involve qualitative aspects of the signals at issue.

Remark 4 In order to gain more insight into the mean-
ing of Theorem 2, it is useful to anticipate, from the fol-
lowing section, that, given a subspace W ⊆ X , the set of
all conditioned invariant subspaces for Σσ containing W
can be shown, by standard arguments of linear algebra, to
be a lower semilattice with respect to the inclusion and the
intersection of subspaces. This implies that there exists a
minimal element of such set, which is denoted by S∗R(W)
or simply by S∗R ifW =

∑
i∈I ImBi. Then, thank to mini-

mality of S∗R, the existence of a conditioned invariant sub-
space SR that contains ImBi for all i ∈ I and satisfies
the structural condition S) of Theorem 2 can be globally
expressed in term of S∗R by the equivalent condition

S′) S∗R ∩KerCi ⊆ KerHi for all i ∈ I.

Minimality of S∗R qualifies S′) as the structural obstruction
to the solvability of the UIOP and SUIOP, as well as to
the existence of an observer that allows the computation
of Hσ(t)x(t) if x(0) is known.

Remark 5 The problem of estimating asymptotically the
full state x of Σσ for all σ ∈ Sα, either for an α suffi-
ciently big or for a given α, can be viewed as a special case
of the UIOP or of the SUIOP in whichHi = In for all i∈ I.
Then, it follows from Theorem 2 that the full state asymp-
totic estimation problem is solvable for α sufficiently big
or, respectively, for a given α if and only if there exists
an externally stabilizable or, respectively,an externally α-
stabilizable conditioned invariant subspace SR such that
ImBi ⊆ SR and SR ∩KerCi = {0} for all i ∈ I. In case
x(0) is known, no qualitative condition is required. Hence,
the computation of x(t) for t ∈ R+ is possible if and only
if the condition S∗R∩KerCi = {0} is satisfied for all i∈ I.
This appears to agree with intuition, since the subspace
S∗R ∩ KerCi describes the component of the state vector
x that is influenced by the unknown input and that is fil-
tered out by the output map when the mode Σi is the active
one. Quite obviously, such component cannot be estimated
or computed, even if x(0) is known, during any time in-
terval in which Σi is the active mode. Since there is no
canonical way to decompose X as a direct sum of the form
X = (S∗R ∩ KerCi) ⊕Wi, but infinitely many choices of
the summand Wi are possible, the best way to represent
the maximal content of information about x(t) that can
be estimated consists in considering the image of x in the
quotient space X/S∗R. The function H in the statement of
the UIOP and of the SUIOP describes, in each specific sit-
uation, part of this information. Note that in case Hi = In
and, in addition, the unknown-input distribution matrix
is zero, i.e. the system is actually not subject to unknown
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inputs, the unknown input observation problem reduces to
that of finding a reduced-order observer for the full state.
In such situation, we have S∗R = {0} and the structural
condition we have discussed in the previous remark is al-
ways verified. Asymptotic estimation of the full state, then,
depends only on the existence of a conditioned invariant
subspace SR that is externally stabilizable or, respectively,
externally α-stabilizable, such that SR ∩KerCi = {0}.

The solvability conditions given in Theorem 2 are not
constructive since the theorem gives no indication on how
to ascertain the existence of a conditioned invariant sub-
space SR with the required properties. To overcome this
limitation, constructive necessary and sufficient condi-
tions that can be checked by algorithmic procedures are
derived in the next section.

5 Constructive Solvability Conditions

In this section, we characterize the solvability of the con-
sidered unknown input observation problems by means of
constructive, necessary and sufficient conditions that can
be practically checked. In order to formulate such condi-
tions, it is necessary to introduce some geometric objects
and to state their properties. This is done in the follow-
ing Proposition 5, whose proof is given in Section 6 by
providing finite construction procedures, under suitable
hypotheses, for all the considered geometric objects. To-
gether with the construction of ΣOσ given in the proof of
Theorem 2, such procedures provide a viable way to check
the existence of solutions to the UIOP or to the SUIOP
and, in case, to construct them.

Proposition 5 Given a switching system Σσ of the
form (1), the following facts hold true

1. The set of all conditioned invariant subspaces for Σσ
containing ImBi for all i∈ I has a minimal element,
which is denoted by S∗R.

2. The set of all externally stabilizable conditioned in-
variant subspaces for Σσ containing ImBi for all i∈ I
has a minimal element, which is denoted by S∗Rg and
is called the minimal good conditioned invariant sub-
space.

3. Let {Ki}i∈I be an indexed family of subspaces of X
and assume that

S∗R + KerCi = X for all i ∈ I. (19)

Then, the set of all conditioned invariant subspaces
SR for Σσ satisfying the conditions

ImBi ⊆ SR for all i∈ I (20)

SR ∩Ker Ci ⊆ Ki for all i∈ I (21)

is either empty or it has a maximal element, which
is denoted by SRm({Ki}i∈I).

Using S∗R, S∗Rg and SRm({Ki}i∈I), it is possible to state
the solvability conditions of the UIOP and of the SUIOP
given in Theorem 2 in a constructive way as follows.

