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bUniversité Libre de Bruxelles, 50 Av. F.D. Roosvelt, B-1050 Brussels, Belgium. Email: egarone@ulb.ac.be.

Abstract

Next-generation Multiprocessor, or Multicore, Systems-on-Chip offer very high computing performance at the expense of a very
high power density unevenly distributed on the chip. The hot spots thus generated represent a significant source of performance
and reliability degradation, as well as power consumption increase. In recent years, run-time thermal control strategies have been
developed to deal with this issue by acting on some “computational knobs” (e.g., clock frequencies and supply voltages). In this
context, schemes based on Model Predictive Control (MPC) are particularly suitable due to their capability to deal with constraints
explicitly. In this paper, we first discuss relevant properties for the design of predictive controllers for thermal systems. Starting
from the Partial Differential Equation (PDE) describing heat diffusion in a solid, we prove meaningful feasibility properties that can
be leveraged for constraint reduction. We then present a procedure to derive approximated but effective modular thermal models
intended to build an efficient distributed MPC. Finally, a two-layer control solution is proposed to maximize performance while
preserving feasibility despite model approximations. The effectiveness of this approach is validated through extensive and realistic
numerical simulations.
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1. Introduction

In recent years, the growing demand for efficient and high-
performance computing has fostered the diffusion of Multi-
processor Systems-on-Chip (MPSoCs) in every sector of the
worldwide economy, ranging from industry to everyday prod-
ucts such as laptops, tablets, and mobile phones. From the
early 70’s up to now, the performance trend in microproces-
sors has been accurately described by Moore’s law, according to
which performance is doubled every 18 months. Until the early
2000’s the main factors enabling performance improvements
were micro-architectural enhancements (such as instruction-
level parallelism) and technology scaling. Then, the so-called
“Power Wall” was hit. Ever since, silicon power density could
not be kept invariant with respect to technology scaling and im-
provement, owing to leakage and dynamic power terms that do
not scale as well as the transistors’ size.

For this reason, single CPUs gradually disappeared in favor
of multi-core architectures, with multiple cores integrated on
the same silicon die. Exploiting parallelism, multi-core pro-
cessors increase the computational throughput without increas-
ing frequency. Nevertheless, power remains a concern for MP-
SoC improvement. Because of the speed disparity between the
(quadratic) scaling of transistor size and the reduction of power
consumption, power density still grows. As a consequence, the
temperature on the chip unevenly increases, creating hot spots
and thermal gradients. High temperatures adversely affect the

chip’s operating speed by degrading the carrier mobility in tran-
sistors, whereas the power consumption is increased since leak-
age power exponentially increases with temperature. In addi-
tion, components’ lifetime shortens as a consequence of high
temperatures and hot spots, while thermal gradients acceler-
ate failure mechanisms such as electro-migration, stress migra-
tion, and dielectric breakdown. These effects cause a bottleneck
in enhancing MPSoC performance and reliability, commonly
called “Thermal Wall”. Lately, this problem has received an
increasing level of attention.

In general, the approaches that address such thermal is-
sues can be grouped into two prominent families: Static Ther-
mal Management (STM) and Dynamic Thermal Management
(DTM) techniques. The former approach allows increasing
the power consumption sustained by the chip (the so-called
“thermal design power”) by acting on architectural design, e.g.,
through a suitable sizing of heatsinks, fans, and, in some cases,
liquid cooling. However, for today’s MPSoCs, STM strategies
can no longer remove heat in worst-case conditions. Conse-
quently, DTM techniques have become more and more crucial
to bound the operating temperature by “run-time active con-
trol”, exploiting temperature sensors along with Dynamic Volt-
age and Frequency Scaling (DVFS) (Kang et al., 2011), thread
migration/scheduling (Coskun et al., 2009), (Liu et al., 2014),
throttling (Tsai and Chen, 2014), and clock gating. Then, stan-
dard cooling systems can be designed to handle the average
case, leaving the management of peaks to active control.
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This work focuses on DTM techniques based on frequency
scaling. Early methods relied on simple empirical “ON-OFF”
strategies: in case of temperature-bound violations, all core fre-
quencies were set to the minimum value. Later on, the benefits
of feedback control have been exploited, leading to the adop-
tion of classic regulators such as PIDs (Skadron et al., 2002;
Kadin et al., 2009; Wang et al., 2008).

More recently, the framework of Model Predictive Control
(MPC) has been recognized as very promising due to the ca-
pability of explicitly dealing with inputs (i.e., core frequencies)
and state-space constraints (i.e., temperature bounds) (Zanini
et al., 2009; Wang et al., 2009; Bartolini et al., 2012), while
pursuing performance optimization. In this context, frequency-
scaling is typically used as the control input, and a linear-
quadratic formulation of the MPC is considered. This control
problem can be either managed online (implicitly) by solving
a constrained Quadratic Programming (QP) problem at each
sampling instant or off-line (explicitly) by solving a multi-
parametric constrained QP problem (Bemporad et al., 2002).
In both cases, the main impact on performance is the prob-
lem complexity, which depends on the dimension of inputs
and states and is strongly affected by the number of con-
straints. In implicit formulations, the computational burden
scales with dimensionality, whereas in explicit ones, the crit-
icality is the memory usage. Additionally, the system model
should be simple enough to comply with computational and
storage limitations, yet sufficiently accurate to produce reliable
predictions. This task is increasingly difficult in modern and
near-future MPSoCs, which, for High-Performance Computing
(HPC) and Datacenter applications, could integrate hundreds
of cores (McKeown et al., 2018). A common way to deal with
controller complexity in such conditions is through distributed
solutions (Bartolini et al., 2012). Indeed, the MPSoC thermal
model can be split into several simpler core-centric interacting
modules. This way, the centralized MPC problem can be cast
into a set of simpler interconnected problems, one for each core.
Then, an MPC is implemented separately for each core, leading
to a distributed and scalable solution.

Recent works in the MPC framework applied to multicore
systems are (Wang et al., 2016), (Wang et al., 2019). In the
first contribution, DVFS and task migration are combined, by
solving a centralized unconstrained problem (the temperature
threshold is penalized in the objective function), and partioning
the task migration part between the core blocks. The second
work proposes a nonlinear MPC solution to account for power
leakage terms, yet again in a centralized fashion. Distributed
MPC solutions are presented in (Camponogara et al., 2021),
(Scherer et al., 2015) for resource constrained thermal manage-
ment of large scale systems such as buildings. In this case,
the decomposition is applied to the optimization problem, with
a centralized master updating the coupling variables (e.g., La-
grange multipliers) for a set of distributed sub-problems. Other
approaches include power budget constraints, along with ther-
mal capping, via heuristic, multi-layer optimization techniques
either centralized (Iranfar et al., 2017; Dey et al., 2019), or
partially distributed (Bambini et al., 2020). Another popular
framework that tackles this class of problems is machine learn-

ing, specifically reinforcement learning. Indeed, there is a con-
siderable literature of reinforcement learning applications to
power management and thermal control of computational plat-
forms (Das et al., 2014), (Shafik et al., 2015)), (Mandal et al.,
2019). As discussed in (Pagani et al., 2018), the main draw-
backs of this class of solutions are : significant complexity
(leading to processing overhead), and convergence issues (it is
not trivial to tune the learning rate for balancing the exploration
versus exploitation phases).
In general, the aforementioned methods, lack formal feasibility
guarantees, especially in case of model uncertainties.

1.1. Contribution of this paper
This paper proposes a two-layer fully distributed (no central-

ized component is needed) MPC strategy for reliable thermal
capping and optimization of the MPSoC performance. To build
an effective MPC scheme, we begin with a careful model anal-
ysis of the conditions for feasibility. To the best of our knowl-
edge, this issue is usually disregarded in the specific literature
on MPSoC thermal control, i.e., no formal proofs are provided
to guarantee constraint satisfaction at all times. In this con-
text, we employ the heat equation, i.e., the Partial Differential
Equation (PDE) representing the heat conduction (Evans, 1998;
Strauss, 1992), to study constraint reduction for both central-
ized and distributed scenarios. This approach allows defining
simple control policies with guaranteed feasibility that need few
measurements, no accurate knowledge of the model, and no in-
formation exchange among cores (i.e., in a decentralized fash-
ion).

The obtained strategies can be implemented as an ultimate
thermal capping control layer that is triggered whenever dan-
gerous working conditions occur (i.e., the temperature is too
high in some regions). We remark that the thermal capping
does not boil down to the expected trivial solution: “whenever
the critical temperature is approached, turn off all of the power
sources”. Indeed, the PDE analysis allows to extend the basic
intuition to the case of decentralized control, i.e., “turn off only
the sources whose temperature is too high”, and to the realis-
tic case of power dissipation that cannot be zeroed, i.e., “turn
to minimum power the sources whose temperature is danger-
ous”. To this aim, the thermal constraints are reformulated to
show that the dangerous temperature for a source may be dif-
ferent from the silicon critical temperature, as its effects on the
neighborhood have to be taken into account.

With the above result at hand, feasibility is always preserved,
but no performance optimization can be achieved. As already
mentioned, MPC strategies have been proposed to handle this
aspect. These approaches modulate the computation (related to
the dissipated power) to keep performance as close as possible
to the required level while satisfying thermal constraints. In
this respect, a crucial aspect concerns the accuracy of the con-
trol model, i.e., a finite-dimensional model used to predict the
thermal dynamics. To maximize performance, one should stay
close to the maximum temperatures. However, using a reduced-
order model, one must trade-off between its complexity and the
safety margin that must be considered to account for the model-
ing inaccuracies. Therefore, we propose an identification-based
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procedure to perform state- and time-discretization of the orig-
inal PDE, aiming to obtain for each core a prediction model
slightly biased toward temperature overestimation. The result
of this procedure is a set of low-complexity thermal models that
physically interact between each other.

