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Disturbance Decoupling and Model Matching Problems for

Discrete-time Systems with Time-varying Delays

G. Conte, A. M. Perdon, E. Zattoni, D. Animobono

December 31, 2020

Abstract. In this paper, the disturbance decoupling problem and the model matching problem for discrete-
time linear systems with time-varying delays are considered. Solvability of the above problems is characterized
by means of structural necessary and sufficient conditions that can be checked by algorithmic procedures. The
basic method used to analyze the considered problems consists in representing the discrete-time linear systems
with time-varying delays as switching linear systems, whose properties can be studied by a powerful structural
approach. In this way, the considered control problems can be reduced to the corresponding problems for switched
linear systems, whose solvability has been recently characterized.

1 Introduction

Time-varying delays arise in several practical situations, for instance when modeling transfer lines or commu-
nication lines where modifications of the operating conditions (due to external events or internal causes) may
force goods or information to change the velocity at which they are traveling. In relation with these and similar
phenomena, several authors have considered, in particular, discrete-time linear systems with time-varying delays
either from a theoretical or an applied point of view (see e.g. [4], [5], [6], [9], [12], [16], [25], [44]).
In the discrete-time framework, constant delays can be practically eliminated by augmenting the system internal
variable by its finite history. The situation in which delays are not constant, but vary with time, can be dealt
with in a similar way by resorting to switching linear systems. An early appearance in the literature of the idea to
model a system with time-varying delays as a switching system without delays can be traced back to [15]. There,
in analyzing the structure of integrated communication and control systems subject to time-varying delays, the
authors considered discrete time models and, by augmenting the internal system variable, they constructed an
equivalent model without delays, that was viewed as a time-varying system ( [15, Equation (4.9)]) and that can,
as well, be viewed as a discrete-time switching system. Thank to the correspondence so established between
discrete-time linear systems with time-varying delays and switching linear systems, it is possible to apply in the
framework of the first ones all the methods developed to study the second ones, for which a large literature is
available (see e.g. [13], [14], [20], [21], [23], [34]).
After [15], other authors have exploited the same idea in a similar applied framework. In [24], discrete-time
systems with time-varying delays were used to model networked control systems. Stability and performances
problems involving these ones were dealt with simply by reducing them to the corresponding problems for
switching systems, which have a known solution. The same idea was then applied in [35] and [28] to analyze the
stability properties of control schemes for networked systems in presence of time-varying delays. Taking inspira-
tion from this approach to networked systems, in [18], the correspondence between discrete-time linear systems
with time-varying delays and switching linear systems was analysed in the general case and it was used to derive
necessary and sufficient LMI conditions for the existence of delay dependent Lyapunov–Krasovskii functionals.
The method based on those functionals to analyze stability for the considered class of time-delay systems was
shown to be fully equivalent to the analogous one based on switching Lyapunov functions for switching systems.
Much more recently, in [10], the authors resume the approach of [18] to give LMI sufficient conditions for the sta-
bilizability of a class of discrete-time systems with time-varying delays and, in [31], the author uses the switching
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system representation to characterize global asymptotic stability of discrete-time fully nonlinear systems with
delays digraph in terms of time-dependent Lyapunov functions.
Here, we leverage the same approach for dealing with classical control problems, such as the disturbance decou-
pling problem and the asymptotic model matching problem, for discrete-time linear systems with time-varying
delays. Referring to the augmented state space and to the dynamics of the switching representation of a given
system with time varying delays, it is possible to introduce suitable notions of invariance and of controlled invari-
ance that are useful in characterizing structural properties of the delayed dynamics. In this way, the geometric
approach to linear systems of [2] and [37] can be extended to discrete-time linear systems with time-varying de-
lays. Using recent results from the framework of switching systems [32], [42], we obtain, in particular, a complete
characterization of the solvability of the disturbance decoupling problem with stability, either with unaccessible
disturbance or with accessible disturbance, and of the asymptotic model matching problem. Solvability condi-
tions can be algorithmically checked and viable procedures for constructing solutions, if any exists, are provided.
The paper is organized as follows. In Section 2, we introduce the class of discrete-time systems with time-varying
delays we consider and we recall their equivalent representation as switching linear systems. As in the case of
constant delays, the state variable of the switching representation is obtained by suitably augmenting the internal
variable of the system with delay by its finite history, and the dynamics switches as the delays vary with time.
In Section 3, we report some results on global asymptotic stability that are useful in the sequel. The notion of
invariance and of controlled invariance for subspaces of the state space of a switching system are used in Section 4
to define the corresponding concepts with respect to a system with time-varying delays. Controlled invariance is
characterized in terms of dynamic feedback in the time-varying delay framework and the relation with dynamic
feedback stabilizability is illlustrated. Internal stabilizability for controlled invariant subspaces of the space of
the augmented internal variables is the key property for dealing with dynamic feedback control problems in the
time-delay framework if stability of the compensated system is required. In Section 5, we consider in particular
the disturbance decoupling problem with stability and we characterize its solvability in the time-varying delay
framework by specializing the results given in [42] and [41]. Analogously, in Section 6, we consider the asymptotic
model matching problem and we characterize its solvability in the time-varying delay framework by specializing
the results given in [32]. Section 7 contains the conclusions.
Notation: The symbols R, R+ and Z+ are used to denote the sets of real numbers, non negative real numbers
and non negative integer numbers, respectively. Real vector spaces and subspaces are denoted by calligraphic
letters, like V. Linear maps between vector spaces and the associated matrices are denoted by the same slanted
capital letters, like A. Therefore, the statements A∈Rp×q and A :Rq→Rp are consistent. The image and the
kernel of A are denoted by ImA and KerA, respectively. Given a linear map A : X → Y and a subspace V ⊆ Y,
the inverse image of V with respect to A is denoted by A−1(V).