Theorem 3 Let the switching linear system Σσ and
the family of linear maps H = {Hi, Hi :X →Rq}i∈ I be
given. Then, the corresponding UIOP is solvable if and
only if

S∗Rg ∩KerCi ⊆ KerHi for all i ∈ I. (22)

Proof. If. S∗Rg is externally stabilizable and, therefore, by

(22), it satisfies the conditions S) and Q) of Theorem 2.
Hence, the UIOP is solvable.
Only if. If the UIOP is solvable, there exists by Theo-
rem 2 a conditioned invariant subspace SR that satisfies
the conditions S) and Q). In particular, by Q), it is ex-
ternally stabilizable and, therefore, it is contained in S∗Rg.
Then, it follows from S) that condition (22) is satisfied.

Theorem 4 Let the switching linear system Σσ, the fam-
ily of linear maps H = {Hi, Hi :X →Rq}i∈ I and the pos-
itive real constant α be given. Let condition (19) hold.
Then, the corresponding SUIOP is solvable if and only if
the folllowing conditions are satisfied

S′) S∗R ∩KerCi ⊆ KerHi for all i ∈ I (structural condi-
tion);

Q′) SRm({KerHi}i∈I) is externally α-stabilizable (qual-
itative condition).

Proof. If. Note that, by S′), the set of all conditioned
invariant subspaces that satisfy (20) and (21) with
Ki = KerHi for i ∈ I is not empty. Hence, by (19),
its maximal SRm({KerHi}i∈I) exists and the exter-
nal α-stabilizability condition is well-posed. Moreover,
SRm({KerHi}i∈I) satisfies the conditions S) and Q) of
Theorem 2 and the construction of ΣOσ seen in its proof
provides an observer that is globally asymptotically sta-
ble over Sα. Hence, the SUIOP is solvable.
Only if. If the SUIOP is solvable, there exists, by Theo-
rem 2, a conditioned invariant subspace SR that satisfies
the conditions S) and Q) for the given α. In particular,
by Q), there exists a friend G = {Gi;Gi : X → Y} of SR
such that the dynamics induced on X/SR by that of ΣG

σ
coincides with the dynamics of the observer and, hence,
it is globally stable over Sα. Moreover, by S), the set
of all conditioned invariant subspaces that satisfy (20)
and (21) with Ki = KerHi for i ∈ I is not empty and
SR ⊆ SRm({KerHi}i∈I). Together with (19), this implies
that G is also a friend of SRm({KerHi}i∈I). We show
this by proving that (Ai + GiCi)s ∈ SRm({KerHi}i∈I)
for all s ∈ SRm({KerHi}i∈I) and all i ∈ I. In fact, since
S∗R ⊆ SR, for all i ∈ I we have SR + KerCi = X and
any s ∈ SRm({KerHi}i∈I) can be written as s = si + ki,
with si ∈ SR and ki ∈ KerCi. Since both si and s
belong to SRm({KerHi}i∈I), it follows that ki = s− si
actually belongs to KerCi ∩SRm({KerHi}i∈I). Now,
(Ai +Gi Ci) si belongs to SR⊆SRm({KerHi}i∈I)
for all i∈ I, because si ∈SR and G is a friend of
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SR, and Ai ki belongs to SRm({KerHi}i∈I), because
ki ∈KerCi ∩SRm({KerHi}i∈I) and SRm({KerHi}i∈I)
is a conditioned invariant subspace for Σσ. Then,
(Ai +Gi Ci) s= (Ai +Gi Ci) (si + ki) = (Ai +Gi Ci) si
+Ai ki belongs to SRm({KerHi}i∈I) for all i∈ I and
G is proved to be a friend of SRm({KerHi}i∈I). The
quotient X/SRm({KerHi}i∈I) can therefore be viewed
as (X/SR) / (SRm({KerHi}i∈I)/SR) and the dynam-
ics induced on X/SRm({KerHi}i∈I) by that of ΣG

σ can
be viewed as the dynamics induced on the quotient of
X/SR modulo SRm({KerHi}i∈I)/SR by that induced
on X/SR. It follows that the dynamics induced on
X/SRm({KerHi}i∈I) is globally asymptotically stable
over Sα for the given α and so SRm({KerHi}i∈I) is
externally α-stabilizable.

Remark 6 As stated at the beginning of this section, the
conditioned invariant subspaces S∗R, S∗Rg and, under more

restrictive hypotheses, S∗Rm({KerHi}i∈I) can be computed
by means of algorithmic procedures that will be given in the
next section, when proving Proposition 5. This implies,
in particular, that the necessary and sufficient conditions
stated in Theorem 3 can be practically checked. Moreover,
after constructing S∗Rm({KerHi}i∈I), its external stabiliz-
ability properties can be analysed using the results of Sec-
tion 7 and the methods described in Chesi et al. (2012) and
in Xiang (2016). It follows that the necessary and suffi-
cient condition stated in Theorem 4 can also be practically
checked.

