
29 June 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Riccardo Venanzi, Alberto Cavalucci, Luca Foschini, Paolo Bellavista (2021). MIINT: Middleware for IIoT
Platforms Integration [10.1109/GLOBECOM46510.2021.9685653].

Published Version:

MIINT: Middleware for IIoT Platforms Integration

Published:
DOI: http://doi.org/10.1109/GLOBECOM46510.2021.9685653

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/867166 since: 2024-06-26

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/GLOBECOM46510.2021.9685653
https://hdl.handle.net/11585/867166

MIINT: Middleware for IIoT Platforms Integration
1st Riccardo Venanzi

DISI - dept. of Computer Science and Engineering
University of Bologna

Bologna, Italy
riccardo.venanzi@unibo.it

3rd Luca Foschini
DISI - dept. of Computer Science and Engineering

University of Bologna
Bologna, Italy

luca.foschini@unibo.it

2nd Alberto Cavalucci
DISI - dept. of Computer Science and Engineering

University of Bologna
Bologna, Italy

alberto.cavalucci2@unibo.it

4th Paolo Bellavista
DISI - dept. of Computer Science and Engineering

University of Bologna
Bologna, Italy

paolo.bellavista@unibo.it

Abstract—In the last recent years Internet of Things has
extended its adoption to the industrial manufacturing field. The
digitalization of industry brings the new concept of Industry 4.0
to light. In fact, the enormous value for the companies generated
from the adoption of Industrial IoT and Edge Computing has led
to a vertiginous increments of IIoT platform demands. Therefore,
world-wide big IT players and Foundations start to introduce
their own flagship IIoT platforms into market. This multitude of
platforms presents similar common features, but with different
APIs. These platforms are hardly interoperable, and they are
frequently bounded to their own vertical solution stack. To
overcome these limitations, in this paper, we propose MIINT, a
Middleware for IIoT platforms INTegration. MIINT groups the
common functionalities of IIoT frameworks, and it integrates
different platforms by providing standard access APIs. To prove
the feasibility of MIINT, in this paper, we show an integration use
case of Azure IoT and EdgeX Foundry IIoT platforms. Moreover,
we also thoroughly assess MIINT by executing on the edge a field
data reading functionality in the two considered IIoT platforms,
by showing their advantages and limitations.

Index Terms—IIoT Middleware, IIoT Platforms, Industry 4.0,
Edge Computing, Azure IoT, EdgeX Foundry

I. INTRODUCTION

Nowadays, the world is more connected than ever and
Internet of Things (IoT) has become a solid paradigm that we
commonly use in everyday life. Moreover, IoT is a cornerstone
for the digitalization of the industry and manufacturing fields,
thanks to the advent of Industrial IoT (IIoT) and the new
concept of Industry 4.0 [1], [2]. This two new concepts open
the doors to new research topics and new IT solutions for the
manufacturing field [3].

Cloud computing is another crucial enabler of the new
scenario and various proposals tackled in the last years the
challenging issue of integrating IoT device with remote clouds.
Indeed, initial efforts, typically called IoT cloud solutions,
were based on a two-layered architecture in which the in-
dustrial devices directly communicate with the Cloud [4].
These solutions had the goal to exploit the large amount of
resource provided by Cloud to process data directly coming
from industrial appliances, and to analyze those data with

Big Data or Machine Learning applications in order to create
value for the company [5]. This approach resulted to be
not so efficient and some limitations emerged. The industrial
appliances generate a huge amount of data, and to transfer
all those data to the Cloud, requires very big bandwidth. In
addition, the latency introduced by remote Cloud does not
meet the time requirements of timely-constrained decision-
making processes. Furthermore, the companies were not con-
fident to send all their sensitive data to remote Cloud. To
overcome these limitations, more recent solutions proposed
Edge computing as a middleware layer between IIoT devices
and Cloud [6]. The interposition of Edge nodes enables the
collection, the exchange, and the analysis of data on premises.
That, in its turn, facilitates monitoring practices, near real time
decision making process, and predictive maintenance [7]. In
addition, Edge may be leveraged to enhance data security,
and relegation, as sensitive data are kept within the company,
and only few safe data are uploaded to the Cloud. All these
features bring a significantly increment of efficiency along
with relevant economic benefits and costs reductions. In this
second solutions’ branch our work is placed.