2 Switching model representation of discrete-time systems with time-
varying delays

It is known that in the discrete-time framework one can formally eliminate time delays from the equations of a
dynamical system Σ by augmenting the dimension of the space of the internal variables (see e.g. [12]). This fact
marks the substantial difference between discrete-time dynamical systems with delays and continuous-time ones,
as the latter cannot be described by finite dimensional models.
In case of time-varying delays, a conceptually similar methodology can be applied to get a representation of the
time-delayed system by means of a switching linear system in which the delays are no longer present. As recalled
in the Introduction, this idea has been presented and exploited in a number of papers mainly to analyze the
stability of systems with time-varying delays [15], [24], [28], [35], [18], [10], [31].
To describe formally this procedure, let us consider the unitary delay operator ∆ whose action on a discrete-time
function f : Z→ Rq is defined recursively by

∆f(t) = f(t− 1)
∆n+1f(t) = ∆(∆nf(t)).

(1)
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A discrete-time linear system Σ with time-varying delays is an object defined by equations of the form

Σ ≡
{
x(t+ 1) = Aσ(t)(∆)x(t) +Bσ(t)(∆)u(t)

y(t) = Cσ(t)(∆)x(t)
(2)

where t ∈ Z+ denotes the time variable, x ∈ Rn is the internal variable; u ∈ Rm is the input; y ∈ Rp is the
output; σ : Z+ → I, with I = {1, ..., N}, is a time signal; Ai(∆), Bi(∆), Ci(∆), with i ∈ I, are polynomial

matrices in ∆ of the form Ai =
∑d
j=0Aji∆

j , Bi =
∑d′

j=0Bji∆
j , Ci =

∑d
j=0 Cji∆

j , with Aji, Bji, Cji real
matrices of dimensions n× n, n×m, p× n respectively. We say that the triple of matrices (Ai, Bi, Ci) defines,
in particular, the (dynamical) structure of the delays Σ at time t if σ(t) = i and that σ governs the variations
of the structure of the delays. By d we denote the largest value of the delay that may affect any component of
x(t) in the equation of the dynamics and of the output of Σ and by d′ we denote the largest value of the delay
that may affect any component of the input u(t). Note that the systems represented by (2) can be viewed as
switching linear systems with delays and that their class include those considered, e.g., in [33].

Definition 1 Given a discrete-time system Σ with time-varying delays of the form (2), consider the augmented
variable X defined by

X = (x> x>1 ... x
>
d u
>
1 ... u

>
d′)
> ∈ Rn(d+1) × Rmd

′
(3)

and define the augmented matrices Āi, B̄i, C̄i for i ∈ I by

Āi =


A0i ...... A(d−1)i | Adi | B1i ... B(d′−1)i | Bd′i

Ind | 0nd×n | 0nd×md′

0m×(n(d+1)+md′)

0m(d′−1)×n(d+1) | Im(d′−1) | 0m(d′−1)×m


B̄i =


B0i

0(nd)×m
Im

0m(d′−1)×m

 ; C̄i = (C0i ... Cdi 0p×md′).

(4)

The linear switching system Σσ defined by

Σσ ≡
{
X(t+ 1) = Āσ(t)X(t) + B̄σ(t)u(t)

y(t) = C̄σ(t)X(t)
(5)

with modes

Σi ≡
{
X(t+ 1) = ĀiX(t) + B̄iu(t)

y(t) = C̄iX(t)
(6)

for i ∈ I is called the switching representation of the discrete-time delayed system Σ.
We say that the augmented variable X defined by (3) is the state of Σ (and also of Σσ) and that Xaug =

Rn(d+1) × Rmd′ is the state space of Σ (and also of Σσ).

The representation given by (4) has been described in [24], [35], [18], [10], [31] in relation with the systems
considered there.

Example 1 A simple example is provided by the discrete-time system Σ with time-varying delays described by
the equations

Σ ≡
{
x(t+ 1) = Ax(t) +Aδx(t− δ(t)) +Bu(t)

y(t) = Cx(t)
(7)

where t ∈ Z+ denotes the time variable, x ∈ Rn is the internal variable; u ∈ Rm is the input; y ∈ Rp is the
output; δ : Z+ → {1, ..., d} is a function whose value defines a time-varying delay; A, Aδ, B and C are real
matrices with suitable dimensions. The equations of Σ can be written in the form (2) by taking σ(t) = δ(t),

Aσ(t)(∆) = (A + Aδ∆
σ(t)) =

∑d
j=0 Aσ(t)j∆

j (that is: Ai0 = A for all i ∈ {1, ..., d}, Aij = Aδ for j = i and

Aij = 0n for 0 6= j 6= i), Bσ(t) = B, Cσ(t) = C. Letting X = (x>, x>1 , ..., x
>
d )> denote the augmented internal
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variable, the switching representation Σσ of Σ has the form (5) with the matrices Āi, B̄ and C̄, respectively of
dimensions (n(d+ 1))× (n(d+ 1)), (n(d+ 1))×m and p× (n(d+ 1)), given by

Āi =

(
Ai0 Ai1 ... Ai(d−1) | Aid

Ind | 0nd×n

)
; B̄ =

(
B

0nd×m

)
; C̄> =

(
C>

0nd×p

)
.