Finally, a distributed MPC layer is defined to achieve per-
formance optimization. Unlike the decentralized thermal cap-
ping layer, this controller is regarded as distributed because re-
quires some connectivity properties between cores, i.e., some
communication infrastructure to allow information exchange
among neighbor cores. Combining this layer with the afore-
mentioned thermal capping strategy, we obtain a two-layer dis-
tributed control strategy with a low computational burden in
performance optimization (given by the distributed MPC) and
model-independent guaranteed temperature constraint preser-
vation (thanks to the thermal capping strategy). This way, the
MPC layer is not designed to be conservatively robust to un-
avoidable modeling approximations. Indeed, even if the pro-
posed identification method is polarized toward temperature
overestimation, we do not formally guarantee that the MPC pre-
serves feasibility for the actual system. For this, we rely on the
ultimate thermal capping layer. Nevertheless, the distributed
MPC based on the simplified, discretized models must admit
feasible solutions at any time. To this aim, we carry out a feasi-
bility test based on (Löfberg, 2011) and check the consistency
of the identified models w.r.t. the properties of thermal systems.

The paper is organized as follows. In Section 2, we for-
mulate the thermal management problem in MPSoCs. In Sec-
tion 3, after presenting the PDE thermal model and its prop-
erties, constraint reduction and feasibility issues are treated
to derive the ultimate thermal capping strategy. In this re-
spect, very preliminary results were given (Tilli et al., 2012)
for the centralized scenario. Here we address the decentral-
ized scenario and non-zero minimum power, leading to rele-
vant upgrades in the control strategy. In Section 4, we de-
fine an H∞ identification/model-reduction problem to obtain
distributed models and to improve feasibility preservation. In
this regard, the approach proposed in (Löfberg, 2011) has been
integrated and adapted to our discretization process to discard
models that cannot ensure MPC feasibility. The architecture of
our two-layers distributed control solution is then presented in
Section 5, proposing an efficient and reliable, even if heuris-
tic, tuning procedure to obtain performance optimization and
feasibility preservation. Finally, Sections 6 and 7 respectively
provide simulation results and a conclusive discussion.

2. Thermal control of MPSoCs

MPSoCs integrate on a single chip substrate memory hier-
archies, I/O components, and cores, i.e., processing units con-
nected all together by on-chip networks. From a constructive
point of view (see Fig. 1b), the chip architecture is designed to
favor heat flow from the active silicon device to the heat sink,
that is, from where heat is generated to where it is removed
towards the ambient (Mallik et al., 2008). The primary heat
sources are localized on cores where the highest power is con-
sumed and where thermal criticalities usually occur (Hamann
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Figure 1: Chip thermal architecture.

et al., 2007). This motivates the choice, quite common in litera-
ture, of considering simple thermal models with only cores and
cache components for simulations (see Fig. 1).

As previously mentioned, architecture-level design solutions
(STM) cannot entirely remove the heat dissipated on the chip
due to high power densities. This limit can be addressed with
run-time techniques (DTM), which use introspective monitors,
sensors, and performance knobs available in modern MPSoCs
to maximize computational performance, maintaining the chip
temperature below a preset threshold. Recent literature pre-
sented many variants of MPC-based DTM schemes for manag-
ing thermal issues in MPSoCs (see (Zanini et al., 2009) (Wang
et al., 2009) and references therein). The common idea is to
act on core frequencies with the twofold objective of meeting
the temperature constraints and tracking the frequency targets
requested by a high-level SoC manager.

For an MPSoC composed of nC cores, the prototype of the
MPC optimization problem can be formulated in discrete-time
and discrete-space, with nT points selected to represent the die
thermal state, as follows:

min
fC (t|t),..., fC (t+N−1|t)

N−1∑
k=0

| fT (t + k|t) − fC(t + k|t)|2Q

subj. to: T j(t+k+1|t)≤TCRIT, j∈{1, . . . , nT }, k∈{0, . . . ,N − 1},
1nC fmin≤ fC(t +k|t)≤ 1nC fmax, k∈{0, . . . ,N − 1},

(1)

where N is the prediction horizon (i.e. the number of steps
ahead to be evaluated to make an optimal decision at time t)),
fC = [ fC,1, . . . , fC,nC ]> ∈ RnC are the frequencies assigned to
the cores, fT = [ fT,1, . . . , fT,nC ]> ∈ RnC are the core target fre-
quencies, Q ∈ RnC×nC is a symmetric positive definite matrix,
and | · |Q denotes the norm induced by it, i.e., |x|Q B

√
x>Qx.

TCRIT and T j, j = 1, . . . , nT , are respectively the critical tem-
perature and the states of the reduced-order model. Finally, ≤ is
used to denote the element-wise inequality and 1nC is a column
vector of all ones of dimension nC .

In problem (1), we implied that a model is available to relate
the core frequencies (and the ambient temperature) with future
core temperatures (see, e.g., (Zanini et al., 2009; Ladenheim
et al., 2018)). Specifically, the notation T j(t + k|t), fC(t + k|t),
and fT (t + k|k), k ∈ N, is used to indicate, respectively, the
estimated temperature, the assigned frequencies, and the target
frequencies for the future time t + k. The prediction model is
also required to perform such estimation, and thus, formulate
the MPC problem. Such a model can be written as:

x(t + 1) = α(x(t)) + β( fC(t),w(t), e(t))
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with state x ∈ RnT collecting all the nT points temperatures,
α(·) : RnT → RnT a state function taking into account the cou-
pling of one state to the others, β(·) an input function of proper
dimensions, taking into account the effect of controlled inputs
(like fC ∈ RnC ), and other not directly controllable inputs or ex-
ternal factors (e.g., the ambient conditions), denoted with vec-
tors w ∈ RnC and e ∈ RnC respectively. While α(·) is usually
linear, β(·) is not, although with some change of coordinates
the thermal model can be considered linear. However, we do
not further explicit this reasoning here, because we pursue a
distributed approach also at the modeling level (i.e., not just de-
composing the optimization problem), and some of these con-
cepts are presented later on concerning the proposed solution.

The above approach is usually referred to as centralized be-
cause the decision variables (i.e., the frequencies assigned to
each core) result from the solution of a unique problem run-
ning on a single processor. However, the complexity of problem
(1) does not scale well with the number of cores (Christofidesa
et al., 2012). For this reason, in the following, we provide a
distributed reformulation characterized by a set of local con-
trollers, each one supervising the temperature of one core or
a group of cores. Choosing Q = InC and assuming to use a
controller for each core i, we can consider a local optimization
problem of the form

min
fC,i(t|t),..., fC,i(t+N−1|t)

N−1∑
k=0

| fT,i(t + k|t) − fC,i(t + k|t)|2

subj. to: Ti(t +k +1|t)≤ TCRIT, k ∈ {0, . . . ,N − 1},
fmin ≤ fC,i(t +k|t)≤ fmax, k ∈ {0, . . . ,N − 1},

(2)

where Ti is the temperature representing the i-th core’s thermal
status. Although the local problems appear to be independent,
they are actually coupled since the temperature of each core
influences the thermal state of the neighbors.

Following (Bartolini et al., 2012), in this work we consider
a slightly modified formulation of problem (2) where the target
and commanded frequencies ( fT,i and fC,i) are replaced with the
target and commanded power consumptions, denoted respec-
tively with PT,i and PC,i. In general, the power consumption Pi

of each core i can be expressed as a nonlinear function depend-
ing on the core frequency fi and other measurable parameters
wi related to core voltages and workloads. In particular, it holds
that

Pi = g( fi,wi), (3)

where g(·,wi) is assumed to be known and invertible in
[ fmin, fmax], for all wi ∈ W, whereW is the range of all possi-
ble workloads and voltages.

By inverting the static map (3) with known wi, the power
commands can be translated into frequencies, which are the ac-
tual MPSoC control inputs. We emphasize that the map g(·,wi)
is assumed to be known, as its identification is not the focus
of this work. However, its definition is not a trivial task for
MPSoC thermal control (we refer to (Bartolini et al., 2012) and
references therein for details). Therefore, the prototype of the

control problem becomes, for all i:

min
PC,i(t|t),...,PC,i(t+N−1|t)

N−1∑
k=0

|PT,i(t + k|t) − PC,i(t + k|t)|2

subj. to: Ti(t +k +1|t)≤ TCRIT, k ∈ {0, . . . ,N − 1},
Pmin ≤ PC,i(t +k|t)≤ Pmax, k ∈ {0, . . . ,N − 1},

(4)

where the power consumption bounds are given as follows to
account for the worst-case scenario of the workload:

Pmin B max
w∈W

min
f∈[ fmin, fmax]

g( f ,w)

Pmax B min
w∈W

max
f∈[ fmin, fmax]

g( f ,w).
(5)

Compared to the formulation (2) the advantage of (4) is that,
after the input transformation, the chip thermal model can be
considered reasonably linear. Indeed, almost all the nonlinear-
ity is contained in the algebraic function g(·), because, apply-
ing thermodynamic first principles, the temperature dynamics
is linear w.r.t. the power balance. In particular, see (Bartolini
et al., 2012), the discrete-time discrete-space model included as
equality constraint in (4) is a linear time-invariant (LTI) system
having the following structure:

xi(t + 1) = Aixi(t) + Bi
[
PC,i(t) Tamb(t) Tn,i(t)

]>
Ti(t) = Cixi(t)

(6)

where xi is the state, Ai, Bi, and Ci are matrices of appropriate
dimension, Tamb is the ambient temperature, and Tn,i are the
temperatures of neighbor cores that influence the temperature
of the i-th core. These neighbors are usually selected according
to the chip floorplan, but the discretization sampling time needs
to be considered as well.

