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S1 Wave hydrodynamic model

This section extends the derivation of the hydrody-

namic sub-model employed to represent the wave-

induced pressure introduced in Eq. (18).

Sea waves are represented using linear wave theory

(also referred as Stokes first order theory or Airy wave

theory), which is a well-established formalism for de-

scribing ocean waves [1–3]. The theory relies on the
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following hypotheses: only non-breaking waves are rep-

resented; the wave amplitude is small compared to the

wave length and water depth; the water flow is consid-

ered incompressible and irrotational, i.e. potential flow

[1]. As a consequence, a potential �, generally depen-

dent on position and time, can be defined so that the

wave-induced pressure is expressed as:

pw = �⇢
@�

@⌧
, (S1)

where ⌧ represents time. The wave pressure contribu-

tion, which combines with the atmospheric and hydro-

static pressures, is caused by the acceleration of the

water particles. The potential �, according to [4], can

be further split into three di↵erent terms:

� = �o + �d + �r, (S2)

where �o represents the undisturbed incident wave field

(in the absence of the WEC), often referred to as the

Froude-Krylov potential; �d represents the di↵raction

generated when the incident wave field hits a fixed ob-

ject (the WEC body); and �r is the radiation term,

which represents the wave field that is only due to the

motion of the body.
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The Froude-Krylov and di↵raction contributions are

usually combined in the so-called excitation potential,

�e = �o+�d. Since the device dimensions are expected

to be small compared to the wavelength, the di↵raction

contribution can be neglected (�d = 0), as suggested in

[5]. Therefore, the wave-induced pressure takes the form

of Eq. (18), which is reported here for convenience:

pw = �⇢

✓
@�o

@⌧
+
@�r

@⌧

◆
= po + pr = pe + pr. (S3)

The forms of the excitation and radiation contribution

are detailed in Section S1.1 and Section S1.2, respec-

tively.

S1.1 Wave excitation potential

From linear wave theory, the di↵erentiation of a po-

tential function �o for an undisturbed monochromatic

wave field leads to the following expression:

po =
⇢gH

2

cosh(kw(hd + ⇣))

cosh(kwhd)
cos(kw⇠ � !⌧). (S4)

The above relation represents the wave-induced pres-

sure due to an undisturbed long-crested sinusoidal wave

of height H, angular frequency ! and travelling in the

⇠ direction. ⇣ represents the vertical coordinate. The

wave number kw is related to the water depth hd and

to the wave frequency by the wave dispersion relation-

ship [3]:

!
2 = gkw tanh(kwhd). (S5)

The set of points belonging to the inlet section Si of

the control volume (see Fig. 2) can be conveniently ex-

pressed in planar polar coordinates as:

S = {(r, ✓, ⇣) : 0  r  ri ^ 0  ✓  2⇡ ^ ⇣ = �hi} .

(S6)

Since di↵raction e↵ects are neglected, averaging the

undisturbed wave pressure po over the domain S leads

to the excitation pressure expressed by Eq. (19):

pe =
1

Si

ZZ

S
po dS =

H

2
� (!) cos(!⌧), (S7)

where � (!) is the frequency-dependent excitation coef-

ficient:

� (!) =
⇢g

⇡r
2
i

cosh(kw(hd � hi))

cosh(kwhd)
Z 2⇡

0

Z ri

0
r cos(kwr cos ✓) dr d✓ (S8)

The excitation pressure of panchromatic sea states pe,p

is a superposition of monochromatic waves of height Hj

and frequency !j , distributed according to a spectral

model [6]:

pe,p =
X

j

Hj

2
� (!j) cos(!j⌧ + 'j), (S9)

where 'j denotes the random phase of the di↵erent

harmonic components.

S1.2 Wave radiation potential

The contribution of the radiated wave field is modelled

through Eqs. (21 -22), which are reproduced here:

pr = �Mad,1⌦̈c �

Z ⌧

0
k(⌧ � t)⌦̇c(t) dt , (S10)

K(!) = Br(!) + i!
�
Mad(!)�Mad,1

�
. (S11)

The convolution kernel k(⌧) is called the retardation

function, and K(!) is its frequency-domain representa-

tion. Mad,1 is the infinite-frequency added mass, which

adds on to the inertia of the control volume Mh of

Eq. (4). It represents the inertia of the water displaced

outside the control volume at the highest frequencies.

