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On the LoRa chirp spread spectrum modulation. Signal properties and
their impact on transmitter and receiver architectures.

Gianni Pasolini, Member, IEEE

The LoRa modulation scheme is arousing a growing interest
in the Internet of Things community as it is adopted by
the emerging LoRaWAN technology. In this paper, we firstly
analyse the baseband processing for the generation of LoRa
signals at the transmitter side, providing a simple algorithm
that leverages digital signal processing techniques to reduce the
modulator complexity. Secondly, we analytically investigate the
signal demodulation technique. Quite surprisingly, we found that
its effectiveness depends on the particular choice of the sampling
frequency at the receiver side, which purposely does not meet
the sampling theorem requirement. Finally, we consider the
actual architecture of digital receivers investigating the trade-off
between the selectivity of receive digital filters, which impacts on
the required computational effort and power consumption, and
the receiver performance.

I. INTRODUCTION

THE term Internet of Things (IoT) was first used in 1999
to describe a scenario where the Internet is connected to

the physical world via ubiquitous sensors [1]. Two decades
on, a lot of progress has been made in this direction, as
several communication technologies, both short- and long-
range, have been developed, which are capable of supporting
IoT applications in different contexts and environments.

Focusing the attention on long-range technologies, Low-
Power Wide-Area Networks (LPWANs) have recently ap-
peared on the IoT stage [2], the most popular being Lo-
RaWAN, SigFox, and NB-IoT [3]. Such networks are peculiar
in that they combine wide coverage (even several kms) and
long battery life (even ten years), at the cost of a low bit rate.

At the time of writing, LoRaWAN represents the “de-facto”
standard for the Internet of Things, being installed in 163
countries by 150 network operators [4] to enable a wide range
of services [5]–[8]. With more than 170 million of already
connected devices [9], and with the expectation that more than
50% of all non-cellular LPWAN connections will be LoRa-
enabled by 2026, this technology is predicted to dominate the
LPWANs market in the next years.

From a technical point of view, LoRaWANs are defined
by an open standard [10] developed by the LoRa Alliance,
which mainly defines the Medium Access Control (MAC)
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layer and the message formats. At the physical (PHY) layer,
they are based on LoRa, a proprietary modulation scheme
developed by Semtech Corporation and derived from Chirp
Spread-Spectrum (CSS).

In the following sections, we provide an in-depth analysis
of the LoRa PHY layer. We start by investigating the gen-
eration of the modulated signal at the transmitter, which is
addressed leveraging digital signal processing techniques. We
also focus the attention on the receiver, providing a frequency-
domain analysis of the demodulation technique. Although the
numerical demodulation algorithm adopted by LoRa receivers
is well-known, since it is described in [11], [12] and discussed
in several excellent papers, such as [13], [14], no paper has
dealt so far with the frequency-domain implications of each
of its steps, which however reveal the brilliant idea behind its
remarkable performance.

Finally, we also investigate the receiver performance as a
function of the signal-to-noise ratio. This topic is covered by
many papers, such as [15]–[19]. However, all of them assume
ideal filtering at the receiver side, which may be impossible to
implement, due to constraints on the available computational
power or the need to reduce the energy consumption. In this
paper, we consider the real architecture of modern receivers,
which usually include digital filters, and we investigate the
impact of the filters’ selectivity on the receiver performance.

The main contributions of this paper can be summarized as
follows:

• we provide an original strategy for the generation of
LoRa signals, which leverages digital signal processing
techniques to reduce the transmitter complexity (Sec.IV),

• we analytically investigate the demodulation technique
described in the patent documents [11], [12] filed by
Semtech, revealing still unknown aspects, mainly con-
cerning the impact of signal undersampling, that are the
key elements for its effectiveness (Sec.V),

• we investigate the trade-off between the receiver perfor-
mance and the complexity of digital receive filters, which
impacts on the energy consumption and the required
computational effort (Sec.VI).

Notation. Throughout this paper, we define the indicator
function gT (t) = 1 for 0 ≤ t < T and gT (t) = 0
elsewhere and we denote by j the imaginary unit. For the
reader’s convenience, in Table I we reported the main symbols
introduced in the following, along with their meanings.
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TABLE I
TABLE OF SYMBOLS AND RELATED MEANINGS

Symbol Meaning
fs Sampling frequency for signal generation (Tx side)
f
(d)
s Sampling frequency for signal demodulation (Rx side)
f
(ADC)
s Sampling frequency adopted by the ADCs (Rx side)
ns Number of symbols in the payload
B Width of the frequency sweep interval
D Decimation factor
M Modulation order
N Number of samples in a symbol interval (Tx side)
SF Spreading factor
T = 1

fs
Sampling interval (Tx side)

Th Time instant in which ∆f(s, t) wraps around
Tĥ Residual chirp duration after the folding of ∆f(s, t)
Ts Symbol time (i.e., chirp duration)

II. ORIGINAL CONTRIBUTIONS WITH RESPECT TO THE
EXISTING LITERATURE

LoRa signals have been investigated in several papers.
Those that are most related to the content of this article are
discussed below.

The generation of LoRa modulated chirps starting from the
time-shift of a basic chirp was proposed in 2019 by Nguyen
et.al. [20] and Elshabrawy et.al. [21], which are rightly cred-
ited with being the first to introduce numerical processing
techniques to reduce the complexity of LoRa transmitters.
However, the signal generated adopting the techniques pre-
sented in [20], [21] does not exhibit the continuous-phase
property when passing from one symbol (i.e., one chirp)
to the following one, which was demonstrated in the same
year by Chiani et.al in [14]. The enhancement proposed by
Elshabrawy et.al. in [22], while introducing phase continuity,
generates a discrete-time signal with a sampling rate that
might be critical for real implementations. This aspect will
be discussed in Sec.IV, where an original expression of the
sampled phase of LoRa chirps is provided.

The characteristics of LoRa signals, both in the time and
frequency domains, have been instead investigated in [13]
and [14], which also discuss the demodulation strategy.
In [13], Vangelista gives the first mathematical description
of the modulation and demodulation processes, providing
the theoretical derivation of the optimum receiver based on
the Fast Fourier Transform. The performance of the LoRa
modulation is also derived both in an additive white Gaussian
noise (AWGN) channel and in a frequency selective chan-
nel. In [14], Chiani et.al analysed the LoRa M -ary modu-
lation, providing the signal description in the time domain
and showing that LoRa is a memoryless continuous phase
modulation. The cross-correlation between the transmitted
waveforms is also derived in [14], proving that LoRa can be
considered approximately an orthogonal modulation only for
large M . Finally, in [14] the spectral characteristics of the
signal modulated by random data is investigated, obtaining a
closed-form expression of the spectrum in terms of Fresnel
functions. Although very thorough and inspiring, the analyses
provided in [13], [14] do not address the fundamental role
played by undersampling and aliasing in the demodulation
process, which is instead the original contribution reported in

Sec.V of this paper.
Regarding the performance of the LoRa modulation, many

papers present analytical or simulative investigations. In [15]
and [16], for instance, the symbol error rate (that is, the chirp
error rate) is derived as a function of the signal-to-noise ratio.
In [17], the closed-form expression of the bit error probability
is derived in AWGN and Rayleigh channels. Similar results are
presented in [18], [19], [23] for different signal parameters,
channel conditions and demodulation techniques. However,
none of the papers in the literature consider the trade-off be-
tween the performance and the complexity of the digital filters
implemented in LoRa receivers, which is instead addressed in
Sec.VI of this paper.