More recently, the explosive diffusion of Edge-based so-
lutions for Industry 4.0 has led to the birth of many IIoT
platforms on the market. IIoT platforms provide services and
functionalities to interact with industrial nodes, manage them,
upload data to the Cloud, and develop and deploy applications
on the edge node directly. The world-wide big IT players
and Foundations approach this novel field of Industry 4.0
by introducing into market their own flagship IIoT platforms.
This multiplicity of platforms, if on one side provides a large
range of choice, on the other hand, introduces a enormous
redundancy. All these IoT platforms provide very overlapping
functionalities, indeed, for example, all the IIoT platforms
enable to deploy a new edge node, provide mostly the same
field device connectors, offer very similar Cloud data export
services, etc.. All these very similar functionalities are pro-
vided with very different APIs. The IIoT providers offer their
platform tightly coupled with their develop environment, and

Cloud Services, so a company is often forced to adopt the
whole solution stack, and a vendor lock-in frequently occurs.
In addition, IIoT platforms do not integrate to each other very
easily, and a integration with third-party services is not always
possible.

To address the above limitations, we propose MIINT, a
Middleware for IIoT platforms INTegration. MIINT aims to
overcome the above limitations by grouping the common
functionalities provided by IIoT frameworks, and by providing
standard APIs to interact with different platforms. More in de-
tail, MIINT groups all the common features typically required
by every IIoT environment and it provides a software layer
that exposes standard APIs to interact with every IIoT platform
and to manage the whole fleet of devices of a company, even
connected with different vendors’ solutions. In this way, the
proposed middleware faces the IIoT platforms’ heterogeneity,
and enables different vendor’s solution integration. To prove
that, in the presented work, we integrate two very different
and largely adopted IIoT platforms with MIINT. Among the
wide plethora of IIoT platforms, in this research we choose a
proprietary platform, Azure IoT, and a open source platform,
EdgeX Foundry [8], [9]. In addition, we develop and test
one of main common feature an IIoT framework has to
provide, field data reading functionality. This is the pivotal
feature for every monitoring application. More specifically,
we develop that feature with both the above platforms and we
show and report the test performance evaluation along with
other emerged results. Finally, we share the developed code
with the community to give the opportunity to our colleagues
to reproduce and validate presented results. An open-source
version of MIINT, our proposed middleware is available for
the community at the link: https://gitlab.com/riccardo.venanzi/
middleware-for-iiot-platforms-integration.

II. BACKGROUND AND RELATED WORKS

In this section, we provide some background about the
reference IoT platforms used in this research and we also
address similar and related works in literature.

A. Background

The rapid growth of the Internet of Things in recent
years has given the birth to countless examples of smart
devices, cloud services and applications. As their complexity
increases, so does the need for IoT platforms. Among the
wide plethora of IoT platforms, in this research we refer to
two specific ones, a proprietary platform, Azure IoT, and a
open source one, EdgeX Foundry [8], [9]. We have chosen
these two specific platforms as a integration study case to
prove the value of our research work. These two platforms
have a particular relevance because they are very widely used
on the market and represent a proprietary and open source
solution. Let us introduce the two selected platforms in order
to provide a general overview.

1) Azure IoT: It is the Microsoft’s IoT platform. It
provides cloud services for the connection, monitoring and
control of companies’ IoT assets. The general architecture
is complex and offers a large number of available features.
In this overview we provide a brief description about the
most relevant and interesting components. Azure IoT Hub
is the main service of any IoT solution developed within
the Microsoft environment. It is a cloud-hosted, managed
connector that serves as a central message hub for two-way
communication between applications and associated devices.
Another pivotal entity in the Azure IoT is Azure IoT Edge.
Azure IoT Edge is a service that allows to deploy cloud
workloads, Azure services, third-party services, or custom
business logic component, on the edge nodes. Azure IoT
Edge is the component that runs directly at the OT level
and it is composed by four main entities, Software Modules,
Edge Runtime, Edge Agent, and Edge Hub. Modules are
the smallest computational unit managed by the framework
and they contain the business logic. Edge Runtime is the
execution environment installed on the edge device. The Edge
Agent is responsible to create Modules’ instances, to monitor
them, to guarantee their continuous execution, and to notify
their status to IoT Hub. Finally, Edge Hub manages messages
between modules, as a message bus, and also the messages
exchanged from device-to-cloud (D2C) and cloud-to-device
(C2D).