In the general framework, the local MPC selects at each time
step t the sequence of powers PC,i(t), . . . PC,i(t+ N−1) that min-
imizes the cost and meets temperature constraints defined by
problem (4) over an horizon of N time steps, using model (6) to
predict the temperature evolution over such horizon given the
state at time t. The first element of the sequence is then ap-
plied and, repeating the procedure at the next time step, based
on the new state measurement and moving forward the predic-
tion, in a typical receding horizon fashion. An important aspect
to note is that parameters wi, particularly the workload, usually
are not fully known over the prediction horizon. The design of
the controller must account for these issues. This unpredictabil-
ity can be handled assuming low variability between sampling
instants, that is, choosing wi(t) = wi(t−1). As regards the num-
ber of inputs and the order of the model, which characterize its
complexity, they can be set according to experimental tests and
physics-based considerations (Bartolini et al., 2012). In spite of
the noticeable literature related to problems (1), (2), and even
(4), to the best of the authors’ knowledge, the following essen-
tial issues have not been entirely addressed, and they should be
more rigorously assessed to obtain more effective control solu-
tions.

• Feasibility of the control problem must be verified over
different prediction horizons, taking into account that the
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constraint on maximum temperature must be met over all
the die, not only for the points considered in the spatial
discretization. Here, we leverage the PDE thermal model
properties to draw general results, which are not influ-
enced by potential side-effects due to time- and space-
discretization adopted in control-oriented modeling.

• Rules for model discretization must be stated. A pre-
diction model should be simple, yet accurate, to limit
the computational effort and capture the die temperatures.
Discretization allows model simplification, but accuracy is
penalized. In this paper, we exploit the structural proper-
ties of thermal systems to capture the points where the die
temperature attains its maximum, keeping the model and
problem complexity as low as possible.

3. Feasibility properties in the PDE framework

In this section, we present properties useful for designing a reli-
able and efficient controller for thermal systems subject to uni-
form maximum temperature constraints. Firstly, we use such
results to simplify the control problem formulation, reduce the
number of constraints, and prove control feasibility. To gen-
erally treat the whole class of thermal systems, independently
of time- and space-discretization or other approximations, we
model heat conduction in continuous-time for a generic open
volume V using the following PDE:

ρc ∂T (x,t)
∂t − α∇2T (x, t) = q(x, t), (x, t) ∈ V × [0, τ),

T (x, 0) = T0(x), x ∈ V,
T (x, t) = T∂V (x, t), (x, t) ∈ ∂V × [0, τ),

(7)

where the first line is the well-known heat equation, α is the
material conductivity, ρ its density, and c its specific heat. In
addition, ∂T (x, t)/∂t is the temperature variation over time, ∇2T
denotes the divergence of the temperature gradient (Laplacian),
while [0, τ) is the time interval, and q is the thermal power gen-
erated by internal sources. The second and third equations de-
fine the initial temperature and conditions on the boundary of
the volume ∂V , respectively. These equations are usually given
as Dirichlet boundary conditions (DBCs), where T (x, t) is com-
pletely known on the boundary (i.e., for all x ∈ ∂V and all
t ≥ 0). Such conditions need to be set according to the Third
Principle of Thermodynamics, i.e., forcing the temperature evo-
lution to be always positive. Hence, expressing the temperature
in Kelvin degrees, the following additional constraints have to
be considered:

T0(x) ≥ 0, ∀x ∈ V,

T∂V (x, t) ≥ 0, ∀(x, t) ∈ ∂V × [0, τ).
(8)

Remark 1. It is also worth noting that the classical Fourier-
based heat equation, used in this work to model thermal sys-
tems, assumes an infinite speed of heat propagation. To account
for the boundedness of the propagation speed, we should use
hyperbolic instead of parabolic equations, considering second-
order time derivative, or use a nonlinear parabolic equation

Ωτ

dV

Γτ

V

t

Figure 2: Parabolic cylinder for the 2D volume V .

like the Porous Medium Equation. However, considering the
transmission speed of the heat in silicon and the small sizes of
chips, the classical linear PDE is a valid approximation.

In the following, we mention a fundamental property of ther-
mal systems that allows to infer where the maximum tempera-
ture occurs in the absence of heat sources. This result, known
as Maximum Principle, will be useful for the successive proofs.

Maximum Principle (Evans, 1998; Strauss, 1992): For a
heat equation of the form (7), consider the parabolic cylinder
Ωτ and the parabolic boundary Γτ (both portrayed in Fig. 2)
respectively defined as:

Ωτ := V × (0, τ], Γτ := Ω̄τ \Ωτ = V̄ × [0, τ] \Ωτ, (9)

where ¯(·) indicates the closure of a set. Let T (x, t) be the solu-
tion to the heat equation for q(x, t) = 0, and suppose that T (x, t)
is sufficiently smooth, i.e., T (x, t) ∈ C2(Ωτ) ∩ C(Ω̄τ). Then,

1. (weak maximum principle):

max
(x,t)∈Ω̄τ

T (x, t) = max
(x,t)∈Γτ

T (x, t), i.e., Γτ∩[argmax
(x,t)∈Ω̄τ

T (x, t)] , ∅.

2. (strong maximum principle): if V is connected and there
exists a point (xm, tm) ∈ Ωτ such that,

T (xm, tm) = max
(x,t)∈Ω̄τ

T (x, t), i.e., Ωτ ∩ [argmax
(x,t)∈Ω̄τ

T (x, t)] , ∅,

then T (x, t) is constant in Ω̄τ.

In other words, the maximum temperature is found at the
boundaries of the parabolic cylinder.

3.1. Constraint reduction

The key target of the predictive controller is to limit the tem-
perature of the volume V under a specified threshold. This
would lead to an optimization problem with an infinite num-
ber of constraints, one for each infinitesimal volume element.
Starting from the maximum principle, we show how to reduce
constraints to a finite number, making the controller imple-
mentable, and reducing its complexity.

The next result generalizes the Maximum Principle for the
scenarios where the heat equation is affected by ns heat sources.
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Proposition 1. For problem (7), (8), suppose that q(x, t) , 0
only if x ∈ Vs =

⋃ns
i=1 Vs,i, where Vs,i ⊂ V is a compact con-

nected set, for all i ∈ {1, . . . , ns}. Then, the maximum tempera-
ture is found in Γτ (see (9)) or inVs × [0, τ).

Proof. Since (7) is a Cauchy problem, it admits a unique solu-
tion T̄ (x, t). Consider now the Cauchy problem restricted to the
volume outside the heat sources belonging toVs:

ρc ∂T
∂t (x, t) − α∇2T (x, t) = 0, x ∈ V \ Vs, t ∈ [0, τ),

T (x, 0) = T0(x), x ∈ V \ Vs,

T (x, t) = T∂V (x, t), x ∈ ∂V, t ∈ [0, τ),
T (x, t) = T̄ (x, t), x ∈ ∂Vs, t ∈ [0,τ).

(10)

Applying the maximum principle, the highest temperature is at
t = 0 or on ∂V ∪ ∂Vs, i.e.:

max
(x,t)∈V\Vs×[0,τ)

T̄ (x, t) = max
(x,t)∈{V\Vs×{0}}∪{{∂V∪∂Vs}×[0,τ)}

T̄ (x, t),

hence:

max
(x,t)∈Ω̄τ

T̄ (x, t) = max
(x,t)∈{V×{0}}∪{∂V×[0,τ)}∪{Vs×[0,τ)}

T̄ (x, t).

We present an immediate consequence of the above proposi-
tion that will be useful for control design.

Corollary 1. Consider problem (7), (8) with ns heat sources
as in Proposition 1, and suppose that the initial and boundary
temperatures are lower than TCRIT. Then, the solution T (x, t)
satisfies T (x, t) ≤ TCRIT, for all x ∈ V, if and only if the maxi-
mum temperature on sources is always lower than TCRIT.

Fig. 3 illustrates the temperature distribution in two subse-
quent time instants. In Fig. 3-(a) the maximum temperatures
are attained on the two sources, in which we applied a 20W
power. Then, after removing powers (see Fig. 3-(b)), the max-
imum temperature moves to a middle point, not corresponding
to any sources, but with a magnitude far lower than the initial
one. The main consequence of the propositions above is that
constraints violations will happen on sources first, provided that
the boundary temperatures and the initial condition are feasible
(i.e., below the temperature threshold). According to this result,
and with the further assumption that each source can be treated
as an isolated point (usually reasonable in MPSoCs), i.e.:

Vs =

ns⋃
i=1

xs,i, xs,i ∈ V,∀i ∈ {1, . . . , ns}, (11)

it follows that we can convert the infinite-dimensional con-
straints into a finite-dimensional formulation given by:

T (xs,i, t) ≤ TCRIT, ∀i ∈ {1, . . . , ns}. (12)

[K
]

[K
]

Figure 3: Two sources simulation: a) 20W per source; b) 0W per source.

3.2. Feasibility

A fundamental requirement for MPC schemes is recursive fea-
sibility, i.e., if a control input sequence meeting the constraints
exists at time t = 0, then it will also exist for all t > 0. In
the MPC literature, such property is enforced by using ade-
quate prediction horizons, terminal cost, invariant terminal sets,
etc. (Bemporad and Morari, 1999; Rawlings and Mayne, 2009).
However, these indirect methods come with some limitations,
since they augment the controller complexity (Gondhalekara
et al., 2009; Löfberg, 2011). In this subsection, our aim is
to prove that for both the centralized problem (1) and the dis-
tributed problems (2), (4) we can find feasible solutions that do
not rely on accurate model knowledge and are effective for any
initial temperature distribution in the admissible set. In this per-
spective, we propose a reasonable requirement for the boundary
conditions.