Mad(!) is the frequency-dependent added mass that

asymptotically tends to Mad,1 at the highest frequen-

cies. Br(!) is the radiation damping, which accounts
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for the energy dissipation of the wave field caused by

the motion of the body.

During the numerical solution procedure of the equilib-

rium equation (14), the convolution integral in Eq. (21)

is usually approximated with a linear state-space model

to reduce the computational e↵ort [7].

S1.3 Hydrodynamic coe�cients comparison

In the modelling approach presented in the paper, the

coe�cients Mad(!), Mad,1 and Br(!) representing the

kernel function are computed exploiting approximated

analytical relations available in the literature. This ap-

proach is simple, fast and does not require the use of any

additional numerical software. In the following, an al-

ternative method to compute the hydrodynamic coe�-

cients, based on the Boundary Element Method (BEM)

is presented.

The commercial software employed for the numer-

ical computation of the hydrodynamic coe�cients is

WAMIT®, a frequency-domain radiation/di↵raction

code that uses potential flow theory to solve for the

wave field around fixed and floating bodies. Although

some BEM software only provides the six traditional

ship DoFs, WAMIT also allows the definition of gen-

eralized DoFs, which is crucial to model deformable

bodies [8]. In this perspective, a generalized coordinate

q, which describes the membrane motion, is introduced

and defined by the following procedure: two static mem-

brane configurations are identified and referred to as

the “reference equilibrium configuration” and the “ref-

erence displaced configuration”, to which the values of

q=0 and q=1 are associated, respectively. A “reference

displacement function” is then defined as the point-by-

point di↵erence between the reference displaced config-

uration and the reference equilibrium configuration.

It is then assumed that any generic configuration of

the membrane can be achieved through a displacement

that is q times the reference displacement function from

the reference equilibrium configuration. The shapes ob-

tained from the reference equilibrium configuration by

applying q times the reference displacement function do

not exactly overlap the actual deformed static shapes.

Nonetheless, each actual static shape (and, hence, the

corresponding value of ⌦c) can be associated with a

value of q, e.g., using a least-squares procedure.

The generalized coordinate q is defined in WAMIT

by providing the reference and deformed equilibrium

configurations. The linearized hydrodynamic coe�-

cients are then evaluated in correspondence to the refer-

ence equilibrium configuration, i.e. at q=0. An example

of a surface mesh of the submerged geometry for BEM

application is shown in Fig. S1.

Fig. S1: WAMIT mesh employed in the calculation of

the hydrodynamic coe�cients. Only one quarter of the

geometry is panelled because WAMIT can exploit the

symmetries of the model.
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WAMIT calculates the excitation coe�cient �q(!),

the added mass Mq(!) and the radiation damping

Bq(!) as a function of the wave excitation frequency

!, as well as the asymptotic value of the frequency-

dependent added mass, namely Mq,1. The subscript

q indicates that the coe�cients are computed with re-

spect to the generalized coordinate q.

In order to compare the two sets of hydrodynamic

coe�cients derived from the analytical and numerical

approaches, both sets have to be expressed with re-

spect to the same coordinate set. This can be achieved

through the function q(⌦c), which relates the general-

ized coordinate q to the cap volume ⌦c. The two sets

of coe�cients (�,Mad, Br) and (�q,Mq, Bq) are related

by the following functions:

� (!) = �q(!)

����
dq

d⌦c

����
q=0

,

Mad(!) = Mq(!)

 
dq

d⌦c

����
q=0

!2

,

Br(!) = Bq(!)

 
dq

d⌦c

����
q=0

!2

.

(S12)

Fig. S2 shows the trend of the analytical coe�cients

and those obtained from WAMIT, with respect to the

wave excitation frequency.