2) EdgeX Foundry: EdgeX Foundry is an open source,
vendor-neutral and completely operating system agnostic plat-
form composed by microservices. This framework is designed
to work at the edge level, it has dedicated microservices to
directly communicate with the industrial field appliances. The
core of EdgeX Foundry is composed by four microservices,
namely Core Services. Those services are Core Data, Core
Command, Core Metadata, and Configuration & Registry.
Core Data provides storage support until the upper services
(application services) consume the data. Core Command ex-
poses to application services the actions that can be performed
on a connected device. Core Metadata stores information
about connected devices like: device type, data type, provided
actions, etc.. Finally, Configuration & Registry has the piv-
otal role of providing the endpoints to the other services in
order to enable their direct communication. Device Services
are responsible to connect field devices with Core Services.
The Device Services transform the read data into framework
compliant data format. They also perform all the commands
received from Command Service. Finally, the Application
Services are deployed on top of Core Services, they are
custom or third-party services and contain the business logic
of applications.

B. Related Works

In this paper, we present a IoT middleware that aims to
overcome the IoT platforms integration problems by grouping
the common core platforms’ functionalities and providing a
common standard APIs. In addition, the middleware provides

https://gitlab.com/riccardo.venanzi/middleware-for-iiot-platforms-integration
https://gitlab.com/riccardo.venanzi/middleware-for-iiot-platforms-integration

a unique entry point to manage all the companies’ assets inde-
pendently by the IoT platform, or platforms, currently adopted
by the company. This research was born by the necessity
of standardization due to vast number of IoT platforms on
the market. There are several works in literature that address
IoT platforms, but as best of our knowledge, our proposal is
quite novel. For example, in [12], Al-Jaroodi et al. present
another service-oriented IoT middleware, Man4Ware, but it
is focused on integration of different IoT services. Another
similar solution is presented by Ngu et al. in their survey [13].
They lay the focus on different devices integration, enabling
technology and challenges. A middleware solution for Industry
4.0 scenario is presented by Glock et al. in [14]. It is a custom
IoT middleware that act as a IoT platform and it is meant to be
deployed at the same level of other vendors’ IoT solutions. In
[15], Agarwal et al. provide a study of some IoT middlewares
on the market with the goal to address the IoT application
developer. The middleware presented by Steinmetz and his
colleagues provide an interesting solution to integrate different
devices based on a ontology [16]. Cilia is a service-oriented
middleware for smart manufacturing proposed by Lalanda et
al. [17]. It faces data flexibility in industry field, and it aims to
manage data workflow from the field to the Cloud, by reducing
human intervention. All of those works are very interesting and
well done, but they address different limitations from ours.

III. MIINT MIDDLEWARE: ARCHITECTURE,
COMPONENTS, AND APIS

In this section, we describe our proposed middleware MI-
INT along with its architecture and internal components. The
middleware groups the common functionalities of each inte-
grated IoT platform making its usage totally transparent for the
user. To do that, MIINT provides software APIs that abstract
the common functionalities of the specific IoT platform by
hiding the single implementation details. The APIs exposed
by MIINT allow the user to deploy common services without
having any interaction with the specific IoT framework.

A. Logical Architecture

MIINT is based on a microservices architecture. It is meant
to be placed on top of the integrated IoT platforms and it
exploits microservices architecture modularity to integrates
the various underlying IIoT platforms. More in detail, MIINT
requires a microservice for each IIoT platform that it is meant
to integrate. In this way each platform is managed inde-
pendently. Furthermore, MIINT provides the opportunity to
deploy just the required functionalities of each single platform,
without the constraint to integrate the whole framework. In
this work we only focused on the integration of Azure IoT
and EdgeX Foundry, but to integrate other platforms is easy
by adding a service that takes care of specific IoT platform
functionalities. The Fig.1 depicts the logical architecture of
the MIINT. The two services, AzureIoT Service, and EdgeX
Service manage the edge nodes by hiding their implementation
details. Middleware Service is a software module that acts
as a bridge between the different IoT platforms services and

the user. Middleware Service is responsible of exposing the
common APIs to interact with the IoT platforms services.
More in details, each IoT platform is controlled by its service,
while Middleware Service groups and exposes their common
functionalities. Finally, MIINT integrates the Eureka Server.
This server provides a Registry and a Discovery Service.