Remark 7 Note that, while in Theorem 2 the solvabil-
ity condition is split into the structural requirement S)
and the qualitative requirement Q), in Theorem 3 both re-
quirements, the structural one and the qualitative one, are
jointly expressed by condition (22). This is due to the fact
that the conditioned invariant subspace S∗Rg, being exter-
nally stabilizable by definition, satisfies the qualitative re-
quirement.

6 Construction of the Key Subspaces for Σσ

In this section, we prove Proposition 5 by showing that the
geometric subspaces introduced are well defined and by
providing the algorithmic procedures to construct them.
Since those subspaces are the key objects for characteriz-
ing the solvability of the UIOP and of the SUIOP in The-
orem 3 and in Theorem 4, the results of this section give
constructive, viable procedures to check the existence of
solutions in any specific case and, together with the con-
struction of ΣOσ given in Theorem 2, to construct them.

6.1 The Minimal Conditioned Invariant Subspace

The aim of this subsection is to prove Proposition 5-1
by showing the existence of the minimal element in the
set of all conditioned invariant subspaces that contain a
given subspace and to provide an algorithmic procedure
for its construction. Let us start by remarking that, given
a subspace W of X , the set of all conditioned invariant
subspaces for Σσ containingW can be shown by standard

linear algebra arguments to be a lower semilattice with
respect to the inclusion and the intersection of subspaces.
Hence, it has a minimal element, which is denoted by
S∗R(W), and, taking W =

∑
i∈I ImBi, Proposition 5-1 is

proved. The following proposition provides an algorithmic
procedure to compute it.
Proposition 6 (Construction of S∗

R(W)) Given a
subspace W⊆X , the sequence of subspaces SRk, with
k∈Z+, generated by{

SR0 =W,

SR(k+1) = SRk +
∑
i∈ I Ai (SRk ∩KerCi)

(23)

converges to S∗R(W) in n steps at most.
Proof. The sequence of subspaces SRk, with k∈Z+, gen-
erated by (23), is nondecreasing and, as the dimension
of X is finite and equal to n, there exists j <n such
that SR(j+1) =SRj +

∑
i∈ I Ai (SRj ∩KerCi) =SRj .

The subspace SRj , which represents the last term
of the sequence, is a conditioned invariant subspace
for Σσ since, as is shown by the latter equation,
Ai (SRj ∩KerCi)⊆SRj for all i∈ I. Moreover, SRj ⊇W
since SR(k+1)⊇SRk for all k∈Z+ and SR0 =W. To prove
minimality of SRj , let SR be a conditioned invariant sub-
space for Σσ containingW. It will be shown by induction
that SR⊇SRk for all k∈Z+, which implies SR⊇SRj ,
in particular. First, note that SR⊇SR0 since SR0 =W.
Secondly, note that SRk ⊆SR for some k∈Z+ implies
Ai (SRk ∩KerCi)⊆Ai (SR ∩KerCi)⊆SR for all i∈ I.
Hence, SR(k+1)⊆SR since both terms at the right-hand
side of the second of (23) are contained in SR.

Remark 8 The characterization of S∗R(W) as the limit
of the sequence defined by (23) and the fact that conver-
gence is obtained in a finite number of steps enable di-
rect computation of a basis for S∗R(W). Then, a friend
G = {Gi, Gi :Y→X}i∈ I of S∗R(W) can be obtained as il-
lustrated in Section 4. To make a comparison with the lin-
ear time-invariant case (which applies to each mode Σi of
Σσ), let S∗i (W), with i∈ I, denote the minimal conditioned
invariant subspace for the mode Σi containing the given
subspace W (see Basile and Marro, 1992, Section 4.1.1).
From (23) it follows that S∗R(W) contains S∗i (W) for all
i∈ I and that S∗R(W) may be larger than

∑
i∈ I S∗i (W).

Notation We recall that S∗R(
∑
i∈I ImBi) is simply de-

noted by S∗R.

6.2 The Minimal Good Conditioned Invariant Subspace

The aim of this subsection is to prove Proposition 5-2 by
showing the existence of the minimal element in the set
of all externally stabilizable, conditioned invariant sub-
spaces that contain a given subspace and to provide an
algorithmic procedure for its construction. We start by
recalling that, for each mode Σi of the switching linear
system Σσ, it is possible to introduce the minimal exter-
nally stabilizable conditioned invariant subspace for Σi
containing the subspaceW, which is denoted by S∗Rgi(W).
Such subspace can be defined dualizing the definition of
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maximal internally stabilizable controlled invariant sub-
space contained in a given subspace originally proposed
in (Wonham, 1985, Section 5.6). The same reference pro-
vides also an algorithm that, in dual formulation, pro-
duces S∗Rgi(W). The next proposition provides an algo-

rithm to construct S∗Rg(W) that employs the subspaces

S∗Rgi(W) and, at the same time, it gives a constructive

proof of Proposition 5-2 by taking W =
∑
i∈I ImBi.

Proposition 7 (Construction of S∗
Rg(W)) Given a

subspace W⊆X , the sequence of subspaces SRk, with
k∈Z+, generated by

W0 =W,

K0 =
∑
i∈ I S∗Rgi(W0),

SR0 = S∗R(K0),

(24a)


Wk+1 = SRk,
Kk+1 =

∑
i∈ I S∗Rgi(Wk+1),

SR(k+1) = S∗R(Kk+1),

(24b)

converges to S∗Rg(W) in at most n steps.