Assumption 1. For the problem (7), (8), it holds that:

• T0(x) ≤ TCRIT, for all x ∈ V;

• T∂V (x, t) ≤ TCRIT, for all (x, t) ∈ ∂V × [0, τ).

The first step in our development is captured by the following
result, obtained in the absence of internal heat sources.

Proposition 2. For the problem (7), (8), let Assumption 1 hold,
and suppose that

q(x, t) = 0, ∀(x, t) ∈ V × [0, τ). (13)

Then, it holds that T (x, t) ≤ TCRIT, for all (x, t) ∈ V × [0, τ).

Proof. The result follows from Corollary 1 by letting Vs = ∅.

In the MPC context, the above statement implies that if the
constraints are not violated at a given time, then the null in-
put action (i.e., zeroing all the sources) always ensures con-
straint satisfaction. This way, feasibility of the centralized con-
trol problem (1) is guaranteed for any prediction horizon.

Remark 2. A physical interpretation of this property is given
recalling that, according to the Second Principle of Thermody-
namics, heat flow cannot be directed as the temperature gra-
dient. Hence, no inductive storage elements can be present in
thermal systems and, consequently, no free resonant or double
integrative behavior can arise in the absence of heat sources.
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For what concerns the feasibility of decentralized/distributed
solutions, a crucial point is to define the “perimeter” of the local
controllers and the information available to each of them. By
Proposition 1, the requirement to prevent temperatures larger
than TCRIT all over the system can be achieved by preventing
over-temperature on the sources (assuming suitable initial and
boundary conditions). Then, following the formulation of (4),
a local controller is employed for each source xs, i in (11): each
controller can read its own source temperature and act on its
local power, while it has to comply with the local constraint
T (xs,i, t) ≤ TCRIT.

At this stage, no information on the rest of the system is con-
sidered available, i.e., we consider a decentralized control sce-
nario. In such scenario, the previous result for the centralized
problem (1) suggests that shutting down a single core should
guarantee no over-temperature for that source, assuming that
the others have no over-temperature as well. In other words,
whenever a core is approaching dangerous temperature values,
the local decision of reducing its power should be enough to
prevent local constraint violation, without requiring the reduc-
tion of power of all the other cores, provided that each of them
is meeting its local thermal bound. This property, crucial for
decentralized feasibility, holds true as stated in the following
proposition.

Proposition 3. Consider problem (7), (8), with heat sources
defined as in (11). Let Assumption 1 hold, and suppose that

q(x, t) = 0, ∀(x, t) ∈ {V\Vs} × [0, τ). (14)

Then, for each source xs,i ∈ Vs, the local decision of imposing
q(xs,i, t) = 0, t ∈ [0, τ), guarantees T (xs,i, t) ≤ TCRIT for all
t ∈ [0, τ) if T (xs, j, t) ≤ TCRIT for all of the other sources j ∈
{1 . . . ns}, j , i, and all t ∈ [0, τ).

Proof. As soon as q(xs, i, t) is zeroed in a source xs, i, this be-
comes equivalent to a no-source point in V , then the result fol-
lows from Proposition 1.

In the analysis above, the possibility of imposing zero power
on sources is a key element to achieve important properties
in the path toward the feasibility of both centralized and dis-
tributed control problems (1), and (4). In real chips, it is hard
and possibly harmful to have a sudden zeroing of the core power
consumption (i.e., abruptly halting the core activities). The
standard procedure is to slow down the clock frequency of the
cores to a lower limit fmin, thus reducing the source powers to a
value which can be upper bounded, considering the worst-case
scenario for wi. Here, we refer to this upper bound of the mini-
mal source power as qmin.

This situation cannot be covered by the results of Proposi-
tions 2 and 3. However, taking inspiration from them, and in-
troducing a suitable thermal constraint review, similar results
with non-zero minimum power can be obtained as shown in
the following. Define TEQ(x) as the solution of the following
Cauchy problem−α∇2T (x) = qmin(x), x ∈ V,

T (x) = T∂V,max(x), x ∈ ∂V,
(15)

TCRIT

TCRIT

TEQ

∆TCRIT

Figure 4: Graphical interpretation of the new bound T̄CRIT

where qmin(x) is the minimum power which can be dissipated
in any source, and T∂V,max(x) is the largest ambient tempera-
ture that can be experienced by the chip on its boundary. Ac-
cording to its definition, TEQ(x) corresponds to the steady-state
temperature distribution for the system (7) under minimum
power consumption and highest ambient temperature. Obvi-
ously, TEQ(x) < TCRIT, for all x ∈ V̄ is guaranteed by a proper
sizing of the chip, otherwise the thermal constraints could not
be met. In addition, by Proposition 1, it follows that the maxi-
mum value of TEQ(x) is located on sources or boundaries, i.e.:{

arg max
x∈V̄

TEQ(x)
}
∩ {Vs ∪ ∂V} , ∅.

Then, defining

∆TCRIT B min
x∈V̄

(
TCRIT − TEQ(x)

)
, (16)

it results

∆TCRIT = min
x∈∂V∪Vs

(
TCRIT − TEQ(x)

)
> 0. (17)

At this point, a crucial modification of the temperature bound
needs to be introduced. We define the constraint T̄CRIT(x) as
follows

T̄CRIT(x) B TEQ(x) + ∆TCRIT, x ∈ V̄ . (18)

The meaning of this new bound is graphically represented in
Fig. 4, for a simple one-dimensional thermal system. Note that
the new bound T̄CRIT(x) is tighter than TCRIT, but this restric-
tion is fundamental for feasibility in real scenarios. Firstly, we
modify Assumption 1 to ensure desirable boundary conditions.

Assumption 2. For the problem (7), (8), it holds that:

• T0(x) ≤ T̄CRIT(x), for all x ∈ V;

• T∂V (x, t) ≤ T̄CRIT(x), for all (x, t) ∈ ∂V × [0, τ).

The following results are generalizations of Propositions 2
and 3.

Proposition 4. For the problem (7), (8), let Assumption 2 hold,
and suppose that

q(x, t) = qmin(x), ∀(x, t) ∈ V × [0, τ). (19)

Then, it holds that T (x, t) ≤ T̄CRIT(x), for all (x, t) ∈ V × [0, τ).

Proof. Without loss of generality, suppose that T∂V (x, t) =

T∂V,max(x) as in (15), for all (x, t) ∈ ∂V × [0, τ). Applying
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the superposition principle, we can rewrite the heat equation
ρcṪ (x, t) − α∇2T (x, t) = qmin(x) as follows

ρc
∂∆T
∂t

(x, t) − α∇2∆T (x, t) = 0, (20)

where ∆T (x, t) B T (x, t) − TEQ(x). The following bound-
ary conditions hold: ∆T0(x) ≤ ∆TCRIT, for all x ∈ V and
∆T∂V (x, t) ≤ ∆TCRIT, for all (x, t) ∈ ∂V × [0, τ). Note that
system (20) has the same structure of (7). Applying the Max-
imum Principle, we obtain ∆T (x, t) ≤ ∆TCRIT, and T (x, t) ≤
TEQ(x) + ∆TCRIT = T̄CRIT(x) for all (x, t) ∈ V × [0, τ).

Proposition 5. Consider problem (7), (8), with heat sources
defined as in (11). Let Assumption 2 hold, and suppose that

q(x, t) = qmin(x), ∀(x, t) ∈ {V\Vs} × [0, τ). (21)

Then, for each source xs,i, the local decision of imposing
q(xs,i, t) = qmin(xs,i), t ∈ [0, τ), guarantees T (xs,i, t) ≤
T̄CRIT(xs,i), for all t ∈ [0, τ), as long as T (xs, j, t) ≤ T̄CRIT(xs, j)
for all other sources j ∈ {1 . . . ns}, j , i, and all t ∈ [0, τ).

Proof. As in the proof of Proposition 4, suppose that T∂V (x, t) =

T∂V,max(x) as in (15), for all (x, t) ∈ ∂V × [0, τ). By defining
∆T (x, t) B T (x, t) − TEQ(x) and ∆q(x, t) B q(x, t) − qmin(x)
(where ∆q(·), q(·) and qmin(·) can be non-zero in xs,i, i ∈
{1, . . . , ns}), the temperature dynamics can be rewritten as fol-
lows, again exploiting the superposition principle

ρc
∂∆T
∂t

(x, t) − α∇2∆T (x, t) = ∆q(x, t). (22)

This equation has the same structure of (7), thus it inherits
all of its features. In addition, according to (18), the bound
T̄CRIT(x) is mapped into a constant threshold ∆TCRIT. There-
fore, as soon as q(xs,i, t) = qmin(xs,i) is imposed in a source point
xs,i, ∆q(xs,i, t) is zeroed, and this point becomes equivalent to a
no-source point in V for (22). Then, according to Proposition 1,
the maximum of ∆T (x, t) occurs on the remaining sources xs, j,
j ∈ {1 . . . ns}, j , i or at the initial condition, or on the bound-
aries. In these regions, ∆T (x, t) is always lower than ∆TCRIT by
assumption, therefore the result follows.

With the above results at hand, the feasibility properties of
the centralized and distributed problems (1) and (4) are formally
stated as follows.

Proposition 6. Centralized Feasibility.
Consider problem (7), (8), with heat sources defined as in (11).
Let Assumption 2 hold with τ = ∞ for simplicity, and suppose
that

q(x, t) = qmin(x), ∀(x, t) ∈ V × [0,∞). (23)

Consider the control input u(t) B [q(xs,1, t), . . . , q(xs,ns , t)] ∈
Rns and suppose that there exist a scalar ∆ > 0 and a controller
ū(·) such that the constraints (12) are satisfied for t ∈ [0,∆] if
u(t) = ū(t), for all t ∈ [0,∆]. Then, for any t′ ∈ [0,∆], it is
possible to compute a controller ū′(·) such that the constraints
(12) are satisfied over [0, t′ + ∆] if u(t) = ū(t) for t ∈ [0, t′) and
u(t) = ū′(t) for all t ∈ [t′, t′ + ∆].