The coe�cients � and �q coincide at both ends of

the frequency range. In the static case, when f ! 0,

the excitation coe�cients tend to the product ⇢g, see

Eq. (S8). On the other hand, at the highest frequen-

cies, the coe�cients tend to zero. In the intermediate

frequency range the coe�cient � is smaller that �q, as

expected. This is because the di↵raction contribution

�d has been neglected in the analytical formulation.

The radiation damping Br depends quadratically on

the excitation coe�cient � , see Eq. (23). As a conse-

quence, the di↵erence between Br and Bq in the inter-

mediate frequency range is more relevant than that of

0.5 1 1.5 2 2.5 3 3.5 4
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1
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0

1

104

0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

104

Analytical
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Fig. S2: Comparison of the hydrodynamic coe�cients

derived from the analytical relations proposed in Sec-

tion 3.1 and those obtained from WAMIT simulation.

From top to bottom the figure shows the excitation co-

e�cient, the inertia of the system and the radiation

damping, respectively. Note that Mad represents the

total inertia of the system, i.e. the constant mass in the

reference equilibrium configuration plus the frequency-

dependent contribution.

the excitation coe�cients, see bottom plot of Fig. S2.

Nevertheless, the error introduced in the system by the

di↵erence between Br and Bq is limited by the reduced

influence of the radiation contribution in the equation

of motion (14).

From the centre plot of Fig. S2 it is possible to appre-

ciate how the analytical added mass is always greater

than the WAMIT result. This is in contrast with the

assumption (employed in the paper) of neglecting the

water velocity field of the volume cap with respect to

the centre of mass of the cap itself, which should al-

ways lead to underestimating the analytical frequency-

dependent added mass. Besides, since the di↵erence be-

tween the two curves Mad and Mq is almost constant,

it can be concluded that the assumed infinite frequency

added mass in the analytical case slightly overestimates

the WAMIT result.
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S2 CD-DEG model

This section describes more details on the derivation

of the equilibrium equations, the initial conditions and

the solution procedure for the electro-elastic model of

the circular diaphragm dielectric elastomer generator

(CD-DEG).

S2.1 Equilibrium equations

The CD-DEG static equilibrium equations are derived

following the Euler-Lagrange approach [9]. The de-

formation of the CD-DEG can be described by two

functions in polar cylindrical coordinates (r(R), z(R)),

which represent the position of a material particle of

the membrane in the deformed configuration. The in-

dependent variable R is the distance of a point from

the axis in the reference configuration (see Fig. 3).

Calling ⌦cd the volume of the dielectric material and

q = (r(R), z(R)), the functional to minimize is as fol-

lows:

S(q) =

Z

⌦cd

L(R,q,q0) d⌦

=

Z

⌦cd

(Em + Ee �Wp �We) d⌦ ,

(S13)

where the prime symbol denotes di↵erentiation with re-

spect to R. Em and Ee are the elastic and electrostatic

energy of the CD-DEG, respectively. Wp is the work

done by the hydrostatic pressure on the membrane and

We is the electric work done by the external power sup-

ply on the CD-DEG. The last term is non-zero only

when current flows between the CD-DEG and the ex-

ternal conditioning electronics. The potential gravita-

tional energy contribution of the dielectric material is

neglected.

Elaborating the di↵erent energy terms, Eq. (S13)

becomes:

S =

Z e0

0

✓
2⇡Rt0

✓
 (�1,�2)�

1

2
✏E

2
L�

2
1�

2
2

◆

� ⇡r
2
z
0
ph

◆
dR , (S14)

where  is a volumetric strain energy density func-

tion representing the elastic energy stored by the mate-

rial.  can be expressed as a function of two principal

stretches exploiting the material incompressibility [10].

EL = NlV/t0 is the Lagrangian electric field, i.e. the

electric field expressed in the reference configuration.

ph is the hydrostatic pressure expressed by Eq. (28),

and e0 and t0 are the CD-DEG radius and thickness

in the undeformed configuration, respectively. ✏ is the

electric permittivity of the material, which is assumed

constant. The dependency of the electrical properties

of elastomers on the deformation is a well-known phe-

nomenon addressed in the literature [11, 12]. Neverthe-

less, it has been shown that the electric permittivity of

the Theraband rubber considered in this study is rather

independent of deformation [13].