Note that A occupies the first position and Ad occupies the (i+ 1)-th position in the first row of the block matrix
Āi, while all other positions are occupied by 0n (compare with [18, Eq. (6)], [10, Eq. (10)]).

Example 2 Let us consider a multi-agent system in which two agents with a discrete-time first order dynamics
interact through unidirectional communication channels that are affected by independent time-varying delays.
Assume that the delay on each channel may take the value 1 or 2 and that the internal dynamics of each agent
and the weights wi on each channel are constant. Then, the system can be described by equations of the form (2)
as (

x1(t+ 1)
x2(t+ 1)

)
= Aσ(t)(∆)

(
x1(t)
x2(t)

)
(8)

where σ : Z+ → {1, 2, 3, 4} describes the variation of the delay structure and A1(∆) =

(
a1 w2∆
w1∆ a2

)
,

A2(∆) =

(
a1 w2∆

w1∆2 a2

)
, A3(∆) =

(
a1 w2∆2

w1∆2 a2

)
, A4(∆) =

(
a1 w2∆2

w1∆ a2

)
. The associated switch-

ing representation Σσ(t) has state space R6 and the dynamics matrices of its modes are given by

Ā1 =

 a1 0 0 w2

0 a2 w1 0
| 0 0

0 0
I4 | 04×2

; Ā2 =

 a1 0 0 w2

0 a2 0 0
| 0 0

w1 0
I4 | 04×2

;

Ā3 =

 a1 0 0 0
0 a2 0 0

| 0 w2

w1 0
I4 | 04×2

; Ā4 =

 a1 0 0 0
0 a2 w1 0

| 0 w2

0 0
I4 | 04×2

.

Remark 1 Although in the current literature (see e.g. [11, 26, 30, 36, 38]) the internal variable x is usually
referred to as the state of the system Σ described by (7) or (2), it is more appropriate to assign the role of state
of the delayed system to the augmented variable X defined in (3). Actually, it is well known that in order to
compute the time evolution of the output y(t) of Σ on a time interval [t0, t1], the knowledge of x(t0), together
with that of the input u(t) on [t0 − d′, t1 − 1], is not enough, but it should be augmented by the information
about the past finite history of x(t), that is generally referred to as a “function of the initial state”. More
explicitly, in [12] the author states that x(t) cannot be regarded as the state of the delayed system and in [3]
and [36] the augmented state is employed in practice in some proofs. On the other hand, the augmented state
X has the axiomatic property that characterizes the notion of state of a dynamical system as illustrated in [19,
Cap. 10] and this motivates last part of Definition 1. Note, however, that it is not necessary to augment the
variable x as much as indicated in Definition (1) to obtain an equivalent switching system representation of Σ
in which the delay is no longer present. Actually, instead of X, it is enough to consider a state variable X ′ with
dimX ′ = (n +

∑
i=1,...n di +

∑
j = 1, ...md′j) ≤ (n + nd + md′) = dimX, where di ≤ d and d′j ≤ d′ denote the

maximum delay that affects, respectively, the component xi of x and the component uj of u in (2). The knowledge
of X ′(t0), together with that of the input u(t) on [t0, t1 − 1], is generally necessary and sufficient for computing
the time evolution of the output y(t) on [t0, t1], provided the value of the switching functions σ(t) is known at
each time t.

3 Stability

The qualitative properties of a discrete-time linear system Σ with time-varying delays of the form (7) are obviously
the same as those of its switching representation Σσ and they depend, in particular, on the time signal σ that
governs the variation of the structure of the delays in Σ and the switching in Σσ. In particular, global asymptotic
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stability of Σ for all σ ∈ S1, where S1 denote the set of all time signals σ : Z+ → I, is equivalent to global
asymptotic stability of Σσ for arbitrary switching, which is known to be equivalent to exponential stability.
Analogously, the equivalence holds if variations of the structure of the delays may occur arbitrarily in time but
according to sequences that are described by the paths of a given digraph, as in the so-called delay systems
with delays digraphs, and in the corresponding so-called switching systems over digraphs. Since the literature
contains several results on the stability of switching systems for arbitrary switching and for switching systems
over digraphs, this fact has been exploited, as already recalled, for deriving result on the stability of discrete-time
linear systems with time-varying delays in [24], [28] [35], [18] [10], [31]. A characterization of global asymptotic
stability for all σ ∈ S1 is given in terms of LMIs in [18, Theorem 1] and in terms of matrix norm by the following
proposition.

Proposition 1 Let Σ be a discrete-time linear system with time-varying delays of the form (2) and, recalling (4),

write the dynamic matrix Āσ(t) of the associated switching system Σσ as Āσ(t) =

(
A11
σ(t) A12

σ(t)

0md′×n(d+1) A22

)
, where

A22 =

(
0m(d′−1)×m 0m
Im(d′−1) 0m(d′−1)×m

)
is the component of the dynamics that models the presence of time-varying

delays in the input of Σ. Then, Σ is globally asymptotically stable for all σ ∈ S1 if and only if there exists a
finite integer k such that ||A1A2 ... Ak||∞ < 1 for all k-tuple (A1, A2, ..., Ak) with Ai ∈ {A11

1 , A
11
2 , ..., A

11
d }.

Proof: The stability of the switching system Σσ is not affected by A22, since that component has a dead-beat
behavior that does not depend on the rest of the system and on σ. Therefore, the component (u>1 (t) ... u>d′(t))

>

of X(t) = (x>(t)x>1 (t) ... x>d (t)u>1 (t) ... u>d′(t))
> goes to 0 in finite time independently of all other conditions.