Proof. For t ∈ [t′, t′ + ∆], define ū′(·) as follows:

ū′(t) =

ū(t), t ∈ [t′,∆)
[qmin(xs,1), . . . , qmin(xs,ns )]

>, t ∈ [∆, t′ + ∆].
(24)

The result follows from Proposition 4.

Proposition 7. Decentralized Feasibility.
Consider problem (7), (8), with heat sources defined as in (11).
Let Assumption 2 hold with τ = ∞ for simplicity, and suppose
that

q(x, t) = qmin(x), ∀(x, t) ∈ {V\Vs} × [0,∞). (25)

For all i ∈ {1, . . . , ns}, define the control input ui(t) B q(xs,i, t)
and consider the constraints (12). Suppose that for a generic
source i ∈ {1, . . . , ns} there exist ∆i > 0 and a controller ūi(·)
such that the local decision of imposing ui(t) = ūi(t), for all
t ∈ [0,∆i], ensures T (xs,i, t) ≤ T̄CRIT(xs,i) over [0,∆i] as long as
T (xs, j, t) ≤ T̄CRIT(xs, j), for all other sources j ∈ {1 . . . ns}, j , i,
and all t ∈ [0,∆i]. Then, for any t′ ∈ [0,∆i] it is possible to
compute a controller ū′i(·) such that:

1. if ui(t) = ūi(t) for t ∈ [0, t′) and ui(t) = ū′i(t) for t ∈
[t′, t′ + ∆i], then the local constraint T (xs,i, t) ≤ T̄CRIT(xs,i)
is satisfied over [0, t′ + ∆i] if T (xs, j, t) ≤ T̄CRIT(xs, j), for all
other sources j ∈ {1 . . . ns}, j , i, and all t ∈ [0, t′ + ∆i];

2. the local control strategy applied to the source i does not
prevent the other sources from meeting their local con-
straint T (xs, j, t) ≤ T̄CRIT(xs, j) exploiting the same strategy;

3. ū′i(·) can be selected in a decentralized way, i.e., without
any information on the variables and the controllers of the
other nodes.

Proof. For t ∈ [t′, t′ + ∆i], define ū′i(·) as follows:

ū′i(t) =

ūi(t), t ∈ [t′,∆i)
qmin(xi,1), t ∈ [∆i, t′ + ∆i],

(26)

which is decentralized and ensures feasibility in view of Propo-
sition 5. Concerning point 2, by Proposition 4 it follows that
all of the local controllers can apply ui(t) = qmin(xs,i), for all
t ∈ [t′, t′ + ∆i], guaranteeing feasibility. Moreover, consider-
ing a generic j ∈ {1 . . . ns} and defining two disjointed subsets
of sources, S 0 and S s, not including j, but covering all of the
sources (i.e., S 0 = {n : n ∈ {1 . . . ns}, n , j}, S s = {m : m ∈
{1 . . . ns}, m , j}, S 0∩S s = ∅, S 0∪S s = {1 . . . j−1, j+1 . . . ns}),
if all the sources in S 0 apply un(t) = qmin(xs,n), for all t ∈
[t′, t′ + ∆i], and those in S s meet their own local constraints
T (xs,m, t) ≤ T̄CRIT(xs,m), for all t ∈ [t′, t′+∆i], then, in the source
j it is possible to apply u j(t) = qmin(xs, j), for all t ∈ [t′, t′ + ∆i],
guaranteeing T (xs, j, t) ≤ T̄CRIT(xs, j), for all t ∈ [t′, t′+∆i]. Thus,
also point 2 is proven.

It is further to remark that the above results hold for any pos-
itive prediction horizon, which can be selected arbitrarily small
without impairing feasibility. Hence, there is room to preserve
feasibility until the current temperature reaches the bound, both
in the centralized and distributed approach.
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Another relevant point to highlight is the use of T̄CRIT(x) ≤
TCRIT instead of TCRIT. This is not just a technical point related
to the available theoretical tools, but it accounts for possible
practical troubles in the thermal behavior. As a matter of fact,
when a core (or any heat source) needs an indirect path through
its neighbors to expel its heat and keep a safe temperature (i.e.,
it has no direct path toward the external ambient that is efficient
enough), the neighbors are required to keep temperature lower
than the maximum, to give room to the heat flow coming from
the above-mentioned core. Clearly, this characteristic strongly
depends on the considered system’s layout and thermal resistiv-
ity and should be carefully addressed in the multicore design.

3.3. Model-free temperature capping control

The above results guarantee feasibility by applying minimum
power consumption at each core. No accurate thermal model
knowledge is required to define the considered control strat-
egy. The centralized feasibility of Proposition 6 is essentially
based on the observation that, by switching all the cores to the
minimum power, the maximum temperature along the chip will
never increase. The distributed feasibility of Proposition 7 al-
lows to recover this property locally to each source, without
needing any information exchange but just assuming, in a local
controller, that all of the others are working correctly. This can
be achieved at the cost of replacing the uniform bound TCRIT
with the variable bound T̄CRIT(x).

At first glance, these results could seem of little practical in-
terest, since they just provide the trivial solution of switching to
minimum power the cores to meet the temperature constraints,
but they do not define any algorithm to find other feasible so-
lutions which maximize the computing power, as reported in
problems (1) and (4). To this aim, in the following, algorithms
based on approximated discretized models will be presented,
also exploiting information exchange between controllers for
the distributed case. Nevertheless, the above feasibility results
play a fundamental role for practical applications. Indeed, by
using algorithms based on approximated discrete models, tem-
perature constraint violation in the real system could be expe-
rienced. This inconvenience can be prevented, according to
the above feasibility results, by adding an ultimate model-free
decentralized temperature capping control layer on each local
i-th source. As soon as T (xs,i, t) approaches T̄CRIT(xs,i), this
control layer has to override the optimizing controller and im-
pose q(xs,i, t) = qmin(xs,i) for a suitable time interval to obtain
T (xs,i, t) sufficiently lower than T̄CRIT(xs,i).

4. Finite-dimensional discrete-time modeling oriented to
distributed MPC

In the remainder of this work, we focus on the distributed
control problem (4). For each core, we implement a local,
discrete-time MPC controller that supervises its temperature.
The objectives are to ensure feasibility through the results of
Section 3 and to maximize performance. To pursue the latter
goal, in contrast to the ultimate model-free temperature capping

control strategy described in the previous section, each local
controller needs a thermal model of the core to predict future
temperatures and a framework to exchange information with
the neighbor cores. In this respect, designing the local thermal
model is a crucial task: it must be simple to limit the compu-
tational burden yet accurate enough to minimize temperature
prediction errors and meet the feasibility properties of the orig-
inal system. Indeed, whereas the linear, continuous-time PDE
model presented in the previous section always ensures feasi-
bility, no similar features exist, in general, for its discrete-time
discrete-space approximations. The following assumptions are
made to design the local models (Bartolini et al., 2012):

• as mentioned in Section 2, a function of the form Pi =

g( fi,wi) as in (3) maps the frequency fi and the workload
wi of each core i into the corresponding power consump-
tion. It follows that the thermal model used for prediction
in the i-th local controller is linear;

• according to the literature on MPSoCs, a second-order
model is sufficiently rich to capture the main dynamics of
each core;

• each local controller is only affected by the North, South,
East, and West adjacent cores (if present), according to
heat diffusion and sampling time considerations. By (7),
interaction among cores is directly proportional to time in-
tervals and inversely related to spatial distance. Thus, if
the discretization time is short enough, it can be assumed
that the thermal state of a core between two sampling in-
stants will be mainly affected by its closest neighbor, its
thermal power, and the ambient temperature.

To obtain an accurate finite-dimensional discrete-time model
from the original heat equation (7), we adopt system identifi-
cation tools. According to the assumptions above, the struc-
ture selected for the identification of the core local model is a
second-order Multi-Input Single-Output (MISO) system

T̂i(t) = a1,iTi(t−1)+a2,iTi(t−2)+b>1,iui(t−1)+b>2,iui(t−2) (27)

where T̂i is the temperature prediction, Ti is the measured
temperature of the i-th core in its hottest point, ui B
[PC,i Tamb Tn,i]> is the vector of inputs, where PC,i is the power
consumed by the core, Tamb is the ambient temperature, while
Tn,i B [Tn1,i · · · Tnq,i]> are the temperatures of the q cores
adjacent to i. Scalars a1,i, a2,i and vectors b1,i, b2,i are to be de-
termined with the identification process, based on the available
output Ti and inputs ui, with the aim of minimizing a prede-
fined objective function, possibly under constraints. Define the
prediction error ei(t) B Ti(t) − T̂i(t). Then, exploiting (27), we
adopt anH∞-like identification problem formulated as

min
s1,...,sM ,ai1,ai2,bi1,bi2

M∑
k=1

sk

subj. to: ei(t − k) ≥ −sk

sk ≥ 0

 k ∈ {1, . . . ,M},

(28)
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where M denotes the time window selected for the identifica-
tion. The model parameters computed from (28) ensure T̂i ≥ Ti

at all times. This result is instrumental in achieving robust
and reliable thermal control since overestimated temperatures
reflect more aggressive control actions, preventing the system
from hitting critical temperatures.