Proof. The sequence of subspaces SRk, with k∈Z+, gener-
ated by (24a)–(24b) is nondecreasing and, since X has di-
mension equal to n, it becomes stationary for some j <n.
The last term of the sequence, i.e. the subspace SRj , is a
conditioned invariant subspace for Σσ by the last equation
of (24b) (or the last equation of (24a) if j= 0) and the def-
inition of S∗R(·). Moreover, SRj ⊇W since SR(k+1)⊇SRk
for all k∈Z+ and SR0⊇W by (24a). Furthermore, SRj
is externally stabilizable (as a conditioned invariant sub-
space for Σσ) by Theorem 1. To prove minimality of SRj ,
let SR be an externally stabilizable conditioned invari-
ant subspace for Σσ containing W. It will be shown by
induction that SR⊇SRk for all k∈Z+, which implies,
in particular, SR⊇SRj . First, note that SR⊇W0, since
W0 =W. Then, SR⊇S∗Rgi(W0) for all i∈ I, by minimal-

ity of S∗Rgi(W0) with respect to Σi, and, by the second

equation of (24a), SR⊇K0. Consequently, SR⊇SR0, by
minimality of SR0 with respect to Σσ. Secondly, note
that the assumption SRk ⊆SR for some k∈Z+ implies
SR(k+1)⊆SR. In fact, SR⊇SRk implies SR⊇Wk+1 since
Wk+1 =SRk. Then, as before, SR⊇S∗Rgi(Wk+1) for all

i∈ I, by minimality of S∗Rgi(Wk+1) with respect to Σi,

and, by the second equation of (24b), SR⊇Kk+1. Thus,
SR⊇SR(k+1), by minimality of SR(k+1) with respect to
Σσ.

The minimal externally stabilizable conditioned invariant
subspace for Σσ containing a given subspace described
herein is the dual counterpart of the maximal internally
stabilizable controlled invariant subspace for Σσ con-
tained in a given subspace introduced in (Zattoni et al.,
2016, Section III). Duality is reflected in the respective
computational algorithms.

Notation We recall that S∗Rg(
∑
i∈I ImBi) is simply de-

noted by S∗Rg.

6.3 Maximal Conditioned Invariant Subspaces

The aim of this subsection is to prove Proposition 5-3
by showing the existence, under condition (19), of the
maximal element in the set of all conditioned invariant
subspaces that statisfy the conditions (20) and (21) and
to provide, under suitable more restrictive hypotheses, an
algorithmic procedure for its construction. We start by
stating the following two preliminary results.

Proposition 8 Let (19) hold. Let SR be a conditioned
invariant subspace for Σσ containing ImBi for all i∈ I
and let G ={Gi, Gi :Y→X}i∈ I be a friend of SR. Then,
G is a friend of any conditioned invariant subspace S ′R for
Σσ such that SR⊆S ′R.

Proof. The same arguments used in the proof of Theo-
rem 4 to show that any friend G of a conditioned invari-
ant subspace SR contained in SRm({KerHi}i∈I) is also
a friend of SRm({KerHi}i∈I) apply for any conditioned
invariant subspace S ′R in which SR is contained.

Proposition 9 Let (19) hold. Then, the sum of any two
conditioned invariant subspaces for Σσ containing ImBi
for all i∈ I is a conditioned invariant subspace for Σσ
containing ImBi for all i∈ I.

Proof. Let SR1 and SR2 be two conditioned invariant
subspaces for Σσ containing ImBi for all i∈ I. Hence,
the subspace ImBi, being contained in both SR1 and
SR2, is contained in SR1 +SR2 for all i∈ I. Moreover,
let G = {Gi, Gi :Y→X}i∈ I be a friend of S∗R. Since
both SR1 and SR2 contain S∗R by minimality of the
latter, G is a friend of both SR1 and SR2 by Proposi-
tion 8. Therefore, we have (Ai +Gi Ci)(SR1 +SR2) =
(Ai +Gi Ci)SR1 + (Ai +Gi Ci)SR2⊆SR1 +SR2 for all
i∈ I.

We can now prove Proposition 5-3.

Proof of Proposition 5-3. Since X has finite dimension,
to prove the statement it is sufficient to show that, if
SR1 and SR2 are two conditioned invariant subspaces
for Σσ that satisfy (20) and (21), then the subspace
SR1 +SR2 is a conditioned invariant subspace for Σσ sat-
isfying the same conditions. Since (19) holds by assump-
tion, SR =SR1 +SR2 is a conditioned invariant subspace
for Σσ by Proposition 9 and it satisfies (20) because
SR1 and SR2 do it. Now, take any i ∈ I and a vector
x ∈ K⊥i and note that, since S⊥R1 + (KerCi)

⊥⊇K⊥i and
S⊥R2 + (KerCi)