AzureIoT
Service

EdgeX
Service

Middleware Service

Eureka
Server

Standard APIs

Fig. 1: MIINT Middleware Logical Architecture

B. Middleware Service
Middleware Service is the component of the middleware

that provides IoT platform-independent standard APIs. This
service allows the companies to manage their production pro-
cesses trough a unified interface that groups the most common
features of IoT platforms. Specifically, the Middleware Service
exploits the methods/features that IoT platform related Service
exposes to interact with the specific framework in a totally
agnostic manner. So far, we have developed the following
features:

• Update Configuration: POST request to define the re-
quired parameters to establish a connection with the edge
node. The body of this request change according with
the target platform. This method allows to edit a existing
configuration;

• Get Configuration: GET request to obtain the configu-
ration currently in use;

• Create Edge Device: POST request to create and define
resources on a edge node. The body content of the request
changes according with the target platform.

• Get Edge Device: GET request to obtain the current state
of the resources on the edge node. This request requires
the resource name as a parameter;

• Delete Edge Device: DELETE request to eliminate the
resource on the edge node. This request requires the
resource name as a parameter;

• Deploy Storage Service: POST request to deploy the
storage functionality by saving the data of target mon-
itored machinery. This API requires a body in JSON
format whose content changes depending by the target
provider.

1) Eureka Server: Eureka Server is the Service Discovery
of the middleware. It is responsible of decoupling services
from their respective physical addresses. The discovery mech-
anism is updated every time a service instance starts or stops
execution. At start-up time all services register to Eureka
Server. When a client invokes an API on Middleware Service
to perform an action on a edge node, Middleware Service
queries Eureka Server for the specific IIoT platform service in-
stance that manages that edge node. Eureka provides service’s
endpoint to Middleware Service, which then can communicate
directly with the service. Each service must periodically send
a heartbeat to prevent the cancellation of its registration which
is kept in non-persistent memory. Eureka server also provides
a load balancer that works with round robin algorithm.

C. AzureIoT Service

AzureIoT Service has the role to translate the standard APIs
provided by Middleware Service in specific Azure requests.
AzureIoT Service interacts with Azure IoT Hub via REST
API, and it offers all the required features to manage the Azure
Edge Node life cycle. In this way, final users are no longer
forced to interface with the Azure cloud portal to manage their
IoT systems. The AzureIoT Service provides and implements
the following functionalities:

• Create/Delete a edge device entity. These operations
include the installation/elimination of the Azure Edge
Runtime;

• Deployment of a module, even custom, on the edge
device;

• Deployment of a functionality as set of modules that
work together for providing a service.

D. EdgeX Service

EdgeX Service is the microservice responsible of translating
the API exposed by Middleware Service in requests for
EdgeX Foundry. EdgeX Service handles node devices through:
Device Profiles and Device Services. In EdgeX Foundry each
connected device is associated with a profile. Device Profile
describes the various resources available on the device and the
operations that it can perform. EdgeX Service implements and
includes all the required features for correctly managing the
edge node:

• Retrieval of all Device Profiles available (through Core
Metadata);

• Querying for a specific Device Profile by its identification
name;

• Upload a custom Device Profile on the platform;
• Deleting a Device Profile from the platform by its iden-

tification name.
The edge device directly communicate with its relative Device
Service that acts as device abstraction for the framework.
This class of services is responsible for connecting devices to
the platform, transforming the values coming from the field
into a data structures that can be used by Core Services.
EdgeX Service implements all the required APIs to control
this functionalities:

• Fetching all devices available within the framework, or
of a specific one by name;

• Registration/Elimination of a device;
• Upload a custom Device Profile on the platform;
• Deleting a Device Profile from the platform by its iden-

tification name;
A substantial difference is emerged between the two reference
frameworks, Azure IoT forces the user to pass through IoT
Hub to manage the edge node, while EdgeX Foundry has the
direct control over the edge nodes.