The conclusion, then, follows from [22, Proposition 1]. 2

Exploiting the structure of Āσ(t), we can derive from Proposition 1 the following result.

Proposition 2 Let Σ be a discrete-time system with time-varying delays of the form (2). If the block submatrix
(A0i . . . A(d−1)i Adi) of the block matrix Āi satisfies the condition

||(A0i ...... A(d−1)i Adi)||∞ < 1 (9)

for all i ∈ I, then Σ is globally asymptotically stable for all σ ∈ S1.

Proof: As remarked above, we can neglect the component of the dynamics of Σσ that models the presence of
time-varying delays in the input and concentrate on analyzing the submatrix of Āi given by

A11
i =

(
A0i ...... A(d−1)i | Adi

Ind | 0nd×n

)
.

Choosing γ ∈ R such that maxi||(A0i . . . A(d−1)i Adi)||∞ < γd < 1 and considering the nonsingular matrix

T ∈ Rn(d+1)×n(d+1) defined by

T =


In 0n×nd

0nd×n

γIn 0 . . . 0
0 γ2In . . . 0

0 0
. . . 0

0 0 . . . γdIn

 ,

we get

Âi = TA11
i T
−1 =

(
A0i γ−1A1i ...... γ−d+1A(d−1)i | γ−dAdi

γ · Ind | 0nd×n

)
.

Since the inequality

||(A0i γ−1A1i ...... γ−d+1A(d−1)i γ−dAdi)||∞ ≤ ||γ−d(A0i ...... A(d−1)i Adi)||∞ ≤
≤ γ−d||(A0i ...... A(d−1)i Adi)||∞ ≤ γ−d(maxi||(A0i . . . A(d−1)i Adi)||∞) < 1
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holds for all i ∈ I, we have that also ||Âi||∞ < 1 holds for all i ∈ I. Then, applying the change of basis defined

by

(
T−1 0

0 Imd′

)
, Σσ is shown to be globally asymptotically stable for arbitrary switching by Proposition 1.

2

Example 3 Consider the discrete-time linear system Σ with time-varying delays described by the equations

Σ ≡
{
x(t+ 1) = −1/2x(t) + 1/4x(t− δ1(t)) + u(t)− 1/2u(t− δ2(t))

y(t) = Cx(t)
(10)

where δ1 : Z+ → {1, 2} and δ2 : Z+ → {1, 2} represent two independent time-varying delays. In order to apply
the above proposition, we consider, with the above notations, the matrices (A01 A11 A21) = (−1/2 1/4 0)
and (A02 A12 A22) = (−1/2 0 1/4). Since the ∞-norm of both matrices is smaller than 1, the system Σ
is globally asymptotically stable for all σ ∈ S1, that is for arbitrary variations of the delays. Note that this result
can be obtained also by applying [18, Theorem 1] and computing a solution of the resulting LMI.

Remark 2 The stability condition (9) is conservative, but it may be interesting since it is very simple to check
by elementary computations. In addition, if it holds for a given system Σ, it holds also for the system obtained
by increasing the delays by substituting ∆j with ∆j+kj in (2) with kj ∈ Z+, provided that j+ kj 6= j′+ kj′ for all
j 6= j′.

Together with stability for arbitrary switching, it is interesting to consider also stability under the so-called
restricted switching. This is the case, in particular, if the interval of time between two consecutive variations
of the delays can be assumed to be greater than a given threshold. A situation of this kind is considered, for
instance, in [24], where stability and performances of networked control systems subject to slow variations, in a
suitable sense, of the delay structure is investigated and, from a more general point of view, in [39] (see also the
references therein). To be more precise, given a time signal σ : Z+ → I, with I = {1, ..., N}, consider the set
T = {t, t ∈ Z+ such thatσ(t+1) 6= σ(t)}∪{0}}. The dwell time τσ of σ is defined as τσ = min{t1−t2, with t1, t2 ∈
T and t1 > t2}. The dwell time is equal to the number of points contained in the smallest interval of Z+ on which
σ is constant and it is greater than or equal to 1 for all σ ∈ S1. We denote by Sα ⊆ S1, with α ≥ 1, the subset
of all time signals σ : Z+ → I such that τσ ≥ α. A similar concept is expressed by the notion of average dwell
time of σ that was introduced in dealing with switching systems in [17,43]. Letting Nσ(k) = card{T ∩ [0, k]}, the
average dwell time τ̄σ of σ is defined as τ̄σ = max{β, such thatNσ(k) ≤ N0 + k

β for someN0 ∈ Z∗}. The value

N0 is called the chatter bound of σ. We denote by S̄β , with β ≥ 1, the subset of S1 consisting of all time signal
σ : Z+ → I such that τ̄σ ≥ β. Intuitively, a time signal belongs to S̄β if the number of variations occurring in
a generic interval [0, k] is limited by a linear function whose slope is the inverse of the average dwell time. We
speak of restricted switching, as opposed to arbitrary switching, if σ belongs to Sα for some α > 1 or to S̄β for
some β > 1.
All stability results for switching linear systems with restricted switching apply to discrete-time linear systems
with time-varying delays. In particular, by [27, Lemma 2] and by [43, Corollary 1], we have the following
proposition.

Proposition 3 Let Σ be a discrete-time system with time-varying delays of the form (2).

1. There exists α ≥ 1 such that Σ is globally asymptotically stable for all σ ∈ Sα if and only if each mode Σi
of the associated switching system Σσ is asymptotically stable.

2. There exists β ≥ 1 such that Σ is globally asymptotically stable for all σ ∈ S̄β if and only if each mode Σi
of the associated switching system Σσ is asymptotically stable.