4.1. Feasibility check for the discretized model

The local model obtained in the previous section is simple
and can provide good accuracy (as shown in Section 6). Unfor-
tunately, the feasibility properties of the physical system (mod-
eled by the heat equation) are not necessarily preserved for the
identified model. Therefore, it is crucial to verify the control
feasibility of each discrete local model. To do so, we resort
to the concept of recursive feasibility and the approach to ver-
ify it, reported in Löfberg (2011). According to the definition,
recursive feasibility is guaranteed if, for every initially feasi-
ble condition (in our case, the core state, ambient, and neigh-
bors thermal status), applying the optimal control input does not
steer the system to an operational point where the control prob-
lem becomes unfeasible. It is well known that such property is
affected by the prediction horizon N. According to the proper-
ties of thermal systems described in Section 3, the subsequent
analysis is carried out for N = 1, as we would like the identi-
fied model to match the feasibility properties of the underlying
physical system.

Firstly, we express the discrete-time model of each core i in
the following state-space observable canonical form[

x1,i(t + 1)
x2,i(t + 1)

]
=

[
a1,i 1
a2,i 0

] [
x1,i(t)
x2,i(t)

]
+

[
b>1,i
b>2,i

]
ui(t)

= Ai

[
x1,i(t)
x2,i(t)

]
+ B1,iPC,i(t) + B2,idi(t),

Ti(t) =
[
1 0

]︸ ︷︷ ︸
C

[
x1,i(t)
x2,i(t)

]
,

(29)

where x1,i is the core temperature Ti (available from measure-
ments), while x2,1 a second state completing the second-order
system description, but with no physical interpretation. Also,
we split the input vector ui into the control input PC,i and the
other contributions, collected in di B [Tamb T>n,i]

>.
For simplicity, in the following we drop the subindex i denot-

ing the specific core. Using (29), we can study the feasibility of
optimization problem (4), with N = 1, analyzing the following
quadratic problem

min
PC

P2
C + H(t)PC

subj. to: Ex(t) + FPC ≤ G(d(t)),
(30)

where H(t) B −2PT (t), and

E B

 CA
01×2
01×2

 , F B

CB1
1
−1

 , G(d) B

T̄CRIT −CB2d
Pmax
−Pmin

 , (31)

where d(t) is available for measurement, assuming that at the
discrete-time instant t each core i can communicate Ti(t) with
its neighbors.

In the following, we check recursive feasibility for problem
(30) by ensuring that, for a feasible initial state x(t) and a dis-
turbance d(t) ranging in a compact set D, it is possible to find
PC(t + 1) such that:

E(Ax(t) + B1P∗C(t) + B2d(t)) + FPC(t + 1) ≤ G(d(t)), (32)

where, for simplicity, we assumed that the disturbance d(·) is
constant over {t, t+1}, thus the constraints (30) can be applied in
t+1 as Ex(t+1)+FPC(t+1) ≤ G(d(t)). Exploiting (32), we can
thus verify if there exist x(t), d(t) such that (30) is recursively
feasible. Equivalently, it is possible to invoke Farkas’ Lemma
as in (Löfberg, 2011) to ensure that there is no vector y(t) such
that the following conditions are verified:

y(t) ≥ 0 y(t)>F = 0
y(t)>[G(d(t)) − E(Ax(t) + B1P∗C(t) + B2d(t))] < 0.

(33)

Therefore, starting from a feasible state x(t), with admissible
disturbances d(t) ∈ D, and applying P∗C(t), if there exists y(t)
satisfying (33), the control problem is unfeasible at the time
instant t + 1. According to (Löfberg, 2011), we define the fol-
lowing two-level optimization problem (with an outer problem
containing an inner one in the constraints) to check the consis-
tency of Farkas’ Lemma conditions

min
y,x,d

y>[G(d) − E(Ax + B1P∗C + B2d)] (34a)

subj. to: y ≥ 0, y>F = 0, (34b)
x ∈ X, d ∈ D, (34c)

P∗C = arg min
PC

P2
C + H(t)PC (34d)

subj. to: Ex + FPC ≤ G(d), (34e)

where X is the set of allowed values for x(t), and the cost
function of the outer problem is the third condition of Farkas’
Lemma applied to our problem. Notice that, in this context, it is
simple to determine D, since the ambient temperature can be as-
sumed contained in an interval of the form [Tamb,min,Tamb,max],
while the temperatures of the neighbor cores are constrained to
be less than the corresponding critical thresholds. This way, we
can define D as follows:

D B
{
d = [Tamb Tn1 · · · Tnq]> : Tamb,min ≤ Tamb ≤ Tamb,max,

Tamb,min ≤ Tn j ≤ T̄CRIT,n, j, j ∈ {1, . . . , q}
}
.

(35)

Concerning X, x1 corresponds to the core temperature, thus its
bounds are given by an interval of the form [Tamb,min, T̄CRIT],
while the bounds for x2 are such that x1 at the next time sample
is lower than T̄CRIT:

X B
{
x B [x1 x2]> ∈ R2 : Tamb,min ≤ x1 ≤ T̄CRIT,

a1x1 + x2 + b>1

[
PC

d

]
≤ T̄CRIT,∀PC ∈ [Pmin, Pmax],∀d ∈ D

}
.

(36)
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Replacing the inner convex problem, defined by (34d), (34e),
with the corresponding Karush-Kuhn-Tucker optimality condi-
tions, we obtain the following equivalent problem

min
y,x,d,λ,PC

y>[G(d) − E(Ax + B1PC + B2d)] (37a)

subj. to: y ≥ 0, y>F = 0, y>13 = 1 (37b)
x ∈ X, d ∈ D, (37c)
2PC + H(t) + λ>F = 0, λ ≥ 0, (37d)
G(d) − Ex − FPC ≥ 0, (37e)
λ>[G(d) − Ex − FPC] = 0, (37f)

where λ is the vector of Lagrange multipliers associated with
inequality constraints of the inner problem, and a normalization
constraint on y has been added for numerical reasons.

If Farkas’ conditions hold, then recursive feasibility is not
guaranteed. Indeed, finding a negative (even local) solution to
the problem above, implies that there exists a feasible initial
condition which, after the optimal input is provided, moves to a
point where feasibility can no longer be achieved for the future
steps. This case would stand in clear contrast with the proper-
ties of thermal systems, which have been analyzed in Section 3.
Therefore, if this situation occurs with a set of identified model
parameters, the corresponding model has to be discarded, and
a new identification process must be executed, taking different
exciting traces, inputs, model order, or sampling time, until the
Farkas’ condition is violated, i.e., feasibility is ensured. Note
that, intuitively, recursive feasibility is expected to be achieved
by increasing the model order and reducing the sampling time,
since the resulting discrete-time models become a better ap-
proximation of the original PDE.

With such iterative procedure, the model used in each lo-
cal MPC controller “ideally” ensures a feasible control solu-
tion that prevents T̄CRIT constraint violations. However, many
issues make such an ideal thermal capping method not straight-
forwardly applicable in real-world applications: (i) the obtained
discrete models are approximations of the actual continuous-
time system, (ii) the workload of a core is unpredictable and,
even though the variations between two-time steps are usu-
ally limited, there may be cases for which significant variations
cause wrong predictions, (iii) the identification procedure uses a
set of data collected from the physical system that may not cap-
ture all possible behaviors, causing unexpected outputs (even if
we considered a conservative approach we could not guarantee
the absence of constraint violations), (iv) the behavior of the
system temperature in between the sampling time is unobserv-
able. Therefore, although we build feasible and conservative
(in terms of constraints) models, the feasibility for the actual
system is not guaranteed. In the next section, we present a con-
trol solution that guarantees feasibility and robustness to model
uncertainties in any circumstance.

5. Two-layer distributed control

The challenges related to model uncertainties and workload
unpredictability can be addressed either with a model-free tem-
perature capping control strategy, as proposed in Section 3.3,

or with a fully conservative MPC solution. Both strategies have
pros and cons.

The model-free strategy, not being driven by the model, re-
sults completely immune to uncertainties and unpredictabili-
ties, guaranteeing feasibility, provided that a continuous-time
implementation of the control strategy is assumed. However,
this solution has two main limitations: (i) it strongly impacts
performance due to the intense control chattering between the
desired power and the minimum power, which may also lead to
premature failure of the processor; (ii) it needs a safety margin
on T̄CRIT to avoid exceeding the critical temperature during the
sampling interval if a discrete-time implementation is consid-
ered. Note that a discrete-time solution fits well with MPSoC
digital technology and that the safety margin must be increased
with the sampling time value. However, assuming a hardware-
based thermal capping solution, the sampling time of such part
can be taken very small, and, in turn, the temperature margin
can be thin.

On the other hand, we can adopt a local MPC controller
for each core that, exploiting the identified model of the core
and predicting its temperature behavior, guarantees more ac-
curate and chattering-free performance compared to the previ-
ous solution. However, feasibility cannot be ensured due to
unavoidable uncertainties on the model and future workload.
Besides, as in the model-free solution, time discretization im-
poses a safety margin on T̄CRIT to prevent constraint violations
between two sampling instants. It is worth noting that this so-
lution appears hard to be implemented on hardware. Therefore,
it needs a larger sampling time and a significantly larger margin
that strongly affects performance. Indeed, as the temperature
threshold decreases, also power consumption and core speed
reduce as well. As an illustrative example, consider a scenario
in which all cores have a temperature close, but not equal, to
the limit decreased by the safety margin, namely τMPC. Each
local controller would exploit the discrete model of the core to
define the optimal control action that keeps the future tempera-
ture close to τMPC, according to the information of the current
temperature of the core and its neighbors. However, during the
sampling interval, the temperature of all the cores varies, pos-
sibly determining an overestimation of the control actions and,
as a consequence, triggering thermal emergencies.

As shown in Fig. 5, our solution adopts a hierarchical ar-
chitecture in both the methods above. Indeed, such strategies
cooperate to exploit the benefits of both. The higher layer,
namely the MPC layer, addresses the thermal capping issue,
maximizing performance by exploiting the previously men-
tioned distributed MPC scheme. The lower one, namely the
safety layer, guarantees control feasibility, the imposition of the
bound T̄CRIT, and the reduction of the MPC margin, favoring
better performance.