The analysis of the LoRa physical layer reported in the
above referenced articles and in this manuscript would not
be complete without mentioning the impact of interference
and capture effect on the receiver performance. These topics
are out of the scope of this document, mainly because they
have been specifically addressed by many papers. In [24] the
interference between LoRa signals is analysed for different
spreading factors and bandwidths, whereas in [25], [26] the
use of successive interference cancellation is considered to
decode superposed LoRa signals. The capture effect is ex-
perimentally investigated in [27], [28] and analytically inves-
tigated in [26], [29], [30]. Both analysis and simulations are
instead discussed in [15], [31].

III. LORA SIGNAL

LoRa is a proprietary spread-spectrum modulation scheme
patented by Semtech Corporation [32], which is derivative of
CSS. In general, a sine-wave chirp signal, concisely denoted
as chirp in the following, consists of a short-time frequency
sweep mathematically expressed as

c(t) = V0 cos

(
2π

∫ t

t0

f(ξ)dξ + φ0

)
, t0 ≤ t ≤ t0 + Tc (1)

where
• V0 > 0 is the chirp amplitude,
• f(t) is the instantaneous frequency,
• φ0 is the signal phase at the initial instant t0,
• Tc is the chirp duration.
Denoting with f0 the central frequency of the sweep interval

[f0 − B
2 , f0 + B

2 ] and assuming, without loss of generality,
t0 = 0 and φ0 = 0, (1) can also be written as

c(t) = V0 cos

(
2πf0t+ 2π

∫ t

0

∆f(ξ)dξ

)
, 0 ≤ t ≤ Tc (2)

with ∆f(t) representing the instantaneous frequency-offset,
ranging in the interval [−B2 ,

B
2 ], with respect to f0.

Equation (2) is the basis of the LoRa modulation, which
uses M differently shaped chirps, each of which is in one-to-
one correspondence with the M symbols of the modulation al-
phabet S = {0, · · · ,M − 1}. In particular, given a modulation
symbol s ∈ S, the instantaneous frequency-offset ∆f(s, t) of
the corresponding modulated chirp linearly increases starting
from −B2 + B

M s. Then, when the maximum frequency-offset
B
2 is reached, ∆f(s, t) wraps around to −B2 and keeps on
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Fig. 1. Instantaneous frequency-offset. s = 91, SF=8, B = 500 kHz,
Ts = 2SF

B
= 5.12 · 10−4s.

increasing linearly. Assuming t0 = 0 as the symbol starting
instant, the chirp stops when ∆f(s, t = Ts) = ∆f(s, 0). Its
duration Ts is usually referred to as symbol time.

In mathematical terms, still considering the symbol interval
[0, Ts], for any given modulation symbol s it is:

∆f(s, t) =

{
−B2 + B

M s+ B
Ts
t, 0 ≤ t < Th,

− 3B
2 + B

M s+ B
Ts
t, Th ≤ t ≤ Ts

(3)

with Th = Ts − Ts

M s denoting the time instant in which
∆f(s, t), having reached B

2 , wraps around to −B2 .
In the specific case of LoRa, the modulation parameters are

chosen such that

• B ∈ {125, 250, 500} kHz,
• M = 2SF, with SF denoting the spreading factor,
• SF ∈ {7, 8, 9, 10, 11, 12},
• BTs = M .

In Fig.1, an example of instantaneous frequency-offset with
s = 91, B = 500 kHz and SF=8 is given: one observes that
∆f(s = 91, t) linearly sweeps within the interval [−B2 ,

B
2 ]

and wraps around at Th = 3.3 · 10−4s.
According to [33], [34], a specific frame format is used

at the physical layer of Semtech devices to accommodate
data: A LoRa frame begins with a preamble, that consists
of a configurable number of pure upchirps, whose frequency-
offset linearly increases from −B2 to B

2 (see Fig.2(a) for the
frequency-offset of a pure upchirp in the case SF=12 and
B = 500 kHz), followed by two and a quarter downchirps,
and, optionally, a frame header. The remainder of the frame in-
cludes the payload, which carries ns symbols, and, optionally,
the corresponding CRC.

Focusing on the payload, one observes that it consists of
a sequence of ns modulated chirps, each of which with an
instantaneous frequency-offset similar to the one depicted in
Fig.1 (they differ each other by the “wraps around instant”
Th, which depends on s). In this regard, one observes that,

irrespectively of the modulation symbol s, it is1∫ Ts

0

∆f(s, ξ)dξ = 0. (4)

This means that the phase term

θ(s, t) = 2π

∫ t

0

∆f(s, ξ)dξ (5)

in (2) is such that

θ(s, Ts) = θ(s, 0) = 0. (6)

The proof is reported in Appendix A.
Equation (6) immediately results in the following two

properties:

• Property 1: The LoRa signal exhibits continuous phase
when passing from one modulation symbol to the follow-
ing one. In particular, the phase at the beginning and at
the end of each symbol interval is equal to zero.

• Property 2: In any given symbol interval, irrespectively
on the symbol s to be transmitted, the shape of the
modulated chirp does not depend on the previously
transmitted symbols, as the initial and final phases in a
symbol interval are coincident.

The above properties, which were first derived in [14] (albeit
in a different way), imply that LoRa is a memoryless contin-
uous phase modulation. Properties 1 and 2 are here recalled
because they are particularly useful from a practical point of
view, as they ease the generation of the modulated signal at
the transmitter side. This aspect is discussed in the following
section.