Example 4 Let us consider the discrete-time linear system Σ with time-varying delays described by

Σ ≡
{
x(t+ 1) = aσ(t)(∆)x(t) + bu(t)

y(t) = cx(t)
(11)
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where x ∈ R, σ : Z+ → {1, 2} and a1 = 1 − 1
2∆, a2 = −1 + 1

2∆2. The associated switching system Σσ, with

X ∈ R3, has two modes, whose dynamics is described, respectively, by the matrices A1 =

 1 −1/2 0
1 0 0
0 1 0

 and

A2 =

 −1 0 1/2
1 0 0
0 1 0

.These matrices are Schur stable, and therefore, by Proposition 3, the system Σ is globally

asymptotically stable for σ ∈ Sα or for σ ∈ S̄β with α or β sufficiently large, or, in other terms, if the time
instants at which the structure of the delays varies are sufficiently far away from each other or sufficiently far
away from each other in the average. In particular, global asymptotic stability holds in this case if α ≥ 11, since
||A11

i ||∞ < 1 for i = 1, 2. The system Σ, however, is not globally asymptotically stable for arbitrary variations

of the delay. To show this, let us consider the time signal σ(t) defined by σ(t) =

{
1 if t ∈ {0, 2, 4, 6, ...}
2 if t ∈ {1, 3, 5, 7, ...}

that

forces Σσ to switch between its two modes at all times instants. Since X(2t) = AtX(0) with A = A2A1 = −1 1 0
1 −1/2 0
1 0 0

 and A has an eigenvalue with module greater than 1, the free evolution of the state is

divergent and Σ is unstable.

4 Geometric structure

The switching representation Σσ of a discrete-time system Σ with time-varying delays of the form (2) can be
used to display the structural properties of Σ in order to analyze its dynamics. In doing this, one has to refer
to the switching model representation Σσ and to the state space Xaug of Σ as they are described in Definition
1 and to apply the notions and methods developed for switching linear systems. We start by specializing to the
class of systems at issue the notions of invariance and of controlled invariance.

Definition 2 Given a linear discrete-time system Σ with time-varying delays of the form (2), a subspace V ⊆
Xaug is said to be:

1. an invariant subspace for Σ if it is an invariant subspace for the switching model representation Σσ: that
is if

ĀiV ⊆ V for all i ∈ I (12)

2. a controlled invariant subspace for Σ if it is a controlled invariant subspace for the switching model repre-
sentation Σσ: that is if

ĀiV ⊆ V + Im B̄i for all i ∈ I (13)

where Āi and B̄i are, respectively, the dynamic matrix and the input distribution matrix of the i-th mode of Σσ.

Remark 3 Controlled invariance was introduced in the framework of linear switching system in [29] in order to
deal with the problem of decoupling the output from a disturbance input by means of a state feedback. The notion
of controlled invariant subspace for Σσ coincides with that of robust (Ai, Bi)-invariant subspace for the family of
linear systems that define the modes of Σσ introduced earlier in [1]. A controlled invariant subspace for Σσ is, in
particular, controlled invariant, or (Ai, Bi)-invariant, in the sense of [2] and [37] for each mode Σi.

It is useful to remark that, denoting by V a matrix whose columns are a basis of V, (13) is equivalent to the
existence of a family {(Li,Mi)}i∈I of pairs of matrices of suitable dimensions such that AiV = V Li + BiMi for
i ∈ I.
The set of controlled invariant subspaces for Σ that are contained in a given subspace W ⊆ Xaug is a semi-
lattice with respect to inclusion and sum of subspaces and, therefore, it has a maximum element. The maximum
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controlled invariant subspace for Σ contained in W is denoted by V∗(W) and it can be obtained as the limit of
the sequence of subspaces Vk defined by

V0 =W

Vk = Vk−1 ∩ (
⋂

i=1,...,N

Ā−1
i (Vk−1 + Im B̄i)).

The above sequence converges in a number of steps that is smaller than or equal to (dimW) + 1, making
it possible to construct V∗(W) by means of a finite algorithmic procedure (see [7], [29]). In the case where
W =

⋂
i=1...N Ker C̄i, we will denote V∗(W) simply by V∗.

In addition to the geometric characterization given by (13), a dynamic characterization of controlled invariance
can be given. To this aim, let us remark that, given a linear discrete-time system Σ with time-varying delays of
the form (2), we can choose its input u(t) in such a way to satisfy a relation of the form

u(t) = Fσ(t)(∆)x(t) + F ′σ(t)(∆)u(t) + v(t) (14)

for t ∈ Z+, where Fi(∆) and F ′i (∆), for i = {1, ..., N}, are polynomial matrices of the form Fi =
∑d
j=0 Fji∆

j

and F ′i =
∑d′

j=1 F
′
ji∆

j , with Fij and F ′ij real matrices of suitable dimensions, and where v ∈ Rm is a new input
variable. If F ′σ(∆) is different from the zero matrix, (14) defines, for each i ∈ I, a dynamic relation between

u(t) and

(
x(t)
v(t)

)
whose transfer matrix is given by

(
zd̄

zd̄
(Im − F ′i (z−1)−1Fi(z

−1) Im

)
, where d̄ = max{d, d′}

(note that (Im − F ′i (z−1)) is a nonsingular polynomial matrix in z−1). It is quite natural to interpret (14) as a
variable-delay dynamic feedback which, applied to Σ, gives rise to the compensated discrete-time variable delay
system