⊥⊇K⊥i because of (20), x can be written
as x = s1i + c1i = s2i + c2i with s1i ∈S⊥R1, s2i ∈S⊥R2,
and c1i, c2i ∈ (KerCi)

⊥ for the chosen index i. Since
S⊥R1⊆ (S∗R)⊥ and S⊥R2⊆ (S∗R)⊥ by minimality of S∗R, it
follows that s1i and s2i belong to (S∗R)⊥ for all i ∈ I. As
a consequence, we have that s1i− s2i = c2i− c1i belongs
to (S∗R)⊥ ∩ (KerCi)

⊥= {0}, where the last equality is
due to (19). Hence, s1i = s2i belongs to (S⊥R1 ∩S⊥R2) and,
therefore, x belongs to (S⊥R1 ∩S⊥R2) + (KerCi)

⊥. This
implies (S⊥R1 ∩S⊥R2) + (KerCi)

⊥ ⊇ K⊥i and, taking the
orthogonal spaces, SR1 + SR2 ∩ (KerCi) ⊆ Ki for the
chosen i ∈ I. Repeating the same argument for all i ∈ I,
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shows that the subspace SR1 + SR2 satisfies (21). Hence,
the set of all conditioned invariant subspaces Sr for Σσ
satisfying (20) and (21) is a lattice with respect to inclu-
sion, sum and intersection of subspaces and, if it is not
empty, it has a maximal element SRm({Ki}i∈I).

Concerning condition (19), it is worth noting that it is
akin to, but weaker than, right invertibility of all modes.
In fact, using the notation employed in Remark 8, the
latter would amount to S∗Ri(ImBi) + KerCi =X for all
i∈ I and S∗R⊇S∗Ri(

∑
i∈I ImBi)⊇S∗Ri(ImBi) for all i∈ I.

Now, to provide a procedure to construct SRm({Ki}i∈I),
we have to strengthen the condition (19) by assuming
that X is equal to the sum between S∗R and a subspace
smaller than the intersection of all the KerCi. So, let us
consider the sequence of subspaces Vk ⊆ X with k∈Z+,
generated by{

V0 =
⋂
i∈I (Ki ∩KerCi) ,

Vk+1 = Vk ∩
(⋂

i∈I A
−1
i (Vk + ImBi)

)
.

(25)

It can be shown by standard arguments of linear alge-
bra that such sequence converges in a finite number of
steps (at most in dim(

⋂
i∈I(Ki ∩ KerCi) + 1) steps). Its

limit, that we denote by V∗R({Ki}i∈I), is known to be
the maximal subspace in the set of all subspaces V ⊆⋂
i∈I (Ki ∩KerCi) ⊆ X that are robust controlled invari-

ant with respect to the switching dynamics of Σσ (or con-
trolled invariant for Σσ), namely such that AiV ⊆ V +
ImBi for all i ∈ I. Controlled invariance with respect to a
switching dynamics was first considered in (Otsuka, 2010)
in relation to the disturbance decoupling problem and it
was further investigated and used to deal with other con-
trol problems in (Conte and Perdon, 2011), (Conte et al.,
2014)). IfKi = KerCi for all i ∈ I (and hence in (25) V0 =⋂
i∈I KerCi), we denote V∗R({KerCi}i∈I) simply by V∗R.

Note that, by construction, we have V∗R ⊆
⋂
i∈I KerCi

and V∗R({Ki}i∈I)) ⊆
⋂
i∈I(Ki ∩ KerCi) ⊆

⋂
i∈I KerCi

and therefore, by maximality of V∗R, also V∗R({Ki}i∈I) ⊆
V∗R.
We assume now that the following condition is satisfied

S∗R + V∗R = X . (26)

Remark 9 Since V∗R ⊆
⋂
i∈I KerCi, the condition (26)

is stronger than the condition (19). Actually, letting V∗i ,
with i ∈ I, denote the maximal controlled invariant sub-
space for the mode Σi contained in KerCi (see (Basile
and Marro, 1992)), it may be interesting to recall that
S∗i +KerCi = X is equivalent to S∗i +V∗i = X . This means
that in the classical non switching situation (19) and (26)
are equivalent.

The next proposition characterizes SRm({Ki}i∈I) in such
a way that an algorithmic procedure for its construction
can be given.

Proposition 10 Given a switching system Σσ of the form
(1) and an indexed family {Ki}i∈I of subspaces of X , as-
sume that S∗R ∩ KerCi ⊆ Ki for all i ∈ I and that con-

dition (26) holds. Then, the maximal conditioned invari-
ant subspace for Σσ that satisfies (20) and (21) is equal to
the subspace S∗R + V∗R({Ki}i∈I), that is SRm({Ki}i∈I) =
S∗R + V∗R({Ki}i∈I)