Defining a total energy density function per unit

volume [14]:

�(�1,�2, EL) =  (�1,�2)�
1

2
✏E

2
L�

2
1�

2
2, (S15)

the Lagrangian function L becomes:

L(R,q,q0) = 2⇡Rt0�(�1,�2, EL)� ⇡r
2
z
0
ph. (S16)

The equilibrium equations provided by the Eu-

ler–Lagrange equation (S14) read as:

@L

@r
�

d

dR

✓
@L

@r0

◆
= 0,

@L

@z
�

d

dR

✓
@L

@z0

◆
= 0. (S17)

From the equilibrium equations (S17), the Lagrangian

function (S16) and the principal stretches given in (27),

which are reported here for convenience:

�1 =
p
r02 + z02, �2 =

r

R
, (S18)
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it is possible to derive the following equilibrium equa-

tions:

⌧2z
0

r�1
+
⌧1

�
3
1

(r0z00 + r
00
z
0) =

�1�2

t0
ph,

r (h⌧1)
0 + tir

0 (⌧1 � ⌧2) = 0,

(S19)

where ⌧1 and ⌧2 are the total Cauchy principal stresses

given by ⌧1 = �1 @�/@�1 , ⌧2 = �2 @�/@�2 , and ti is

the CD-DEG deformed thickness at a material point R.

Exploiting the following geometric relations (see

Fig. 3b):

r
0 = �1 sin ✓, z

0 = �1 cos ✓, (S20)

it is possible to convert the two second-order di↵erential

equations (S19) into the following system of four first-

order di↵erential equations:

d�1
dR

=
�2 � �1�12

R�11
sin ✓ �

�1 � �2�12

R�11
,

d�2
dR

=
�1 sin ✓ � �2

R
,

d✓

dR
=

�2

R�1
cos ✓ �

�1�2

t0 1
ph,

dz

dR
= �1 cos ✓,

(S21)

where �i = @�/@�i and �ij = @
2
�
�
@�i@�j . Note that

imposing EL =0, (S21) resorts to system (29).

Eq. (S21)4 is exactly Eq. (S20)2, while Eq. (S21)2 is

obtained by di↵erentiating Eq. (S18)2 with respect to

R and using Eq. (S20)1. With simple algebraic compu-

tation it is possible to show that r
0
z
00
� r

00
z
0 = ��1✓

0,

so that Eq. (S21)3 is obtained from Eq. (S19)1. Lastly,

combining Eq. (S19)2 and Eq. (S21)2 yields, after sim-

plification, Eq. (S21)1.

S2.2 Boundary/initial conditions

The boundary conditions of the problem (S21) are as

follows:

�1(0)� �2(0) = 0,

�2(e0) = �p,

✓(0) = ⇡/2,

z(0) = 0.

(S22)

All the conditions are applied at R = 0, except for

Eq. (S22)2, which holds at R = e0. The system (S21)

with the conditions (S22) is thus a boundary-value

problem.

A shooting method procedure can be conveniently

employed to solve the system, making use of four initial

conditions at R = 0 (instead of a set of mixed boundary

conditions at R = 0 and R = e0). With this approach,

the equilibrium equations are integrated from the axial

symmetry axis (R = 0) towards the exterior. Nonethe-

less, since the system of equations (S21) is singular at

R = 0, the integration is performed from R = �, with �

a su�ciently small constant.

A Taylor series expansion of �1(0), �2(0), ✓(0) and z(0)

is employed to estimate the value of the unknown func-

tions at R = �:

�1(�) = �0 +
1

2
�
00
1(0)�

2 +O(�4),

�2(�) = �0 +
1

2
�
00
2(0)�

2 +O(�4),

✓(�) =
⇡

2
+ ✓

0(0)� +O(�3),

z(�) =
1

2
z
00(0)�2 +O(�4).