IV. LORA SIGNAL GENERATION

Since the waveform transmitted in each symbol interval
depends only on the symbol to be transmitted in that interval
(Property 2), the generation of LoRa signals boils down to
the generation of a sequence of independently modulated
chirps, each of which starting and ending with the phase
term equal to zero (Property 1). In particular, denoting with
∆f(s(n), t) the instantaneous frequency-offset related to the
symbol s(n) in the time interval [nTs, (n + 1)Ts], and with
θ(s(n), t) the corresponding phase term, the modulated chirp
to be transmitted in the same interval is

cn(t) = V0 cos

(
2πf0t+ 2π

∫ t

nTs

∆f(s(n), ξ)dξ

)
= V0 cos

(
2πf0t+ θ(s(n), t)

)
(7)

with n = 0, 1, . . . , ns − 1, and nTs ≤ t ≤ (n+ 1)Ts.
The corresponding complex envelope in the same symbol

interval is thus
in(t) = V0e

jθ(s(n),t). (8)

1The proof, based on geometric reasoning, is trivial and is omitted for the
sake of conciseness.
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(a) Pure upchirp: instantaneous frequency-offset. SF=12, B = 500 kHz,
Ts = 8.2 · 10−3s.
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(b) Reference upchirp phase. Some of the 2M = 8192 samples are shown
in details in the zoomed box.

Fig. 2. Instantaneous frequency-offset and phase of a pure upchirp. SF=12, B = 500 kHz.

Fig. 3. Transmitter: Quadrature modulator architecture. The triangle labelled
“PA” represents the power amplifier.

Given (8), due to the memoryless nature of the modulation,
the complex envelope of the LoRa signal2 can be written as

i(t) = V0

ns−1∑
n=0

ejθ(s
(n),t)gTs(t− nTs). (9)

As shown also in the block diagram reported in the LoRa
patent application EP2763321A1 [11], transmitters usually
adopt a quadrature modulator architecture (see Fig.3), which
requires the generation of the in-phase and quadrature base-
band signals p(t) = <{i(t)} and q(t) = ={i(t)}:

p(t) = V0

ns−1∑
n=0

cos
(
θ(s(n), t)

)
gTs

(t− nTs) (10)

q(t) = V0

ns−1∑
n=0

sin
(
θ(s(n), t)

)
gTs

(t− nTs). (11)

In the perspective of a digital implementation, this means
that the baseband stage of the transmitter needs to generate

2Here, we do not consider the preamble, which does not depend on
modulation symbols.

the discrete-time signals

p(kT ) = V0

ns−1∑
n=0

cos
(
θ(s(n), kT )

)
gTs(kT − nTs) (12)

q(kT ) = V0

ns−1∑
n=0

sin
(
θ(s(n), kT )

)
gTs(kT − nTs), (13)

with k ∈ Z and T denoting a properly chosen sampling
interval. These signals are then converted from digital to
analog in the final stage of the baseband modulator, which
includes a pair of digital-to-analog converters (DACs)3 for the
generation of (10) and (11)4.

Clearly, the sampling frequency fs = 1
T must be such

that the Shannon-Hartley sampling theorem is fulfilled with
reference to p(t) and q(t), whose generation technique is
the final objective of the present section. In this regard, it
is worth stressing that having the instantaneous frequency
sweeping over B does not imply that the bandwidth of the
radiofrequency (RF) signal is B. In particular, Chiani et al. in
[14] (Table I) show that the largest bandwidth occupation (i.e.,
the worst case for the sampling theorem) occurs when SF=7.
In such a case, it is B99 = 1.045B, with B99 denoting the RF
bandwidth centred on f0 containing 99% of the power.

Since the discussion herein considers the baseband compo-
nents p(t) and q(t) of LoRa RF signals, one should assume
a bandwidth occupation of p(t) and q(t) equal to B99

2 . It
follows that fs should be such that fs ≥ 2B99

2 , that is, in the
worst case, fs ≥ 1.045B. As shown hereafter, a convenient
choice is fs = 2B, which largely fulfils the sampling theorem
requirement.

3The DACs are not shown in Fig.3, as they are inside the Baseband
Modulator block.

4Alternatively, the sampled in-phase and quadrature waveforms might be
multiplied by the sampled in-phase and quadrature sinusoids, summed up and
then digital-to-analog converted. This solution is not reflected in Fig.3.
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One might observe that B99 ' B, so that the bandwidth of
p(t) and q(t) can be assumed equal to B

2 without a significant
lack of accuracy. Although this is certainly true, it does not
mean that choosing fs = B is a reasonable choice, as it would
appear by simply considering the sampling theorem condition.
In fact, when it comes to actually implement the transmitter
with digital processing techniques, one has to consider that any
DAC includes an analog low-pass filter, aimed at preserving
undistorted the spectrum in the frequency interval [−B2

B
2 ] and

removing the periodic spectral replicas that occur with period
fs. Choosing fs = B would mean that the spectral replicas are
perfectly adjacent (actually, there might even be a little overlap
at their boundaries for low SFs), thus leaving no room for the
DAC’s filter to completely remove the spectral components in
the immediate vicinity of the interval [−B2

B
2 ].

The remainder of this section is aimed at showing how the
baseband modulator of a LoRa digital transmitter can generate
the baseband discrete-time signals (12) and (13) with fs = 2B.

A. Step 1: Generation of the reference phase term

One considers, firstly, a pure upchirp, whose instantaneous
frequency-offset ∆f(t) linearly increases from −B2 to B

2 .
Fig.2(a) shows an example of pure upchirp in the case
B = 500 kHz and SF=12. The analytical expression of
the corresponding phase term θ(t) = 2π

∫ t
0

∆f(ξ)dξ in the
symbol interval [0, Ts] can be easily derived:

θ(t) = 2π

[
−B

2
t+

B

2Ts
t2
]
, 0 ≤ t ≤ Ts. (14)

Since (14) refers to a pure upchirp, in the following it will be
denoted as upchirp phase. One considers, now, the discrete-
time upchirp phase{

θ(k)

}N−1
k=0

= θ(0), θ(T ), . . . , θ
(

(N − 1)T
)

(15)

obtained taking N uniformly spaced samples of (14) in a sym-
bol interval. Assuming T = 1

fs
= 1

2B , as previously stated, it
results {

θ(SF)(k)
}N−1
k=0

=

{
k
π

2

[
−1+

k

2SF+1

]}N−1
k=0

. (16)

The proof of (16) is reported in Appendix B.

Remark 1. One observes that (14) depends on the parameters
B and Ts. Given the relationship BTs = 2SF that holds for
LoRa signals, it clearly appears that θ(t) depends, ultimately,
on two of the three parameters B, Ts and SF. In (16), the
dependence on SF appears explicitly in the right-hand term,
whereas the dependence on B is implicitly taken into account
by the time interval T = 1

2B between two consecutive samples.
For the sake of conciseness, in the left-hand term of (16) we
explicitly highlighted in the superscript only the dependence
on SF, which is the key parameter for the following discussion.

Having chosen fs = 2B, and recalling that BTs = M , it
results N = fsTs = 2M , that is, N = 2SF+1. As it is evident,
N increases for increasing values of SF, reaching its maximum
Nmax = 8192 for SF=12.