Σ(F,F ′) ≡
{
x(t+ 1) = (Aσ(t)(∆) +Bσ(t)(∆)Fσ(t)(∆))x(t) +Bσ(t)(∆)F ′σ(t)(∆)u(t) +Bσ(t)(∆)v(t)

y(t) = Cσ(t)x(t)
(15)

We can associate to the dynamic feedback (14) a switching static state feedback acting on Σσ which is given by

u(t) = F̄σ(t)X(t) + v(t) (16)

where F̄i = (F0i F1i ...Fdi F
′
1i F

′
2i ...F

′
d′i) and the state variable X is defined by (3). By applying the switching

state feedback u(t) = F̄σ(t)X(t) + v(t) to Σ, we get the compensated system

ΣF̄σ ≡
{
X(t+ 1) = (Āσ(t) + B̄σ(t)F̄σ(t))X(t) + B̄σ(t)v(t)

y(t) = C̄σ(t)X(t)
(17)

which is associated to Σ(F,F ′) and we can state the following proposition.

Proposition 4 Given a linear discrete-time system Σ with time-varying delays of the form (2), a subspace
V ⊆ Xaug is controlled invariant for Σ if and only if there exists a switching state feedback u(t) = F̄σ(t)X(t)+v(t)

of the form (16) such that V is an invariant subspace for ΣF̄σ or, equivalently, if and only if there exists a variable
delay dynamic feedback u(t) = Fσ(t)(∆)x(t) + F ′σ(t)(∆)u(t) + v(t) of the form (14) such that V is an invariant

subspace for the compensated discrete-time variable delay system Σ(F,F ′).

Proof: The proof given in [29] in the continuous-time framework holds 2

Any feedback of the form (14), or equivalently of the form (16), that makes invariant in the compensated system
a given controlled invariant subspace V is said to be a friend of V. It is worthwhile to remark that employing
the switching model representation of Σ the above dynamic characterization of controlled invariance is given in
terms of static state feedback, as in the classic geometric approach developed for linear systems in [2] and [37].
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Example 5 Let us consider a discrete-time system Σ with time-varying delays of the form (7) and let V ⊆ X be a
subspace that is both (A,B)-controlled invariant (i.e. such that AV ⊆ V+ ImB) and (Aδ,B)-controlled invariant
(i.e. such that AδV ⊆ V + ImB). Let v be the dimension of V and, denoting by V a matrix whose columns are a
basis of V, consider the subspace Vaug ⊆ Xaug spanned by the columns of the (n× (d+ 1))× (v × (d+ 1)) matrix

Vaug =


V 0 0 · · · 0
0 V 0 · · · 0
0 0 V · · · 0
...

. . .

0 0 0 · · · V

. It is possible to show that Vaug is a controlled invariant subspace for Σ. For

this, let (L,M) and (Lδ,Mδ) be two pairs of matrices such that AV = V L+BM and AδV = V Lδ +BMδ. Then,

we have ĀiVaug = VaugL̄i+ B̄M̄i for all i = 1, ..., d, where L̄i =

(
L L1 ... Ld−1 | Ld

Iv(d−1) | 0v(d−1)×v

)
, with

Lj = 0n for j 6= i and Lj = Lδ for j = i (i.e Lδ occupies the (i+ 1)-th position in the first block-line of L̄i), and
where M̄i =

(
M M1 ... Md−1 Md

)
, with Mj = 0n for j 6= i and Mj = Mδ for j = i (i.e. Mδ occupies

the (i+ 1)-th position in the block representation of M̄i). If V is contained in Ker C, then Vaug is contained in
Ker C̄, but in general Vaug does not coincide with the maximum controlled invariant subspace for Σ contained
in Ker C̄, namely V∗, even if V is the largest subspace of Ker C that is both (A,B)-controlled invariant and
(Aδ,B)-controlled invariant. This can be shown by taking, for instance, the simple discrete-time linear system Σ,
where the delay is not variable, defined by

x(t+ 1) =

0 1 1

1 1 1

0 1 0

x(t) +

 0 0 1

−1 0 0

−1 0 0

x(t− 1) +

1

0

0

ud(t)

y(t) =
(

0 0 1
)
x(t)

(18)

Referring to the system matrices of Σ by the notations of used in equation (7), we have that the largest subspace
of Ker C that is both (A,B)-controlled invariant and (Aδ,B)-controlled invariant is the null subspace of R3, but

V∗ = Im


1 0 0 0
0 1 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

Further structural notions and properties can be defined for discrete-time systems with time-varying delays by
means of the corresponding notions and properties of the associated switching systems. This is the case, in
particular, of the notion of observability and those of unobservable subspace and output nulling subspace. More
precisely, given a linear discrete-time system Σ with time-varying delays of the form (2), we can define the
unobservable subspace of Σ as the unobservable subspace XNO ⊆ Xaug of Σσ: that is the subspace consisting
of all the states X0 ∈ Xaug whose free evolution X(t) is such that y(t) = C̄(X(t)) = 0 for t ≥ 0. Analogously,
we can define the output nulling subspace of Σ as the output nulling subspace Xnull ⊆ Xaug of Σσ: that is the
subspace consisting of all the states X0 ∈ Xaug for which there exists an input sequence u(t), with t ≥ 0, such
that the corresponding forced evolution X(t) gives y(t) = C̄(X(t)) = 0 for t ≥ 0. The following proposition
illustrate the relations between these notions and V∗.

Proposition 5 Given a linear discrete-time system Σ with time-varying delays of the form (2), the maximum
controlled invariant subspace V∗ contained in

⋂
i=1...N Ker C̄i coincides with the output nulling subspace Xnull of

Σ and also with the unobservable subspace XNO of Σ(F,F ′), where u(t) = Fσ(t)(∆)x(t) + F ′σ(t)(∆)u(t) + v(t) is a
friend of V∗.