(S23)

Note that, placing the origin of coordinate system r�z

on the membrane tip (see Fig. 3) provides z(0) = 0 in

Eq. (S22)4 and Eq. (S23)4. Without that choice there

would have been a further unknown to solve for (i.e.,

z(0) itself), considerably increasing the complexity of

the solution procedure.
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Di↵erentiating the first two equations of the system

(S21) with respect to R yields two equations in �001 and

�
00
2 , the solution of which, evaluated at R = 0, reads as:

�
00
1(0) = �

�2�22 � 3�2�12 + 3�2

8�22
✓
0(0)2,

�
00
2(0) = �

�2�22 � �2�12 + �2

8�22
✓
0(0)2.

(S24)

The value of ✓0(0) can be determined by evaluating

Eq. (S21)3 at R = 0:

✓
0(0) = �

�1(0)2ph(0)

2t0�1
= �

⇢gzt�
2
0

2t0�1
, (S25)

while z
00(0) can be obtained by di↵erentiating

Eq. (S21)4 and then evaluating at R = 0:

z
00(0) = ��1(0)✓

0(0) =
⇢gzt�

3
0

2t0�1
. (S26)

S2.3 Solution procedure

The following procedure has been employed to solve the

system of equations (S21) with initial conditions (S23):

1. The stretch �0 at the pole of the CD-DEG, and

the level of electric activation EL are chosen and

replaced in the equilibrium equations (S21) and in

the initial conditions (S23);

2. The system (S21) is integrated treating zt as a

parameter (the available ParametricNDSolveValue

solver of the commercial software Wolfram

Mathematica® has been employed);

3. The parametrized solution of the functions �1, �2,

✓ and z obtained in the previous step are employed

to write the constraint equation �2(e0)=�p (see

Eq. (S22)2), whose solution yields the value of zt

that satisfies the system (S21) with the imposed val-

ues of �0 and EL;

4. The corresponding value of the water head h0 (see

Fig. 3b) is then computed as h0 = zt � z(e0);

5. By repeating steps (1) to (4) for di↵erent values

of �0 and EL, the maps of the following quanti-

ties are derived: h0(�0, EL), ⌦c(�0, EL), ⇣c(�0, EL),

Em(�0, EL) and C(�0, EL).

The values of the volume, elastic energy and capaci-

tance are computed from the knowledge of the CD-DEG

deformed shapes as follows:

⌦c = ⇡

Z e0

0
�1�

2
2R

2 cos ✓ dR ,

Em = 2⇡t0

Z e0

0
R dR ,

C = ✏

Z

S

1

ti
dS =

2⇡✏

t0

Z e0

0
R�

2
1�

2
2 dR ,

(S27)

where ✏ is the permittivity of the material and S is the

surface of the CD-DEG in the deformed configuration.

The computation of the centre of mass of the CD-

DEG cap ⇣c requires special attention since the coor-

dinate reference system employed in the CD-DEG sub-

model does not coincide with that used to derive the

equation of motion (14). In particular, the former is

mobile while the latter is fixed. Based on Fig. 3, the

following relation holds:

⇣c = �

⇣
h0 + ⇣̂c

⌘
, (S28)

where both h0 and ⇣̂c are treated as positive quanti-

ties. From the solution procedure h0 is computed as

h0 = zt � z(e0), while ⇣̂c is calculated as follows:

⇣̂c = z(e0)�
⇡

⌦c

Z e0

0
�1�

2
2R

2
z cos ✓ dR . (S29)

A root-finding algorithm is necessary to solve the

non-linear constraint equation (�2(e0)��p = 0) of step

(3) of the solution procedure. A good practice is to

start the mapping procedure from a value of �0 slightly

higher than the value of the pre-stretch �p, so that a

reliable starting point for the root-finding iteration is a

value of zt slightly higher than zero. The procedure is
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then repeated for increasing values of �0, and the solu-

tion for zt at the previous step is used as a first guess

for the current iteration.

This solution process is fast and reliable and it

requires only a few seconds of computational time

on a standard laptop to provide a complete electro-

mechanical characterization of the CD-DEG. The main

advantage is that just one root-finding procedure is re-

quired for every couple of imposed values (�0, EL). Con-

versely, in a standard shooting method algorithm, an

iterative solution procedure is required (for non-linear

systems) until the guessed initial condition satisfies

the boundary condition of the corresponding boundary

value problem [15].