In the following, we show that starting from the Nmax
samples of the upchirp phase (16) when SF=12, it is possible
to derive the sampled phase terms for all possible modulation
symbols and all possible values of SF, with significant benefits
in terms of transmitter complexity. For this reason, hereinafter
we will refer to{

θ(12)(k)
}213−1

k=0
=

{
k
π

2

[
−1 +

k

213

]}213−1

k=0

, (17)

as reference upchirp phase. Its shape is depicted in Fig.2(b).

B. Step 2: Sampled upchirp phase term for each SF

The sampled upchirp phase for all SFs (given by (16)) can
be derived by properly decimating and scaling (17). More
precisely, having defined the decimation factor D = 212−SF,
it is: {

θ(SF)(k)
}2SF+1−1

k=0
=

1

D

{
θ(12)(Dk)

}2SF+1−1

k=0
, (18)

The proof of (18) is reported in Appendix C.
It follows that the 213 = 8192 samples of (17) might be

stored in a lookup table (LUT), so that the sampled upchirp
phase for all SFs can be derived (according to (18)) by simply
reading 1 sample every D in the LUT and scaling it by 1

D .
Alternatively, the sampled upchirp phase for a given SF might
be computed run-time using (18), one sample at a time in each
sampling interval T , thus avoiding the need of a LUT.

Equation (18), which refers to the sampled phase of pure
upchirps, is only an intermediate step toward our final objec-
tive, which is the derivation of a similar equation expressing
the sampled phase for all modulation symbols s and all SFs.
Nonetheless, (18) may be directly used to generate the cos(·)
and sin(·) terms in (12) and (13) when pure upchirps need
to be transmitted, that is, in the frame preamble, and in
both the payload and CRC fields when the symbol s = 0
(corresponding to a pure upchirp) is to be sent. Moreover, it
may be used to generate also the downchirps required at the
end of the preamble, by simply replacing5 sin(·) with − sin(·).

Most importantly, however, (17) and (18) are the basis to
generate the modulated chirps for all symbols and all SFs, as
shown hereafter.

C. Step 3: Sampled phase term for each SF and each
modulation symbol

The paramount importance of (17) lays in that it is the

basis to generate the sampled phase
{
θ(SF)(s, k)

}2SF+1−1

k=0
for

all modulation symbols s ∈ S and all SFs. This is possible
thanks to the following equation:{

θ(SF)
(
s, k
)}

=
1

D

{
θ(12)

(
D
(

(k + 2s) mod 2SF+1
))}

− 1

D
θ(12)

(
2sD

)
,

(19)

5Given (14), the downchirp is obtained by simply taking −θ(t). Clearly,
this impacts only on the sign of sin(·), which is an odd function.
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Fig. 4. Transmitter: Modulated phase with s = 91 and SF=8.

with k = 0, 1, . . . , 2SF+1 − 1.
The proof of (19) is reported in Appendix D.
In any symbol interval n, for any SF and modulation symbol

s, (19) provides the corresponding phase samples to be fed to
the cos(·) and sin(·) terms in (12) and (13). This results in a
simple implementation of LoRa transmitters, which can thus
be realized according to a digital architecture exploiting the
capabilities of modern DSP microprocessors.

1 function [modul_phase]=phase_gen(s,SF)
2 D=2ˆ(12-SF); % Decimation factor
3 k=0:2ˆ13-1; %Samples index for eq.(17)
4 ref_phase=k.*pi/2.*(-1+k/2ˆ13); % eq.(17)
5 time_adv=2*s;
6 k=1+D.*mod(time_adv+[0:1:2ˆ(SF+1)-1],2ˆ(SF+1));
7 modul_phase=(1/D).*ref_phase(k);
8 modul_phase=modul_phase-modul_phase(1); ...

%Vertical offset compensation
9 end

Listing 1. MATLAB function for the generation of modulated phases

The MATLAB function reported in Listing 1 shows the
phase generation algorithm: the function receives the mod-
ulation symbol s and the spreading factor SF as inputs, and
provides the discrete-time modulated phase (19) as output. The
core of the function is represented by lines 5, 6, 7 and 8, which
implement (19) starting from the reference upchirp phase (17)
derived in lines 3 and 4.

As an example case, the above MATLAB function has been
used to derive the sampled phase depicted in Fig.4 with a
dotted line-style, which refer to s = 91 and SF=8 (the lower
curve, with a dashed line-style, is commented in Appendix D).
This is the modulated phase that originates the instantaneous
frequency-offset shown in Fig.1 when B = 500 kHz.

Remark 2. It is worth observing that the sequence of
Nmax = 8192 samples provided by (17) is symmetric, meaning
that θ(12)(k) = θ(12)(213 − k), with k = 0, 1, . . . , 212 (see
Appendix E for the proof). This nice property of (17), clearly
evident in Fig.2(b), allows reducing by half the size of the
LUT needed for its storage.

V. DEMODULATION OF LORA SIGNALS. FREQUENCY
DOMAIN INTERPRETATION

In order to investigate the basics of the demodulation
method adopted by LoRa devices, let us assume that the
received signal is not affected by distortion, noise and inter-
ference. This means that, with a view to providing an insight
into the demodulation technique, the presence of receive filters
is not considered in this section. The receiver architecture and
the impact of filtering will be discussed, instead, in Sec.VI. We
assume, moreover, that perfect carrier-, symbol-, and frame-
synchronizations have been established, so that the receiver,
after the RF to baseband conversion, exactly recovers the
complex envelope (8) in each symbol interval.

As observed in [12]–[14], in the n-th symbol interval the re-
ceiver computes the twisted (dechirped) signal by multiplying
the received complex envelope (8) with the complex-conjugate
of a pure upchirp6, whose phase is given in (14). In particular,
in the n-th symbol interval the receiver computes:

rn(t) = in(t)e−jθ(t−nTs) (20)

which results in

rn(t)=

{
V0e

j2π B
M s(t−nTs), nTs ≤ t < nTs + Th,

V0e
j2π(−B+ B

M s)(t−nTs), nTs+Th≤ t≤(n+1)Ts.
(21)

Since we are considering the generic symbol interval
[nTs, (n+ 1)Ts], the term Th in (21) is the offset with respect
to the beginning of the same interval. The proof of (21) is
reported in Appendix F.