The propositions above indicate that controlled invariance is the key notion in the analysis and solution of a
number of noninteracting control problems, as the disturbance decoupling problem that will be dealt with in
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Section 5. Moreover, the switching dynamics induced by the dynamics of ΣF̄σ on the subspace V∗ ⊆ Xaug plays a
fundamental role in the solution of the same problems when stability is an additional requirement. This motivates
the introduction of the following notion by specializing to the class of systems at issue the corresponding one
introduced for switching systems in [41].

Definition 3 A controlled invariant subspace V for the linear discrete-time system Σ with time-varying delays
of the form (2) is said internally stabilizable if for some friend F̄σ(t) of V there exists α such that the switching

dynamics induced on V by that of ΣF̄σ is globally asymptotically stable for all σ ∈ Sα.

The set of all internally stabilizable controlled invariant subspaces that are contained in a given subspace W ⊆
Xaug has a maximum element. The maximum internally stabilizable controlled invariant subspace for Σ contained
in W ⊆ Xaug is denoted by V∗g (W), or simply by V∗g if W =

⋂
i=1...N Ker C̄i and it is called the good controlled

invariant subspace for Σ. The notion of good controlled invariant subspace was introduced in the framework of
switching systems in [42], where also a procedure to construct V∗g (W) was given. To recall such procedure, let

us denote by Vg(Āi, B̄i,W) the maximum controlled invariant subspace for the i-th mode Σi contained in W
that is internally stabilizable for Σi. The subspace Vg(Āi, B̄i,W) was first considered in [37] and a procedure to
construct it is given in [37, Section 5.6]. Then, we have that V∗g (W) is the last term of the sequence Vj , with
j = 0, 1, ..., l, generated by the recursive algorithm

W0 =W
K0 =

⋂
i∈I maxVg(Āi, B̄i,W0)

V0 = maxV(Āi, B̄i,K0)


Wj = Vj−1

Kj =
⋂
i∈I maxVg(Āi, B̄i,Wj)

Vj = maxV(Āi, B̄i,Kj)
j = 1, 2, ..., l

where l, with 0 ≤ l ≤ dimK, is the least integer such that V l is internally stabilizable with respect to each mode
Σi, for i ∈ I, of Σσ.

Remark 4 The structural notions introduced in this section are of interest mainly in the case in which the value
σ(t) of the time signal that governs the variation of the structure of the delays in Σ is known at each time t, or,
in other terms, in which σ is measurable (note that this does not implies that σ(t) is known in advance and it
allows random occurrences of the variations). From a general point of view, this assumption is restrictive, but it
can reasonably be made in a number of interesting situations: for instance, in modelling transfer lines in which
the modifications of the structure that causes the variations of the delays are controlled by a supervisor, who takes
decisions according to the specific information that is available at time t. More generally, this may happens in
a multi-agent system where delays are due to the necessity of sharing limited resources, like e.g. communication
lines, by allocating them according to variable needs and to some rules.

5 Disturbance Decoupling Problem

The switching model representation and the geometric notions illustrated above can be used to deal with the
problem of decoupling, by means of a feedback, the output of a linear discrete-time system Σ with time-varying
delays from a disturbance input, either in case this is unaccesible and in case this is accessible. Formally, the
problems we want to deal with are defined as follows.

Problem 1 Given a discrete-time linear system Σ with time-varying delays of the form (2), assume that the
input variable u is partitioned in two components as u = (u>c u>d )>, with uc ∈ Rmc , ud ∈ Rmd and mc+md = m,
and that the matrix Bσ(t)(∆) is correspondingly partitioned as Bσ(t)(∆) = (Bcσ(t)(∆) Bdσ(t)(∆)). Interpreting uc
as the control input variable and ud as the unaccessible disturbance input variable, the Disturbance Decoupling
Problem with Stability (DDPS) for Σ consists in finding a variable delay dynamic feedback uc(t) = Fσ(t)(∆)x(t)+

F ′σ(t)(∆)uc(t) + v(t) of the form (14), such that the compensated system Σ(F,F ′) is globally asymptotically stable

for all σ ∈ Sα for some α > 1 and its output y(t) is not affected by the disturbance input ud(t).
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Problem 2 In the same hypotheses as above, but assuming that the disturbance ud is accessible, the Accessible
Disturbance Decoupling Problem with Stability (ADDPS) for Σ consists in finding a variable delay dynamic
compensator of the form

uc(t) = Fσ(t)(∆)x(t) + F ′σ(t)(∆)uc(t) +Gσ(t)(∆)ud(t) + v(t) (19)

such that the compensated system Σ(F,F ′,G) is globally asymptotically stable for all σ ∈ Sα for some α > 1 and
its output y(t) is not affected by the disturbance input ud(t).

In order to characterize the solvability of the above problems, let us consider the switching system Σσ given by

(5) and associated to the disturbed system Σ. Since Bi = (Bci B
d
i ) =

∑d′

j=0(Bcji B
d
ji)∆

j for i ∈ I, we write the
equations of Σσ in the form

Σσ ≡
{
X(t+ 1) = Āσ(t)X(t) + B̄cσ(t)uc(t) + B̄dσ(t)ud(t)

y(t) = C̄σ(t)X(t)
(20)

with

B̄ci =


Bc0i

0(nd)×m1

Im1

0m2×m1

0m(d′−1)×m1

 ; B̄di =


Bd0i

0(nd)×m2

0m1×m2

Im2

0m(d′−1)×m2

 . (21)

Denoting by V∗g the good invariant subspace of the undisturbed switching system obtained by disregarding the

input distribution matrix B̄dσ(t) in (20), we can state the following result.