5.1. MPC layer
The MPC layer is a discrete-time software layer designed

with a distributed structure. Such configuration has the twofold
benefit of improving the computational efficiency of the control
algorithm (as the computational burden is distributed among
cores) and the system reliability (as the breakdown of one core
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Figure 5: Control architecture.

does not compromise the whole system performance). Each
controller uses the local model identified in Section 4 to predict
the future temperature of the core and solves the optimization
problem shown in (4) to obtain the best control decisions that
keep the i-th core temperature, Ti, close to the bound. We called
this bound τMPC,i to highlight that each i-th controller has a dif-
ferent bound that may differ from T̄CRIT,i. It is reasonable to
expect τMPC,i < T̄CRIT,i due to safety margins introduced to pre-
vent overtemperatures between two sampling instants. A dis-
cussion on how to determine the value of τMPC,i is reported in
Section 5.3.

An implementation issue for the MPC layer concerns the es-
timation of the state x2, which, as already mentioned, is not
available from measurements (whereas x1 corresponds to the
temperature sensed on the core). Due to the complete observ-
ability of the model, we can estimate the unknown state by stor-
ing past control inputs and temperatures, following a dead-beat
observer approach. From (29), we have

x2(t) = a2T (t − 1) + b>2

[
PC(t − 1)
d(t − 1)

]
.

With the core temperature sensor reading, the estimation
above, the identified model parameters, and information about
its neighbors, each core can solve the following problem

min
PC,i(t)

|PT,i(t) − PC,i(t)|2

subj. to:
[
x1,i(t + 1)
x2,i(t + 1)

]
= Ai

[
x1,i(t)
x2,i(t)

]
+ B1,iPC,i(t) + B2,idi(t)

Ti(t + 1) = C
[
x1,i(t + 1)
x2,i(t + 1)

]
≤ τMPC,i,

Pmin ≤ PC,i(t|t) ≤ Pmax.

(38)

5.2. Safety layer
The safety layer includes a set of hardware-based hystere-

sis controllers, one for each core, completely independent from
the MPC layer. At this level, a model-free temperature capping

control strategy is adopted, as proposed in Section 3.3. Dur-
ing nominal operation, the MPC layer keeps the temperature
of each i-th core below τMPC,i. However, if such constraint is
violated and the i-th core temperature reaches T̄CRIT,i, the cor-
responding hysteresis controller bypasses the MPC layer, im-
mediately providing to the core the minimum power, Pmin, until
the temperature decreases to a given lower value, τSWITCH,LOW,i,
according to the hysteresis mechanism.

In Section 3 we proved that a set of local continuous-time
regulators ensures feasibility, keeping the temperature below
T̄CRIT,i. However, the clock-driven nature of MPSoCs imposes
the use of a discrete-time controller. As a result, to avoid tem-
perature violations during the sampling intervals, it is necessary
to provide a margin, i.e., to decrease the critical temperature
T̄CRIT,i to a value τSWITCH,i, depending on the selected sampling
period. Nevertheless, since the safety layer is implemented in
hardware, the sampling time can be extremely small (few mi-
croseconds). An effective choice of τSWITCH,i can be obtained
inverting the discrete models (29) of each core, and subtract-
ing from T̄CRIT the maximum temperature increase occurred in
a single sample interval in the worst-case scenario (i.e., criti-
cal neighbor temperature, maximum ambient temperature, and
maximum input power). Next to the upper threshold, the lower
threshold, τSWITCH,LOW,i, must be defined to deactivate the layer
and resume the nominal behavior. Such value is lower than
τMPC,i to make the system restart from a feasible state. In this
regard, we set τSWITCH,LOW,i = τMPC,i −∆ where ∆ is a small ar-
bitrary value. This way, we obtain a hardware-based, discrete-
time, hysteresis-based controller capable of guaranteeing feasi-
bility.

5.3. τMPC,i threshold
In the proposed hierarchical solution, the combined use of

a safety and an MPC layer improves the global system perfor-
mance and guarantees feasibility. This result, a key point for
manufacturers whose profit is strictly related to performance,
can be obtained by suitably selecting τMPC,i. In this regard, a
trade-off needs to be pursued, as explained in what follows.
In principle, setting τMPC,i = τSWITCH,i would maximize per-
formance. Indeed, the higher is the temperature limit, the
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more power can be allocated by the controller to increase the
core speed. However, uncertainties would cause frequent in-
terventions of the safety controller that would set the power to
the minimum value and contribute to performance degradation.
Thus, a margin between τMPC,i and τSWITCH,i must be provided.
The greater the margin, the more conservative the controller
becomes, again impairing performance (since the local MPC
would maintain the core speed to a lower level w.r.t. what
strictly necessary). In our analysis, we consider as maximum
margin the one preventing the use of the safety layer. In this
case, the local MPC controller is completely conservative, and
we denote the corresponding maximum temperature threshold
as τMPC,CONS,i.

The central idea to improve performance is to select
τMPC,CONS,i < τMPC,i < τSWITCH,i, i.e., to design a less conserva-
tive MPC controller, leaving the safety layer to manage critical
situations. Indeed, it is reasonable to expect a smaller perfor-
mance degradation from limited use of the safety layer rather
than having a completely conservative/robust MPC layer. To
this aim, a trade-off problem between the conservativeness of
the MPC controller and the frequency of the safety controller’s
activation must be solved. Due to the significant number of
factors affecting the controller, as external inputs and the al-
ready cited model uncertainties, rigorous analytical estimation
of τMPC,i is difficult. Therefore, we propose two empirically-
based methods to impose this margin.

A first simple method consists of running typical bench-
marks, e.g., PARSEC (Bienia et al., 2008), and calibrating
τMPC,i as the value that reduces the violations of τSWITCH,i un-
der an arbitrarily predetermined percent of time. This solution
lets the user the freedom of choosing the degree of exploita-
tion of the safety layer. However, if the goal is maximizing
the computing performance, an optimization problem should
be formulated and solved. In this respect, the second proposed
approach searches for the τMPC,i that maximizes an objective
function given by the integral of the core frequencies, under the
constraint τMPC,i ∈ [τMPC,CONS,i, T̄CRIT,i], that is:

max
τMPC,i

nC∑
i=1

∫ tB

0
fC,i(τMPC,i) dt (39a)

subj. to: τMPC,CONS,i ≤ τMPC,i ≤ T̄CRIT,i i ∈ {1, . . . , nC},
(39b)

where nC is the number of cores, fC are the corresponding
frequencies, and [0, tB] is the benchmarks’ time interval. We
solved the problem for each benchmark, and we selected the
optimal values τMPC,i as the average of each problem’s result.

Remark 3. The MPC controller imposes constraints on tem-
perature predictions obtained with the identified model, not
on the real temperature of the core. As a result, the actual
core temperature can be lower than τSWITCH,i even if τMPC,i >
τSWITCH,i. This fact motivates the use of T̄CRIT,i as an up-
per bound in (39b). In case τMPC,i > τSWITCH,i, we set the
lower layer of the local safety controller as τSWITCH,LOW,i =

τSWITCH,i −∆ to avoid a deactivation threshold greater than the
activation one.
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Figure 6: Chip thermal simulator.

Remark 4. The rigorous solution of (39) would require an
infinite number of simulations for computing the integral in
the objective function (one for each τMPC,i value, and for each
benchmark). To reasonably address this issue, we search the
τMPC,CONS,i preventing the intervention of the ultimate capping
controller, then we solve the optimization problem for a discrete
set of value in the interval [τMPC,CONS,i, T̄CRIT,i].

6. Simulation results

In this section, we report significant simulation results.
Firstly, we provide some information on the accurate model
used to emulate the real system thermal behavior. Then, we
summarize the design steps to build the two-layer controller.
Finally, we show its effectiveness for a typical benchmark.

Fig. 6 shows the plant used for simulations. We adopted as
a reference the chip layout of the Enterprise Xeon R© Proces-
sor presented in (Rusu et al., 2010), doubling it to obtain an
8-core chip. According to (Paci et al., 2006), we performed
thermal simulations by using a finite element approach. We di-
vided the chip into two layers, representing the silicon and the
heat spreader, and each of them into cells (with 360 cells per
layer). To each cell, we associated a small thermal system com-
posed by a thermal resistor for the vertical thermal dissipation
(RSi,v = 1.6K/W, RCu,v = 290K/W)1, four resistors for the hori-
zontal thermal dissipation (RSi,h = 22.9K/W, RCu,h = 1.2K/W),
a thermal capacitance (CSi = 1×10−3J/K, CCu = 1.2×10−2J/K)
and, exploiting the analogy with the electrical framework, a cur-
rent generator and a voltage generator, depending on the layer.
The former represents the power dissipated by the active sili-
con, while the latter is associated with the heat spreader’s ambi-
ent temperature. The network associated with the chip is shown
in Fig. 6. The resulting model is

ṪSi,k =
Pk

CSi
+

TCu,k − TSi,k

CSiRSi,v
+

q∑
i=1

TSi,n,i − TSi,k

CSiRSi,h

ṪCu,k =
TSi,k − TCu,k

CCuRSi,v
+

TCu,k − Tamb

CCuRCu,v
+

q∑
i=1

TCu,n,i − TCu,k

CCuRCu,h

(40)

1Border cells have lower resistance values to simulate lateral heat dissipa-
tion.
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where TSi,n,i and TCu,n,i, i ∈ {1, . . . , q} are respectively the neigh-
bors of the k-th silicon and copper cell.
The admissible power consumption of each core ranges from
Pmin = 4.38W to Pmax = 25W, corresponding to frequencies
fmin = 1.6GHz and fmax = 2.97GHz respectively. The idle
power, i.e., the power consumed when the core is on but not
running any workload, is PIDLE = 0.25W. The power dissi-
pated by the caches is the 30% of the power consumed by the
cores directly connected to them. Fig. 7 shows the control de-
sign steps listed below

1. We defined T̄CRIT,i as shown in Fig. 4, where TEQ has been
obtained by applying to each core the minimum power.

2. We identified the prediction models of each core per-
forming the iterative procedure of Section 4.

3. We defined τSWITCH,i in the safety layer by inverting the
local model.

4. We determined τMPC,CONS,i (the conservative MPC
threshold) by running a set of benchmarks on the sys-
tem supervised by the two-layer controller. For each
benchmark and core, we set as initial threshold τMPC,i =

τSWITCH,i, and we decreased the MPC threshold of the
same amount until core temperatures remained confined
below τSWITCH,i.