It clearly appears that rn(t) is a phasor with frequency
• f

(1)
0 = B

M s in the interval [nTs, nTs + Th),
• f

(2)
0 =(−B+ B

M s) in the interval [nTs+Th, (n+1)Ts].
Taking the Continuous Time Fourier Transform Rn(f) of

(21) and computing its modulus leads to (see Appendix G):∣∣∣Rn(f)
∣∣∣=V0∣∣∣Thsinc

[
(f−f (1)0 )Th

]
e−j2π(f−f

(1)
0 )(nTs+

Th
2 )e−j2πf

(1)
0 nTs

+Tĥsinc
[
(f−f (2)0 )Tĥ

]
e−j2π(f−f

(2)
0 )(nTs+Th+

T
ĥ
2 )e−j2πf

(2)
0 nTs

∣∣∣
(22)

with Tĥ denoting the residual chirp duration after the folding.
It turns out that the amplitude spectrum (22) contains two
sinc(·) functions centred in f

(1)
0 and f

(2)
0 , which appear as

well-separated spectral lines, whose positions in the frequency
axis depends on the modulation symbol s. Figure 5 shows an
example of spectrum computed in the case s = 91, SF=8,
B = 500 kHz (the same setting used to derive Figs.1 and 4).

Remark 3. With reference to (22), it is worth observing that
• f

(1)
0 ∈ [0, M−1M B], whereas f (2)0 ∈ [−B,−B + M−1

M B],
meaning that the peak of the first sinc(·) is always in the
right half-plane of the frequency domain (blue plot in
Fig.5), whereas the peak of the second sinc(·) is always
in the left half-plane (red plot in Fig.5);

• the distance between the two spectral lines is B, irrespec-
tively of the symbol s;

6The complex-conjugate of a pure upchirp corresponds to a pure downchirp.
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Fig. 5. Amplitude spectrum. s = 91, SF=8, B = 500 kHz.

• the spectrum (22) of the dechirped signal in a symbol
interval is much more concentrated than the spectrum
of the modulated signal, which spans (and exceeds) the
whole [−B2 ,

B
2 ] interval [14]. In fact, the dechirping

results in a despreading operation, turning the distributed
spectrum of (8) into two compact spectral lines;

• although more concentrated, the spectrum of the
dechirped signal covers a wider frequency range than the
spectrum of the modulated signal (8). In fact, depending
on the symbol s, the two spectral lines might appear
wherever (although with a discrete step B

M and separated
by B) in the interval [−B, M−1M B], whose size is almost
twice that of the modulated signal spectrum.

Clearly, starting from the dechirped signal spectrum (22), it
is straightforward to derive the transmitted symbol s, which
is directly related to the frequency bins in which the two
spectrum peaks appear. Thus, it is not surprising that the
demodulation method described in the patent documents [11],
[12] is based on a numerical algorithm for the detection of
spectrum peaks. In particular, the demodulator described in
[11], [12] works as follows:

• Step 1. It obtains the sampled version of the continuous-
time dechirped signal (21) with a properly chosen sam-
pling frequency f (d)s ;

• Step 2. It performs the FFT of the sampled dechirped
signal in each symbol time;

• Step 3. It derives the modulation symbol by detecting the
bin in which the peak of the FFT modulus appears.

As pointed out earlier, however, the spectrum of the
continuous-time dechirped signal has two, non-symmetric,
peaks, in both the negative and positive semi-axes. So, where
does the single peak mentioned by [11], [12] come from?

In this regard, the key point is the sampling frequency
adopted in Step 1 for the discrete-time representation of the
dechirped signal, which is suggested to be f

(d)
s = B [11],

[13], [14], [35]. It is worth noticing that, surprisingly, this
choice does not meet the sampling theorem requirement. In

Fig. 6. Periodic repetition of the original spectrum with aliasing.

fact, as observed in our Remark 3, the two spectral lines
of (21) fall in the frequency interval [−B, M−1M B], which
implies that the sampling frequency should be such that
f
(d)
s ≥ B[1 + M−1

M ] ' 2B. The straightforward consequence
of the undersampling is that the sampled dechirped signal
obtained in Step 1 is affected by aliasing in the frequency-
domain.

More precisely, the discrete-time signal obtained sampling
the dechirped signal (21) with f

(d)
s =B has a periodic spec-

trum

R(p)
n (f) = f (d)s

∞∑
i=−∞

Rn(f − if (d)s ) (23)

whose period f (d)s = B equals the frequency interval that sepa-
rates the two spectral lines (see Fig.5), which thus overlap each
other. This phenomenon is depicted in Fig.6, which shows that
the periodic repetition with period B of the original spectrum
(represented by color-filled contours) makes the first rightward
repetition of the red spectral line exactly overlap with the blue
one, and vice-versa. Clearly, the resulting spectrum (23) after
Step 1 is the “coherent” sum of the overlapping components,
scaled by f (d)s .

The FFT operation, carried out in Step 2 of the demodu-
lation procedure, provides the receiver with a sampled rep-
resentation of (23) in the frequency interval [0, B], which is
highlighted in Fig.6 by means of the coloured background box.
It is evident, now, that the spectral line that appears in such
interval arises as the superposition (i.e., aliasing) of the two
spectral lines of the continuous-time dechirped signal (21).

In Step 3 of the demodulation procedure, given the relation
f
(1)
0 = B

M s, it is straightforward for the demodulator to derive
the transmitted symbol s by locating the frequency bin in
which the peak of this spectral line falls.

As far as the value A = |R(p)
n (f

(1)
0 )| of the useful peak is

concerned, in Appendix H we show that it is an increasing
function of SF through the following simple equation:

A = V02SF. (24)

Equation (24) shows under a new perspective why higher
SFs provide better performance in terms of communication re-
liability. What’s more, (24) shows that A scales exponentially
with SF.

Remark 4. The overlapping of the two spectral components
due to the undersampling of (21) is extremely beneficial for
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Fig. 7. Amplitude spectrum of the sampled dechirped signal. SF=8,
B = 500kHz, s = 91, V0 = 1, A = 256, Es

N0
= 8 dB.

the demodulator, as the amplitude of the resulting spectral
line is higher than those of the two original ones. Clearly, this
increases the probability that its peak is detected even in the
presence of noise and interference.

This aspect can be clearly appreciated observing Fig.7,
which shows the FFT modulus of the discrete-time dechirped
signal (that is, the input of Step 3), both in the presence and in
the absence of AWGN noise, when s = 91, SF=8 and B = 500
kHz. The noise-impaired spectrum refers, in particular, to the
case Es

N0
= 8 dB, with Es denoting the energy of the received

chirp and N0 representing the single-sided power spectrum of
the noise.

One observes the existence of significant unwanted spectral
peaks originated by the additive noise (which underwent
the dechirping as well), that might mislead the receiver.
By chance, in the specific case depicted in Fig.7 the noise
also increased the useful spectrum peak, thus mitigating its
detrimental impact.

Figure 7 also shows that the peak of the uncorrupted spectral
line is A = 256, which is the expected value, following (24), as
it has been obtained implementing the demodulation procedure
with MATLAB in the case V0 = 1 and SF=8.