S2.4 Comparison of models

The approach presented in the previous sections pro-

vides the exact solution of the CD-DEG hydro-electro-

elastic fully-coupled problem in static conditions. In the

paper, in contrast, we employed a single-DoF model, in

which the electrical and mechanical CD-DEG responses

are partly decoupled: the shapes of the CD-DEG are

mapped making reference to static electrically-inactive

conditions, and the electro-elastic interaction is then ac-

counted for through the following equilibrium equation

(which is the equivalent to Eq. (14) in static condi-

tions):

⇢g⇣
0
c⌦c + ⇢g⇣c + pa,r + E

0
m �

C
0

2
V

2 = 0, (S30)

According to this approach, a set of approximate CD-

DEG shapes and the corresponding values of Em, C and

⇣c are first identified, by imposing V = 0 in Eq. (S30)

(which is equivalent to imposing EL = 0 in Eqs. (S21)).

Then, the e↵ect of electric activation is accounted for

by the term 0.5C 0
V

2, so that changing the applied volt-

age modifies the equilibrium position of the CD-DEG

through a change in ⌦c, which in turn changes the elas-

tic energy Em(⌦c). With this approximation, and in

contrast with the solution of Eqs. (S21), the set of pos-

sible deformed shapes obtained by varying the electric

activation is the same as that obtained by changing the

di↵erential pressure on the CD-DEG.

The comparison of the two solutions (fully-coupled

vs. 1-DoF partially-coupled) is carried out considering

the dielectric material and the PD-WEC geometric fea-

tures presented in the paper, which are reported in Ta-

ble S1 for convenience.

Material Theraband Rubber

Hyperelastic model Gent-Gent

Gent-Gent parameters µ=132 kPa,

Jm =45,

C2 =10 kPa

Radius e=65mm

Thickness t0 =0.22mm

Pre-stretch �p =1.6

Number of layers Nl =1

Relative dielectric constant ✏r =2.7

Table S1: PD-WEC features.

S2.4.1 Load-deformation

The same values of the stretch �0 at the membrane

tip and electric activation ẼL are imposed to both the

fully-coupled and 1-DoF partially-coupled models, and

the water column height h0, which is derived from the

system equilibrium, is compared. For the aim of the

CD-DEG model comparison, the air chamber pressure

pa,r has been set equal to zero, and the level of elec-

tric activation has been expressed in terms of the non-
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dimensional Lagrangian electric field:

ẼL =
ELp
µ/✏

. (S31)

The map for h
⇤
0(�0, ẼL) for the fully-coupled

method is directly obtained from the solution proce-

dure of Section S2.3. For the partially-coupled method,

the function h0(�0, ẼL) can be derived from Eq. (S30)

as follows:

h0(�0, ẼL) = �

⇣
⇣̂
0
c⌦c + ⇣̂c

⌘
+

1

⇢g

✓
E
0
m �

1

2

µ

✏
t
2
0Ẽ

2
LC

0
◆
.

(S32)
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Fig. S3: CD-DEG static load-deformation characteris-

tics. The horizontal axis represents the stretch at the

tip of the membrane and the vertical axis represents

the water column height above the plane housing the

membrane perimeter. Solid lines are the solutions of

the fully-coupled method, see Eqs. (S21). Dashed lines

represent the solutions of the 1-DoF partially-coupled

formulation, see Eq. (S32). The non-dimensional La-

grangian electric field ẼL increases linearly from top to

bottom.

The static load-deformation characteristics for the

two solution methods are represented in Fig. S3. Each of

the curves in the figure refers to a constant value of ẼL.

Since ẼL is, by definition, proportional to the voltage

V and a set of constant parameters, each curve rep-

resents the iso-potential response of the system at dif-

ferent levels of electrical load. The fully-coupled and 1-

DoF partially-coupled models are identical in the purely

mechanical scenario, indeed they provide the same so-

lution (top curve of Fig. S3). The di↵erence between

the two sets of solutions increases with the electric ac-

tivation ẼL.