Proof. We show, first of all, that S∗R+V∗R({Ki}i∈I) verifies
the conditions (20) and (21) and that it is a conditioned
invariant subspace for Σσ. In fact, we have ImBi ⊆ S∗R ⊆
S∗R + V∗R({Ki}i∈I) and (S∗R + V∗R({Ki}i∈I) ∩ KerCi =
(S∗R ∩KerCi) +V∗R({Ki}i∈I ⊆ Ki for all i ∈ I. Moreover,
Ai((S∗R + V∗R({Ki}i∈I) ∩ KerCi) = Ai((S∗R ∩ KerCi) +
V∗R({Ki}i∈I) ⊆ S∗R + (V∗R({Ki}i∈I) + ImBi) = S∗R +
V∗R({Ki}i∈I) for all i ∈ I.
Now, to show maximality , let S be a conditioned in-
variant subspace for Σσ that satisfies (20) and (21). By
minimality of S∗R, we have S∗R ⊆ S and the subspace
S1 = S+V∗R({Ki}i∈I) = S+(S∗R+V∗R({Ki}i∈I)), being a
sum of conditioned invariant subspaces containing ImBi,
is conditioned invariant by Proposition 9 and it contains
ImBi for all i ∈ I. Moreover, we have S1∩KerCi = (S+
V∗R({Ki}i∈I))∩KerCi = (S∩KerCi)+V∗R({Ki}i∈I) ⊆ Ki
for all i ∈ I. Then, taking the maximal controlled in-
variant subspace for Σσ contained in

⋂
i∈I KerCi, namely

V∗R, we consider the subspace V = S1 ∩ V∗R = (S +
V∗R({Ki}i∈I)) ∩ V∗R = (S ∩ V∗R) + V∗R({Ki}i∈I). By V =
(S + V∗R({Ki}i∈I)) ∩ V∗R ⊆ V∗R ⊆ KerCi and V = (S ∩
V∗R) + V∗R({Ki}i∈I) ⊆ (S ∩ KerCi) + Ki ⊆ Ki for all
i ∈ I, we have V ⊆

⋂
i∈I(Ki ∩ KerCI). Moreover, V is

controlled invariant for Σσ, since AiV = Ai(S1 ∩ V∗R) ⊆
Ai((S1 ∩KerCi)∩V∗R) ⊆ S1 ∩ (V∗R + ImBi) ⊆ S1. There-
fore, we have V ⊆ V∗R({Ki}i∈I) by maximality of the
latter subspace. On the other hand, note that any s ∈
S1 ⊆ X can be written as s = s∗ + c with s∗ ∈ S∗R
and c ∈

⋂
i∈I KerCi by (26). Since S∗R ⊆ S1, this implies

that c actually belongs to S1 ∩ V∗R, and hence we have
S1 ⊆ S∗R+(S1∩V∗R). Finally, we get S∗R+V∗R({Ki}i∈I) ⊇
S∗R + V ⊇ S∗R + (S1 ∩ V∗R) ⊇ S1 ⊇ S, which shows maxi-
mality of S∗R + V∗R({Ki}i∈I).

7 A Characterization of External Stabilizability

In order to handle the qualitative condition Q’) of The-
orem 4, in this section we investigate and characterize
the properties of external stabilizability and external α-
stabilizability. In particular, we provide algebraic neces-
sary and sufficient conditions for external stabilizability
of a conditioned invariant subspace and a result that sim-
plifies the analysis of external α-stabilizability under spe-
cific assumptions.
The result of the proposition given below follows easily
from Theorem 1.

Proposition 11 A conditioned invariant subspace SR ⊆
X for Σσ is externally stabilizable if and only if there exists
a friend G = {Gi, Gi :Y→X}i∈ I such that the dynamics
induced on X/SR by that of ΣG

i is asymptotically stable
for all i∈ I.

In Section 4, the dynamics induced on X/SR by that
of ΣG

i was shown to be defined by the matrix Li if the
indexed family of pairs of matrices {(Li,Mi)}i∈ I , where
PGi = −Mi and the columns of P> are a basis of S⊥R ,
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satisfies (6). It is therefore worthwhile to consider the
parametrization of the set of such families, and hence of
the set of friends, given by the following proposition (see
(Perdon et al., 2016, Lemma 1) for a dual results about
controlled invariant subspaces).

Proposition 12 Let SR be a conditioned invariant sub-
space for Σσ of dimension n− q and let P> be a n× q ma-
trix whose columns are a basis of S⊥R . Let {Li,Mi}i∈ I be
an indexed family of matrices that, together with P , verify

(6). Then, letting

[
N1i

N2i

]
be, for all i∈ I, a (q + p) × ri

matrix whose columns are a basis of Ker
[
P> C>i

]
, it fol-

lows that

- any other matrix P̄> whose columns are a basis of
S⊥R is of the form P̄> = P>T> for some nonsingular
q × q matrix T ;

- for any other indexed family {L̄i, M̄i}i∈ I such that
A>i P̄

>= P̄>L̄>i + C>i M̄
>
i , the matrices L̄i and M̄i

are of the form L̄i = TLiT
−1 − TQiN

>
1iT
−1 and

M̄i = TMi − TQiN>2i for some q × ri matrix Qi.