VI. BASEBAND DIGITAL FILTER DESIGN

Modern receivers are implemented combining analog and
digital signal processing: the former takes place in the RF
stage and, if any, in the intermediate frequency (IF) stage,
whereas numerical techniques are adopted in the baseband
stage, where signals are represented through their sampled
versions obtained by means of analog-to-digital converters
(ADCs).

In this regard, Fig.8 shows the architecture of a direct-
conversion (also called zero-IF or homodyne) receiver, which
converts the RF analog signal directly to the baseband, thus
deriving the in-phase and quadrature components p(r)(t) and
q(r)(t) of the received signal in a single down-conversion
step. The superheterodyne architecture, where RF signals are

Fig. 8. Direct-conversion receiver. PA=power amplifier, LP=low-pass,
ADC=analog-to-digital converter.

down-converted to the baseband after a preliminary conversion
to IF, is the well-known and widely adopted alternative,
although direct conversion has obvious advantages in terms
of power consumption, cost and hardware dimension, which
are fundamental aspects for the LoRa technology.

Irrespectively of the architecture adopted to derive p(r)(t)
and q(r)(t), either homodyne or superheterodyne, such base-
band signals are then sampled by ADCs, whose outputs are
then provided to a digital signal processing unit, such as a
DSP, an FPGA or an ASIC, where numerical techniques are
implemented to complete the demodulation process.

Taking as a reference the direct-conversion receiver shown
in Fig.8, in this section we focus our attention on the low pass
(LP) digital filters implemented in the numerical stage, which
are highlighted as coloured blocks in the figure. The same
digital filters are however implemented also in the baseband
stage of superheterodyne receivers, which makes the following
discussion absolutely general.

Before going into the details of our analysis, let us recall
the different objectives of the analog and digital filters shown
in Fig.8, which is instrumental to the clarity of our discussion.
The analog filters are in charge of removing out-of-band RF
interferers (→ the RF analog filter) as well as selecting the
useful channel (→ the LP analog filters), also removing the
noise and avoiding the occurrence of spectral aliasing with
adjacent channels after the analog-to-digital conversion.

Considering the fact that the baseband stage of a LoRa
receiver is certainly equipped with a digital signal processing
unit, which is in charge of the FFT operation required for
the demodulation, LP digital filters can be easily implemented
as well (see the coloured blocks in Fig.8) with no additional
hardware complexity, having the specific purpose of reducing
as much as possible the noise contribution. This is extremely
beneficial, as it allows to design the analog RF and LP filters
with the only purpose of removing the adjacent channel inter-
ferers, which are at least one guard-band apart. It follows that,
thanks to the presence of the LP digital filters, less frequency-
selective (therefore, less complicated from a circuital point of
view) analog RF and LP filters can be implemented.

Clearly, the counterpart is that the LP digital filters, in
charge of removing the out-of-band noise, must be very
selective, resembling as much as possible to ideal filters,
that is, non-distorting filters with a pass-band equal to the
bandwidth B99

2 ' B
2 of the baseband signals p(r)(t) and

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2021.3095667

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. Y, MONTH 20XX 9

Fig. 9. Filter design mask.

q(r)(t). As it turns out, the reduced circuital complexity of
analog filters is traded with the increased complexity of the
software implementation of digital filters.

As it is known, non-distorting digital filters can be im-
plemented using finite impulse response (FIR) design tech-
niques, with a selectivity that improves as the number of filter
coefficients increases. Improving the selectivity, which has a
beneficial impact on the receiver performance, has, however,
two major drawbacks:

• an increased computational power (that is, a more pow-
erful hardware) may be required, as the number of
multiplications and sums carried out in the unit time
by the two digital filters increases with the number of
coefficients,

• an increased energy consumption, due to the augmented
computational effort.

Both issues are quite critical for LoRa end nodes, which
are required to cost only a few dollars and last for many
years. Therefore, the receiver design should be carried out
considering the relation between the receiver performance and
the number of filter coefficients, which is the focus of this
section.

We addressed this topic by implementing a MATLAB
simulator of a complete LoRa transceiver (transmitter + re-
ceiver) working in an AWGN channel. At the receiver side, in
particular, we implemented the two linear-phase LP FIR filters
depicted in Fig.8, whose characteristics, namely,

• the pass-band width fpass,
• the pass-band ripple Apass,
• the lower stop-band edge fstop,
• the stop-band attenuation Astop,

have been properly tuned, as discussed in the following.
The reader is referred to Fig.9 for an explicative, pictorial
representation of the above mentioned parameters.

As a first step, we validated the simulator by retrieving the
results reported in [15] and [16], which refer to the symbol
error rate (i.e., the chirp error rate) as a function of the signal-
to-noise ratio SNR = Ps

Pw
, where

• Ps denotes the average signal power,
• Pw = N0B denotes the noise power within the nominal

signal bandwidth B.
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Fig. 10. Symbol error rate. B = 125 kHz, fpass=62.5 kHz.

Such reference performance curves, obtained assuming ideal
receive filters with a pass-band equal to the nominal signal
bandwidth, are plotted in Fig.10 with a dashed line-style.
Considering LoRa signals with B = 125kHz, the same curves
were obtained with our simulator by adopting the following
settings for the two LP digital filters:
• fpass = B

2 = 62.5 kHz, which is coincident with the
nominal bandwidth of the baseband signals p(r)(t) and
q(r)(t) at the filters’ input ports,

• Apass = 0.01 dB, which means that the amplitude distor-
tion introduced by the filters’ ripple within the pass-band
is practically negligible,

• fstop = 64 kHz, which corresponds to very selective
filters, as the width of the transition band is only 1.5
kHz. This is consistent with the attempt to approximate
the ideal filters considered in [15], [16],

• Astop = 30dB, which appears reasonable for practical
filters. Clearly, given the hypothesis of ideal filters, [15],
[16] assume Astop = +∞,

• f
(ADC)
s = 250

ksamples
s , with f (ADC)

s denoting the sam-
pling frequency adopted by the ADCs, which represents
the filters’ clock.

As shown in Fig.10, when such filters (each requiring
409 coefficients) are implemented in the LoRa simulator, the
resulting symbol error rates are almost coincident with the
reference ones for each SF. This is immediately evident in
Fig.10 for SF=8, 9, 10 and 11, for which only the reference and
the simulated curves are reported. As far as the cases SF=7 and
SF=12 are concerned, the practical coincidence between the
reference curves and the simulated ones is also true, although
less evident in Fig.10, which shows bunches of curves related
to the experienced symbol error rates also for less selective
filters, with fstop=64kHz, 68kHz, 72kHz, ..., 98kHz.