Theorem 1 Given a disturbed discrete-time linear system Σ with time-varying delays of the form (2) with
u = (u>c u>d )>, assume that each mode of the associated switching system Σσ of the form (20) is asymptotically
stable. Then

1. the corresponding DDPS is solvable if and only if the condition

Im B̄di ⊆ V∗g (22)

holds for all i ∈ I;

2. the corresponding ADDPS is solvable if and only if the condition

Im B̄di ⊆ V∗g + Im B̄ci (23)

holds for all i ∈ I.

Proof: To solve the problem for Σ is equivalent to solve the corresponding problem for the associated switching
system Σσ. Hence, since there are no conceptual differences between the discrete-time case and the continuous-
time one with regard to the decoupling problems, the proof given in [42, Theorem 1] for the first statement and
inside the proof of [32, Theorem 1] (see also [40]) for the second statement hold. 2

It is important to remark that the proofs given in [42] and in [32] are constructive, in the sense that they provide
viable algorithmic procedures to check the solvability conditions and to construct solutions to the considered
problems, if any exists, in the framework of the linear switching system. Exploiting those procedures and the
representation by means of switching models we can practically do the same in the framework of discrete-time
linear systems with time-varying delays.
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6 Model Matching Problem

The solution of the ADDPS can be exploited to solve the problem of compensating a given discrete-time linear
system Σ with time-varying delays in such a way to force its output to follow that of a given model of the same
kind as done, in particular in the framework of switching systems, in [32] and in [8]. In order to state precisely
the problem we want to deal with, let us consider two discrete-time linear systems with time-varying delays ΣP
and ΣM , called respectively the plant and the model, defined by the following equations of the form (2)

ΣP ≡

 xP (t+ 1) = APσ(t)(∆)xP (t)
+BPσ(t)(∆)w(t)

yP (t) = CPσ(t)(∆)xP (t)
ΣM ≡

 xM (t+ 1) = AMσ(t)(∆)xM (t)
+BMσ(t)(∆)u(t)

yM (t) = CMσ(t)(∆)xM (t)
(24)

with yP , ym ∈ RP and σ : Z+ → I. In order to compare the output of the plant and that of the model, we
employ the output difference system

ΣD ≡

 xP (t+ 1) = APσ(t)(∆)xP (t) +BPσ(t)(∆)w(t)
xM (t+ 1) = AMσ(t)(∆)xM (t) +BMσ(t)(∆)u(t)

y(t) = CPσ(t)(∆)xP (t)− CMσ(t)(∆)xM (t)
(25)

and, we state the matching problem as follows.

Problem 3 Given a plant ΣP and a model ΣM of the form (24), assume that the internal variables of both the
plant and the model are accessible and let d1, d2, d3, d4 denote respectively the maximum degree of the polynomial

matrices

(
APi(∆)
CPi(∆)

) (
AMi(∆)
CPi(∆)

)
, BPi(∆), BMi(∆) for i ∈ I (i.e. the maximum delay that affects respectively

the internal variables xP and xM and the input variables w and u in (24)). The Asymptotic Model Matching
Problem (AMMP) consists in finding a variable delay dynamic compensator of the form

w(t) = FPσ(t)(∆)xP (t) + FMσ(t)(∆)xM (t) + F ′σ(t)(∆)w(t) +Gσ(t)(∆)u(t) (26)

that forces the output yP (t) of the compensated plant Σ(FP ,FM ,F ′,G) to match asymptotically the output yM (t) of
the models, i.e. such that limt→∞||yP (t)−yP (t)|| = 0, for all σ ∈ Sα for some α ≥ 1 and for any value of xP (t),
xM (t), w(t) and u(t) over, respectively, the intervals [−d1, 0], [−d2, 0], [−d3, 0], [−d4,+∞).

Solvability of the AMMP is characterized by the following theorem.

Theorem 2 Given a plant ΣP and a model ΣM of the form (24), whose internal variables are assumed to be
accessible, the related AMMP is solvable if and only if, considering u(t) as a disturbance input in ΣD, the related
ADDPS is solvable.

Proof: It follows from remarking that the AMMP is solved by a variable delay feedback compensator of the

form (26) if and only if the forced response of the compensated systems Σ
(FP ,FM ,F ′,G)
D is annihilated and its free

response (i.e. the response for u(t) = 0 for t ∈ [−d4,+∞)) goes to 0 as t goes to +∞ for all σ ∈ Sα for some
α ≥ 1. This is equivalent to decoupling the output y(t) from the disturbance input u(t) and making, at the same
time, the compensated system globally asymptotically stable for all σ ∈ Sα (see also [32] and [8]). 2

By the above theorem, the solvability of the AMMP can be practically checked using the condition (23) (see
also [32]).

7 Conclusions

By modelling discrete-time linear systems with time-varying delays as switching linear systems one has the
possibility to import methods and results from the switching framework to the time-delay one. In particular,
the structural geometric approach that has already been extended from the classical linear framework to the
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linear switching one can be applied to investigate control problems that involve discrete-time linear systems with
time-varying delays. Two of them, namely the disturbance decoupling problem with stability and the asymptotic
model matching problem, have been considered in this paper. Solutions have been given in the case corresponding
to restricted switching, that in which the variations of the delay structure Regulation problems and observation
problems can be dealt with in a similar way.
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