Proof. The first statement is obvious. To prove the second
statement, note that A>i P̄

>= P̄ L̄>i + C>i M̄
>
i is equiva-

lent to A>i P =PT>L̄>i (T−1)> + C>i M̄
>
i (T−1)> and in

turn, thank to (6), this is equivalent to PT>L̄>i (T−1)>+
C>i M̄

>
i (T−1)> − PL>i + C>i M

>
i = 0. The last equality

says that

[P C>i ]

[
T>L̄>i (T−1)> − L>i
M̄>i (T−1)> −M>i

]
= 0 (27)

for all i∈ I. Since N1i and N2i are two matrices such

that the columns of

[
N1i

N2i

]
are a basis of Ker [P> C>i ],

the conclusion follows by transposing the equalities
T>L̄>i (T−1)> = L>i + N1iQ

>
i and M̄>i (T−1)>=M>i +

N2iQ
>
i which, for some Qi, are implied by (27).

As a consequence, we have the following results.

Proposition 13 Let SR ⊆ X be a conditioned invari-
ant subspace for Σσ and let G = {Gi, Gi :Y→X}i∈ I be
one of its friend. Let P> be a matrix whose columns are
a basis of S⊥R . Let {Li,Mi}i∈ I be an indexed family of
matrices that, together with P , satisfies (6). Then, letting[
N1i

N2i

]
be a (q+ p)× ri matrix whose columns are a basis

of Ker
[
P> C>i

]
for i∈ I, we have that SR is externally

stabilizable if and only if the pairs (Li, N
>
1i) are detectable

for all i∈ I.

Proof. It follows from the characterization of the dynam-
ics induced on X/SR by that of ΣG

σ given in Section 4,
from Proposition 12 and Theorem 1.

The above proposition gives a complete algebraic charac-
terizion of external stabilizability for conditioned invari-

ant subspaces. In addition, assuming that condition (19)
holds for all i∈ I, we have the following results.

Proposition 14 Given a switching linear system Σσ of
the form (1), assume that the condition (19) holds for all
i∈ I and let SR be a conditioned invariant subspace for Σσ
such that ImBi ⊆ SR for all i∈ I. Then, the linear switch-
ing dynamics induced by that ΣG

σ on X/SR does not de-
pend on the choice of the friend G = {Gi, Gi :Y→X}i∈ I
of SR.

Proof. By minimality of S∗R, condition (19) implies SR +
KerCi = X for all i∈ I. Therefore, letting P> be a ma-
trix whose columns are a basis of S⊥R , we have {0} =
(SR + KerCi)

⊥ = S>R + ImC>i = ImP> + ImC>i for all

i∈ I. This implies that, for all i∈ I, any matrix

[
N1i

N2i

]
whose columns are a basis of Ker[P> C>i ] is of the form[
N1i

N2i

]
=

[
0

N2i

]
, where N2i is a matrix whose columns

form a basis of KerCi. By Proposition 12, any indexed
family of pairs of matrices that satisfies (6) is of the form
{(TLiT−1, TMi − TQiN2i)}i∈ I , where {(Li,Mi)}i∈ I is
an indexed family that satisfies (6), T is a change of ba-
sis in X/SR and the matrices Qi are arbitrary matrices
of suitable dimensions. Any friend of SR is therefore of
the form G = {Gi, Gi :Y→X}i∈ I with PGi = −TMi+
TQiN2i, and the linear switching dynamics induced by
that of ΣG

σ on X/SR, being characterized by the indexed
family of matrices {Li}i∈ I , does not depend on the choice
of the friend G .

The important consequence of Proposition 14 is that, un-
der its hypotheses, the dynamics induced by that of ΣG

σ
on X/SR depends only on SR. Therefore, external stabi-
lizability of SR over Sα for a given α can be checked by
using any of its friends G . In practice, this can be done
by employing, e.g., the LMI condition described in Chesi
et al. (2012), or the necessary and sufficient conditions for
stability over Sα of Xiang (2016), with respect to the lin-
ear switching dynamics induced by that of ΣG

σ on X/SR
for an arbitrary friend G .

8 An Illustrative Example on Unknown Input
Observer Synthesis

Let us consider the UIOP described by the system Σσ of
the form (1), where I = {1, 2}, with state space X = R4

and

A1 =


2.6 1.3 −1.9 1.2

−0.8 −0.4 0.2 −1.6

−0.8 −1.4 1.2 −1.6

−0.2 −0.85 −0.45 1.6

 ;

B1 = [2 − 1 1 0]
>

; C1 =

[
0.1 0.05 −0.15 0.2

1 0 −2 0

]

12



A2 =


−0.8 −1.4 6.2 −9.6

1.2 3.1 −2.3 2.4

1.2 0.1 0.7 2.4

−1 −1 1 2

 ;

B2 = [2 0 0 − 1]
>

; C2 =

[
0.1 0.3 0.1 0.2

−1 0 0 −2

]
and by the linear maps defined by

H1 =


1 2 0 0

0 1 1 0

0 0 0 1

 ; H2 =


1 0 0 2

0 1 0 0

0 0 1 0

 .
Computing S∗Rg by the procedure described in Section 6,

we have S∗Rg = span{[2 − 1 1 0]
>

; [2 0 0 − 1]
>} and it

is easy to see that S∗Rg ∩ KerCi ⊆ Ker Hi for i = 1, 2.
Therefore, the sufficient condition of Theorem 3 is sat-
isfied and the UIOP is solvable. In order to construct a
solution, we search for a friend G of S∗Rg that makes the

dynamics induced on X/S∗Rg globally asymptotically sta-

ble. To this aim, let us remark that a basis of
(
S∗Rg

)⊥
is

given, e.g., by the columns of

P> =


1 2

3 1

1 −3

2 4


and that we have the equality A>i P

> = P>L>i +C>i M
>
i

for i = 1, 2 (that is (6)) with, for instance,

L1 =

[
−1 0

0 3

]
; L2 =

[
2 0

0 −4

]

M1 = 02×2; M2 = 02×2.