In particular, still assuming fpass = 62.5 kHz,
Apass = 0.01 dB and Astop = 30 dB, the two bunches
of curves for SF=7 and SF=12 highlight the performance
degradation that is to be expected passing from fstop=64 kHz
(leftmost simulated curve of each bunch) to fstop=98 kHz
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fstop Number of SF=7 SF=12
coefficients SNR @ 10−3 SNR @ 10−3

64kHz 409 -21.73 dB -7.64 dB
68kHz 113 -21.58 dB -7.62 dB
72kHz 65 -21.45 dB -7.53 dB
76kHz 47 -21.33 dB -7.37 dB
80kHz 37 -21.20 dB -7.22 dB
84kHz 29 -21.07 dB -7.15 dB
86kHz 25 -20.95 dB -7.03 dB
90kHz 21 -20.83 dB -6.92 dB
94kHz 19 -20.74 dB -6.81 dB
98kHz 17 -20.61 dB -6.70 dB

TABLE II
TRADE-OFF BETWEEN FILTER SELECTIVITY AND RECEIVER

PERFORMANCE.

(rightmost simulated curve of each bunch), which corresponds,
for both SF=7 and SF=12, to an SNR loss of about 1dB
for a target symbol error rate of 10−3. On the other hand,
as shown in Table II, the benefit in terms of number of
coefficients required to implement each of the two filters is
quite relevant, as it passes from 409 for fstop=64 kHz to only
17 for fstop=98 kHz.

Clearly, intermediate choices are possible, which are pre-
sented in Table II. For instance, passing from fstop=64 kHz to
fstop=68 kHz allows saving nearly 300 coefficients for each
filter with an almost insignificant SNR loss for the target
symbol error rate 10−3.

Comments on f
(ADC)
s and f(d). In this section, we

assumed that the sampling frequency f (ADC)
s adopted by the

ADCs fully meets the Shannon-Hartley sampling theorem.
This is a mandatory condition to design digital filters capable
of preserving the useful signal while reducing the out-of-band
noise. However, in Sec.V we pointed out that the sampling fre-
quency f (d) = B, which purposely does not meet the sampling
theorem requirement, must be adopted in the demodulation
process (Sec.V, Step 1). This means that the demodulator must
include a downsampling stage, which reduces the sampling
frequency from f

(ADC)
s to f (d) = B immediately after the

filters.
In order to keep the downsampler as simple as possible,

it is convenient to choose f (ADC)
s as an integer multiple of

f (d), that is, f (ADC)
s = Lf (d) = LB, with L ∈ Z and L > 1.

In such a case, the downsampler needs only to select one
sample every L. In the numerical results, given the choice
f
(ADC)
s = 250

ksamples
s for the considered LoRa signals with

B = 125 kHz, we assumed L = 2.

VII. CONCLUSIONS

In this paper, we analytically investigated the generation
and the demodulation of LoRa signals, as well as the trade-off
between the receiver performance and the number of coeffi-
cients of the receive digital filters. We firstly provided a simple
algorithm for the numerical computation of the signal samples
at the transmitter side. Then, we showed that the effectiveness
of the demodulation technique depends on the fact that the

sampling frequency at the receiver is forced to violate the
sampling theorem requirement. Finally, we showed that the
number of coefficients of the digital filters implemented in the
baseband stage of the receiver might be significantly reduced,
at the cost of an almost negligible increase of the signal-to-
noise ratio required for a given performance level.

APPENDIX A
PROOF OF (6)

Proof: Given (4), it follows that

θ(s, Ts) = 2π

∫ Ts

0

∆f(s, ξ)dξ = 0.

Being, of course,

θ(s, 0) = 2π

∫ 0

0

∆f(s, ξ)dξ = 0

the proof of (6) is immediately obtained.

APPENDIX B
PROOF OF (16)

Proof: Given (14) and (15), it is:{
θ(k)

}N−1
k=0

=

{
πB

[
−kT +

k2T 2

Ts

]}N−1
k=0

.

Having assumed fs = 2B, one obtains T = 1
2B and therefore:{

θ(k)

}N−1
k=0

=

{
πB

[
− k

2B
+

k2

4B2Ts

]}N−1
k=0

=

{
k
π

2

[
−1 +

k

2BTs

]}N−1
k=0

.

Since BTs = M = 2SF, and explicitly showing the depen-
dence on SF, (16) is immediately derived.

APPENDIX C
PROOF OF (18)

Proof: Given the reference sampled phase (17), one
considers its decimated version, obtained taking 1 sample
every D = 212−SF samples. It results

{
θ(12)(Dk)

} 213

D −1

k=0
=

{
Dk

π

2

[
−1 +

Dk

213

]} 213

D −1

k=0

.

Observing that 213

D = 2SF+1, one obtains

{
θ(12)(Dk)

}2SF+1−1

k=0
=D

{
k
π

2

[
−1 +

k

2SF+1

]}2SF+1−1

k=0

.

Recalling (16) it follows{
θ(12)(Dk)

}2SF+1−1

k=0
=D

{
θ(SF)(k)

}2SF+1−1

k=0
,

and, ultimately{
θ(SF)(k)

}2SF+1−1

k=0
=

1

D

{
θ(12)(Dk)

}2SF+1−1

k=0
.
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θ(s(n), t) =

{
2π[−B2 (t− nTs) + B

M s(t− nTs) + B
2Ts

(t− nTs)2], nTs ≤ t < nTs + Th,

2π[− 3B
2 (t− nTs) + B

M s(t− nTs) + B
2Ts

(t− nTs)2], nTs + Th ≤ t ≤ (n+ 1)Ts.
(28)

APPENDIX D
PROOF OF (19)

Proof: For a given SF, (16) provides the (sampled) phase
term of a pure upchirp, whose instantaneous frequency-offset
sweeps the entire interval [−B2 ,

B
2 ] starting from its lowest

boundary −B2 (see Fig.2(a)). A chirp modulated by a symbol
s is different from a pure upchirp in that its instantaneous
frequency-offset sweeps the same interval starting from a
higher value, given by −B2 + B

M s, then it wraps around to
−B2 as soon as it reaches B

2 and keeps on increasing until the
end of the symbol interval (see Fig.1).

Considering the reference symbol interval [0, Ts], the instan-
taneous frequency-offset of a chirp modulated by a symbol s
can thus be considered as the result of a time advance (that
is, a left shift along the time axis), whose entity depends on
s, of the instantaneous frequency-offset of a pure upchirp.
This modelling is complete on condition that the symbol time
interval is given the circularity property, so that the translated
instantaneous frequency-offset wraps around “horizontally” in
t = 0, making it enter from the right boundary of the symbol
interval what exits from the left boundary.