We define an average relative di↵erence function

�e(ẼL) as follows: for each value of ẼL, the point-

by-point relative di↵erence (with respect to the fully-

coupled solution) is computed for every value of �0,

then the average integral value with respect to �0 is

computed. The trend of the function �e(ẼL) is rep-

resented in Fig. S4, which shows that the di↵erence

between the fully-coupled and the 1-DoF partially-

coupled solution increases with ẼL.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

5

10

15

Fig. S4: Percentage di↵erence (with respect to the fully-

coupled solution) between the 1-DoF partially-coupled

solution and the fully-coupled solution as a function of

the non-dimensional Lagrangian electric field ẼL.

Fig. S3 also shows that, at a given value of ẼL,

the di↵erence between the fully-coupled solution and

the 1-DoF partially-coupled solution increases as �0 in-

creases. Since, in this plot, the Lagrangian electric field

is constant for each curve, the actual electric field E
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across the CD-DEG faces increases with the deforma-

tion, E = EL�1�2. Therefore, the e↵ect of the elec-

tric activation on the accuracy of the partially-coupled

model becomes more relevant at high stretch levels.

The total Cauchy stresses can be written as:

⌧i = �i
@ (�1,�2)

@�i
� ✏E

2
L�

2
1�

2
2, for i = 1, 2. (S33)

By way of example, holding the deformation (�1,�2)

constant and increasing the electric activation ẼL even-

tually leads to negative values of total stress. The con-

ditions ⌧i > 0 must be verified at every point of the CD-

DEG and at any instant, otherwise local loss of tension

can occur, which could lead to instability phenomena

(e.g. membrane wrinkling) with possible failure of the

system [16, 17].

The local CD-DEG condition ⌧i > 0 can be associ-

ated with the global requirement that h0(�0, ẼL) � 0.

When the Maxwell stress component ✏E
2
L�

2
1�

2
2 be-

comes predominant with respect to the mechanical

stress �i@ (�1,�2)/@�i, the total Cauchy stresses are

no longer able to sustain the water hydrostatic pres-

sure and the system presents no stable configurations

(h0 < 0).

In the previous examples we made reference to load-

ing curves with constant Lagrangian electric field ẼL for

computational convenience. In practice, the real (Eu-

lerian) electric field should be adapted to the actual

CD-DEG deformation to maximize the generation of

electric energy [18].

S2.4.2 Capacitance

Since the electrical power provided by the PD-WEC is

proportional to the CD-DEG capacitance variation, see

Eq. (17), a comparison between the CD-DEG capac-

itance computed from the fully-coupled solution and

that obtained from the 1-DoF partially-coupled solu-

tion is presented in Fig. S5. Here, the capacitance ob-

tained from Eq. (S27)3 is plotted with respect to the wa-

ter head h0 for di↵erent values of the non-dimensional

Lagrangian electric field ẼL.

The maximum relative di↵erence between the ex-

act and approximated solutions is always less than 5%,

which is an acceptable approximation considering the

global accuracy of the model and the uncertainties gen-

erated by the other assumptions, especially those re-

garding the hydrodynamics.

Note that, although the di↵erence in the load-

displacement characteristic (Fig. S3) between the two

sets of solutions rapidly grows with ẼL (see Fig. S4),

the error in the capacitance remains limited.

20 40 60 80 100 120
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=0.12

=0.18
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Fig. S5: CD-DEG capacitance vs. the water column

height h0. Solid lines represent the exact solutions of

Eqs. (S21) and dashed lines represent the solutions pro-

vided by the energetic approach of Eq. (S32). The non-

dimensional Lagrangian electric field increases from the

top to the bottom curves.

Note that some of the curves in Fig. S5, similarly

to those in Fig. S3, present a portion with negative

slope. In those regions, the membrane would be prone

to electro-mechanical instability (referred to as snap-

through instability [10] or pull-in instability [16, 17]) in
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the presence of a constant applied electrical potential.

In practice, this e↵ect can be mitigated/removed by

choosing an appropriate electrical driving strategy for

the DEG [19].
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