A basis of Ker
[
P> C>i

]
, for i = 1, 2, is given by the

vector

[
N1i

N2i

]
where, e.g.,

N11 =

[
0

0.05

]
; N21 =

[
−1

0

]

N12 =

[
−0.1

0

]
; N22 =

[
1

0

]
.

The pair (Li, N
>
1i) is detectable for i = 1, 2 and choosing,

e.g., Q>1 = [0 − 100]; Q>2 = [25 0] we have A>i P
> =

P>(L>i +N1iQ
>
i )+C>i (M>i +N2iQ

>
i ) = P>L̄>i +C>i M̄

>
i

with

L̄1 =

[
−1 0

0 −2

]
; L̄2 =

[
−0.5 0

0 −4

]

M̄1 =

[
0 0

100 0

]
; M̄2 =

[
25 0

0 0

]
.

Note that L̄1 and L̄2 are Hurwitz. Then, choosing

G1 =


0 0

0 0

20 0

−10 0

 , G2 =


0 0

0 0

−10 0

−7.5 0

 ,

so that PGi = −M̄i for i = 1, 2, we get the desired friend
G = {G1, G2}. Letting

CO1 =


0.8 −0.4

0.4 −0.4

−0.1 0.3

 ; DO1 =


0 1

4 0

0 −0.5

 ,

CO2 =


0 0

0.3 0.1

0.1 −0.3

 , DO2 =


0 −1

0 0.5

0 −0.5


we also have Hi = COiP +DOiCi for i = 1, 2. Then, the
observer ΣOσ of the form (2) defined by

ΣOσ ≡

{
ż(t) = L̄σz(t) + P>Gσ(t)y(t)

w(t) = COσ(t)z(t) +DOσ(t)y(t)
(28)

solves the problem. In particular, as seen in (16), the evo-
lution of the estimation error e(t) is given by

ΣEσ ≡

{
ėaux(t) = L̄σ(t)eaux(t)

e(t) = COσ(t)eaux(t)
(29)

and, by inspecting L̄i, we see that eaux(t) goes asymp-
totically to 0 for all σ ∈ S0. Hence, so does e(t). The
behaviour of the three components of e(t) is shown in
Fig. 1 in the case in which, e.g., Σσ is initialized at x(0) =
[1 − 1 0.5 1.5]> and ΣOσ is initialized at z(0) = [0 0]>

(hence eaux(0) = [−1.5 −5.5]>) and the switching signal
σ is given by

σ(t) =



1 for 0 ≤ t < 0.5

2 for 0.5 ≤ t < 1.5

1 for 1.5 ≤ t < 3

2 for 3 ≤ t < 4

1 for 4 ≤ t

.

Note that e(t) is discontinuous at the switching times due
to the abrupt transition from CO1 to CO2 or viceversa.
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Fig. 1. Behavior of the three components of e(t) – amplitude
vs. time (s)

9 Conclusions and future work

Solvability of the unknown input observation problem
has been dealt with in the linear switching framework
by means of structural and geometric methods. This has
made possible to obtain a complete characterization of
such property, together with algorithmic procedures to
synthesize solutions, both in the case in which the dwell
time is fixed and in the case in which a sufficiently large
dweel time is acceptable. The basic notion of good con-
ditioned invariant subspace was shown to play a key role
in obtaining such results. Future work along the same
lines will aim at characterizing solvability with stronger
requirements (like convergence to 0 in quadratic sense)
on the estimation error.
The structural geometric approach developed here for
switching systems also applies to (non-switching) sys-
tems which exhibit jumps in the state, also called impul-
sive systems (see, e.g., Conte et al., 2017c, 2019b, 2020b;
Rios et al., 2020). However, in the case of systems with
state jumps, the notions of invariance and conditioned in-
variance, respectively, are different from those given for
switching systems, due to the fact that the system struc-
ture is different. Likewise, stability must be dealt with
differently. Nevertheless, it is possible to combine the
structural approach developed separately for switching
systems and for impulsive systems to handle the case in
which both these behaviours are present, as done in (see,
e.g., Conte et al., 2019a; Zattoni et al., 2019) in relation
to disturbance decoupling problems. This will be done in
relation to observation problems in future work.
The structural approach developed here in investigating
unknown input observation problems can be profitably
employed to deal with the problem of fault detection and
isolation and with the construction of residual generators
in the framework of switching systems. This is the object
of (Conte et al., 2020a).
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