In particular, starting from the phase term (16) of a pure
upchirp, a new phase term can be derived as follows, which
provides the frequency sweep associated to a certain modula-
tion symbol s:{

θ(SF)
(

(k + 2s) mod 2SF+1
)}2SF+1−1

k=0

. (25)

Equation (25) incorporates both the time advance, given by
2s, and the wrap-around feature, given by the mod operation.
One observes, in particular, that since the number of modu-
lation symbols is M , whereas the number of samples in a
chirp interval is 2M (see, Sec.IV-A), the number of samples
corresponding to a time advance of s is 2s.

Although (25) provides the right frequency sweep for any
given symbol s, it lacks of the fundamental property of null
phase at the boundaries of symbol intervals (Property 1,
Sec.III). This is clearly evident in Fig.4, where the dashed
curve represents the phase term given by (25) in the case
s = 91 and SF=8.

The null phase at the boundaries of the symbol interval
can be simply obtained by compensating (i.e., removing) the
vertical offset θ(SF)(2s) exhibited by (25) for k = 0 (see
Fig.4), thus obtaining:{
θ(SF)

(
s, k
)}

=

{
θ(SF)

(
(k + 2s) mod 2SF+1

)}
− θ(SF)

(
2s
)

(26)
with k = 0, 1, . . . , 2SF+1 − 1. In the example case s = 91
and SF=8, the resulting phase term is shown in Fig.4 with a
dotted line-style. One observes, by the way, that both phases
shown in Fig.4 provide the right frequency sweep, which is
the one depicted in Fig.1. Nonetheless, the dashed curve is not
compliant with the LoRa specifications.

Plugging (18) in (26), it finally results:{
θ(SF)

(
s, k
)}

=
1

D

{
θ(12)

(
D
(

(k + 2s) mod 2SF+1
))}

− 1

D
θ(12)

(
2sD

)
,

with k = 0, 1, . . . , 2SF+1 − 1.

APPENDIX E
SYMMETRY OF THE REFERENCE UPCHIRP PHASE

It must be proved that θ(12)(213 − k) = θ(12)(k) with
k = 0, 1, . . . , 212.

Proof: Starting from (17) it is

θ(12)(213 − k) = (213 − k)
π

2

[
−1 +

213 − k
213

]
.

After easy manipulations of the right-hand term, one obtains:

θ(12)(213 − k) =
π

2
k
(
− 1 +

k

213

)
Recalling (17) it immediately follows:

θ(12)(213 − k) = θ(12)(k).

Clearly, both terms of the above equality are sound
only provided that their arguments are meaningful, which
means 0 ≤ k ≤ 213. Such interval includes the range
k = 0, 1, . . . , 212 of interest for this proof.

APPENDIX F
PROOF OF (21)

Proof: Given (8), in the n-th symbol interval
[nTs, (n+ 1)Ts] the receiver obtains:

rn(t) = in(t)e−jθ(t−nTs)

= V0e
jθ(s(n),t)e−jθ(t−nTs), (27)

where θ(s(n), t) can be easily derived from (3) as in (28).
Plugging (28) and (14) in (27) immediately leads to (21).

APPENDIX G
PROOF OF (22)

Proof: Equation (21) can be rewritten as

rn(t) = V0e
j2πf

(1)
0 (t−nTs)gTh(t− nTs)

+ V0e
j2πf

(2)
0 (t−nTs)gTĥ

(t− nTs − Th). (29)

Taking the continuous Fourier transform and denoting with *
the linear convolution, (30) is immediately obtained, with δ(·)
denoting the Dirac’s delta.
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Rn(f) =
(
V0δ(f − f (1)0 )e−j2πfnTs

)
∗
(
Thsinc(fTh)e−j2πf(nTs+

Th
2 )
)

+
(
V0δ(f − f (2)0 )e−j2πfnTs

)
∗
(
Tĥsinc(fTĥ)e−j2πf(nTs+Th+

T
ĥ
2 )
)

= V0Thsinc
[
(f − f (1)0 )Th

]
e−j2π(f−f

(1)
0 )(nTs+

Th
2 )e−j2πf

(1)
0 nTs

+ V0Tĥsinc
[
(f − f (2)0 )Tĥ

]
e−j2π(f−f

(2)
0 )(nTs+Th+

T
ĥ
2 )e−j2πf

(2)
0 nTs . (30)

R(p)
n (f) =V0B

[
Thsinc[(f − f (1)0 )Th]e−j2π(f−f

(1)
0 )(nTs+

Th
2 )e−j2πf

(1)
0 nTs

+ Tĥsinc[(f − f (2)0 −B)Tĥ]e−j2π(f−f
(2)
0 −B)(nTs+Th+

T
ĥ
2 )e−j2πf

(2)
0 nTs

]
. (33)

R(p)
n (f) =V0B

[
Thsinc[(f − f (1)0 )Th]e−j2π(f−f

(1)
0 )(nTs+

Th
2 )e−j2πf

(1)
0 nTs

+ Tĥsinc[(f − f (1)0 )Tĥ]e−j2π(f−f
(1)
0 )(nTs+Th+

T
ĥ
2 )e−j2πf

(2)
0 nTs

]
. (34)

APPENDIX H
PROOF OF (24)

Proof: In Appendix G we showed that the spectral
component of (22) centred in f (1)0 arises from the term

V0Thsinc
[
(f − f (1)0 )Th

]
e−j2π(f−f

(1)
0 )(nTs+

Th
2 )e−j2πf

(1)
0 nTs

(31)
whereas the spectral component centred in f

(2)
0 arises from

the term

V0Tĥsinc
[
(f−f (2)0 )Tĥ

]
e−j2π(f−f

(2)
0 )(nTs+Th+

T
ĥ
2 )e−j2πf

(2)
0 nTs .

(32)
Recalling (23) and focusing the attention on the frequency
interval [0, B], we observe that, owing to the undersampling,
(32) is periodically repeated with period B and overlaps with
(31) around f (1)0 , generating the spectral component given by
(33) for f ∈ [0, B]. Observing that f (2)0 + B = f

(1)
0 , (34) is

immediately derived.
Finally, computing the value of (34) for f = f

(1)
0 gives

R(p)
n (f

(1)
0 ) =V0B

[
The
−j2πf(1)

0 nTs +Tĥe
−j2πf(2)

0 nTs

]
=V0B

[
The
−j2πf(1)

0 nTs +Tĥe
−j2π(f(1)

0 −B)nTs

]
=V0B

[
The
−j2πf(1)

0 nTs +Tĥe
−j2πf(1)

0 nTsej2πBnTs

]
=V0B

[
The
−j2πf(1)

0 nTs +Tĥe
−j2πf(1)

0 nTsej2πMn
]

=V0B
[
Th +Tĥ

]
e−j2πf

(1)
0 nTs

=V0BTse
−j2πf(1)

0 nTs

=V02SFe−j2πf
(1)
0 nTs . (35)

Taking the modulus of (35) leads to (24).
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