5. We solved the optimization problem to find τMPC,i
and maximize performance. Starting from τMPC,i =

τMPC,CONS,i, we increased all the τMPC,i simultaneously2,
looking for the values that maximize the integral of the
cores frequencies, then we averaged the results of all the
benchmarks.

According to the previous points, we set T̄CRIT = [358.89,
359.07, 359.80, 360.00, 359.74, 359.95, 359.29, 359.47]K. As
an example, we report below the model of the form (29) for
core 3, obtained from the identification procedure with sam-
pling time 1ms:[

T3(t + 1)
x2,3(t + 1)

]
=

[
1.5 1
−0.5 0

] [
T3(t)
x2,3(t)

]

+

[
3.2 × 10−2 −6.0 3.4 × 10−4 −3.9 × 10−5 3.9 × 10−5

−3.0 × 10−2 6.0 2.0 × 10−4 −3.6 × 10−5 3.8 × 10−4

] 
PC,3(t)
Tamb(t)
T1(t)
T4(t)
T5(t)

 .
We checked feasibility of the obtained system by solving prob-
lem (37) with D given by (35), with Tamb,min = 293K and
Tamb,max = 330K, and X defined as in (36). We solved the
problem using the tool YALMIP (Löfberg, 2004). In particular,

2Increasing τMPC,i by different values is impractical because of the signifi-
cant amount of possibilities it would determine.
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we adopted the local solver Ipopt, started from different initial
conditions, and a more rigorous global solver (bmibnb). In both
cases, we obtained a positive objective function value equal to
10.5, corresponding to the optimal vector y∗ = [0 0.5 0.5]>.
Therefore, according to the discussion reported in Section 4.1,
we can state the identified model satisfies the feasibility prop-
erties of the original PDE, and can be then profitably used for
control purposes.

Then, we proceeded inverting the model to obtain
τSWITCH = [358.63, 358.80, 359.53, 359.73, 359.47, 359.68,
359.02, 359.20]K, whereas by iteratively decreasing the τMPC
until no safety layer interventions were detected 3, we deter-
mined the conservative MPC thresholds τMPC,CONS = [357.83,
358.00, 358.73, 358.93, 358.67, 358.88, 358.22, 358.40]K.
Fig. 8 shows the temperature response of core 3 when only the
safety layer is active. As expected, the temperature is bounded
below TCRIT = 360K.

The procedure to define τMPC is similar to the one used for
τMPC,CONS. We set τMPC = τMPC,CONS, then we iteratively in-
creased its value by 0.1K. For each simulation, we stored the
integral of the frequency as performance metric.

In Fig. 9 we compared the performance w.r.t. the chosen
τMPC, which is indicated as a τMPC,CONS offset, owing to space
limitation. The plots shown in Fig. 9 correspond to the average
values obtained over the tests with different benchmarks. As
result of the optimization problem, τMPC = [358.63, 358.80,

3At each iteration τMPC,CONS is decreased by 0.1K.
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359.53, 359.73, 359.47, 359.68, 359.02, 359.20]K that is equal
to τSWITCH. As already mentioned, these values could also be
greater due to the model conservativeness obtained with the
identification procedure. The improvements in performance are
about 1% on average. The lower hysteresis threshold of the
switch controllers, τSWITCH,LOW, is equal to τSWITCH − 0.1K.
For what concerns the online solution of problem (38) in the
MPC layer, we leveraged the core thermal model properties and
its low dimensionality to design a simple strategy:

1. Set PC,i = PT,i
4, and use the model to predict Ti(t + 1) =

x1,i(t + 1).
2. If Ti(t + 1) ≤ τMPC,i then keep PC,i = PT,i and compute the

corresponding core frequency using (3).
3. If, Ti(t + 1) > τMPC,i, with PC,i = PT,i, set PC,i so that

Ti(t + 1) = τMPC,i by using (29), i.e.,

PC,i =
τMPC,i − a1,ix1,i(t) − x2,1(t) − B2,i(1, :)di(t)

B1,i(1, 1)

where round brackets indicate the entries of the matrices B1
and B2 , and : denotes all the row/column elements. Applying
the procedure above in Matlab/Simulink, the solution to each
core MPC problem can be computed in just 3µs on a PC with
an i7 8th gen. CPU. Therefore, it could be deployed on many-
core systems without impacting significantly on the cores com-
putational effort, which could be directed to carry out the ap-
plications’ specific workload. Fig. 10 shows the response of
core 3 when Fluidanimate, a Parsec benchmark related to sim-
ulation (via Smoothed Particle Hydrodynamics method) of in-
compressible fluids for interactive animation purposes (Bienia
et al., 2008) is assigned to the controlled system. The tem-
perature is perfectly bounded below T̄CRIT,3 = 359.80K, and
the safety layer intervenes only when the temperature crosses
τSWITCH,3 = 359.53K, setting the frequency to 1.6GHz. Fig. 11
shows the simulation results, with the same application bench-
mark, for core 3 when different MPC thresholds were applied:
the τMPC that maximizes the performance (τMPC,MAX), the τMPC
that reduces the violation under the 0.1% (τMPC,0.1%) and the
completely conservative τMPC = τMPC,CONS. It can be noticed
how, even though the safety layer intervenes more frequently
than in the other cases, the frequency for (τMPC,MAX) is the high-
est on average.
We validated our control strategy with several Parsec bench-
marks. Owing to space constraints, here we report results for
another scenario, corresponding to Bodytrack, a computer vi-
sion application. Figs. 12, 13 show the corresponding results.
Again, the ability of the two layer solution to keep the core tem-
perature under the critical threshold is confirmed, with the help
of the safety layer when needed, while applying the requested
power and frequency, whenever the thermal conditions allow it
(see the first and third plots in Fig. 12). Also, the speculative
strategy to select a less conservative MPC thresholds pays off

even in this condition, as shown in Fig. 10.

4We assume the target PT,i is within the power bounds, if not, it can be
saturated before solving the problem.
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Figure 10: Simulation results for benchmark Fluidanimate.

6.1. Comparison with other solutions.

We conclude this Section with some considerations where we
compare the proposed approach with some of the recent works,
mentioned in Section 1. We remark that our two-layer solu-
tion formally guarantees feasibility, thanks to the safety layer,
also in case of heavy model uncertainties. Moreover, the MPC
layer is verified to ensure recursive feasibility for the consid-
ered system model. To the best of our knowledge, none of the
works presented in the literature has fully addressed such is-
sues. Also, the proposed model does not require any central-
ized step, with the safety layer being decentralized (only local
temperature information is needed), and the MPC layer fully
distributed (only local information exchange among neighbours
core is needed). Other recent solutions in the MPC framework
requires some sort of centralized coordination (Camponogara
et al., 2021), (Wang et al., 2016), or adopt a fully centralized
approach (Wang et al., 2019). Compared to machine learning-
based approaches (Mandal et al., 2019), (Das et al., 2014), our
approach can be implemented online with less complexity, and
it does not require extensive offline exploration to guide an ef-
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Figure 11: Performance comparison with benchmark Fluidanimate and three
different τMPC.

Figure 12: Simulation results for benchmark Bodytrack.

ficient runtime manager (Gupta et al., 2017).

7. Discussion and future works

In this work, we have exploited the features of a PDE-
based thermal model, describing heat conduction phenomena,
to study the feasibility of predictive controllers for manag-
ing Multiprocessors Systems-on-Chip temperature. Infinite-
dimensional PDE description is crucial to avoid possible side
effects related to time and space discretization. In this context,
we showed that predictive controllers are intrinsically feasible
when applied to whatever thermal system for any prediction
horizon greater than or equal to zero. The proof of such a result
relies on the Maximum Principle, which is also instrumental in
deriving a rule for reducing the number of constraints from infi-
nite to finite, greatly simplifying the controller design. Despite
the final results looking quite intuitive, in the authors’ opinion,
the presented study is helpful to provide a rigorous confirma-
tion of the intuition and revise the non-oscillating properties of
thermal systems in an MPC context.
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Figure 13: Performance comparison with benchmark Bodytrack and three dif-
ferent τMPC.

These achievements have been exploited to design a two-
layer control architecture which, adopting time- and space-
discretized approximated modeling (and discrete-time control
actuation), ensures robust feasibility preserves performance as
much as possible and keeps the controller complexity at a treat-
able level. To this aim, a distributed MPC layer manages the
chip temperature maximizing performance, while a safety layer
(a set of hysteresis controllers) guarantees feasibility.

From the practical application’s viewpoint, we provided a
step-by-step empirical tuning procedure for the proposed con-
trol solutions. Specifically, we described a method to derive
a tradeoff between the frequency of intervention of the safety
layer and the temperature bound of the MPC controllers. Com-
pared to a completely conservative solution, which would al-
ways avoid safety intervention, we obtained up to 1% of perfor-
mance enhancement.
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