IV. EXPERIMENTAL RESULTS

In this section, we present the experiments performed on
the two platform services we have integrated with MIINT.
To test those services, we have developed and deployed a
key functionality to any IIoT platform: field data reading
functionality. This functionality is the core of every Industry
4.0 monitoring scenario, and it responsible of reading data
from the field appliance. This functionality can be developed
to read data with many protocols. We chose Modbus, the
standard de-facto protocol for industrial Programmable Logic
Controllers (PLCs).

This section is divided in two subsections. The first one
addresses the environment in which the two IoT platforms
have been evaluated and the tools used for the analysis. The
latter presents the tests performed on two different deployment
configurations and the emerged results.

A. Tools and Testing Environments

The goal of our tests is to study and analyze the behaviour
of the platforms in a typical Industry 4.0 data reading scenario.
The two IIoT platforms read data from the field appliance by
exploiting the above mentioned field data reading functionality.
In order to have a the most comparable and truthful results,
we prepared the testing environments to be as similar as
possible. To do that, we decided to connect the EdgeX Foundry
platform, typically deployed as a standalone software at the
edge, to the public Azure cloud by developing an additional
component that exports the data read to Azure IoT Hub.
Fig.2 depicts the environment. It is composed by three core
elements: an HMI simulator, an Edge node and an IoT Hub.
To simulate a realistic machine-to-machine traffic we used
an HMI simulator with 190 registers. HMI simulator uses
Modus TCP as communication protocol. The HMI simulator
and the Edge node run on two different VMs with the same
hardware and software configuration. They have a quad-core
processor, 2 GBs of RAM, and Ubuntu 18.04 LTS as OS. The
hardware resources are intentionally constrained to simulate a
traditional edge node installed on a real plant. The edge nodes
run different modules according with the relative platform.
Azure node has 3 components: a Modbus connector to read
data from the field device, an ETLmodule that pre-process
data, and an Azure Blob Storage to save data. Similarly, in
EdgeX we have a Device Service to read data from Modbus
simulator, the Core Data that stores data, and the Azure Export
Service that exports data to IoT Hub. Both edge nodes send

Fig. 2: Deployment environments

the data to an Azure IoT Hub, but they differ on the protocol
used: the Azure node uses AMQP, while EdgeX node MQTT.
We have used Wireshark to analyze and evaluate the packets
traffic among the components. Furthermore, we used cAdvisor,
a container performance monitor developed by Google, to
keep track of the CPU and MEM usage [18]. We also used
Prometheus and Grafana to store data in time series and to
provide data visualization.

B. Tests and Experimental Results

This subsection reports how the two IIoT platforms per-
form on running the field data reading functionality with
two different reading frequencies, 4Hz, and 8Hz (it means a
reading period of 250ms and 125ms respectively). For these
two configurations, we report a chart for the data exchanged
between edge nodes and IoT Hub, and two qualitative charts
for edge node CPU and MEM usage. More in detail, the CPU
and MEM charts depict the maximum CPU/MEM utilization
of the specific edge node while it is executing reading oper-
ations. This specification is needed because each edge node
internally runs all the components as microservices. The charts
show the total of all these components’ consumption. The
detailed charts of the broken-down components’ CPU and
MEM utilization are available at https://gitlab.com/riccardo.
venanzi/middleware-for-iiot-platforms-integration.

The first test targets to read 30 registers from Modbus
device with a frequency of 4Hz (blue bars of Fig.3, and
Fig.4). In this case, both the platforms showed a normal and
expected increment of CPU and MEM usage, referred to their
resources’ utilization in idle state, due to the communication.
The differences of behaviour are due to the different internal
composition of modules, but no substantial or unexpected
result has emerged from these charts in this test case. What
it has emerged, was the big difference of size of the data
transmitted to the IoT hub, Fig.5. As we can see from the
charts in Fig.5, Azure transferred roughly 26 MB of data
overall against 380 KB of the EdgeX counterpart. Considering
the fact that the format obtained from the Modbus registers
is almost the same, we have deeper investigated the Modbus
communication modules. It came out that the configuration

files of the two modules differ for a parameter that enables
multiple registers readings, it is present only in Azure IoT.
Since there is no equivalent configuration parameter on the
EdgeX Modbus Device Service, each register has to be sin-
gularly read. It might be a crucial limitation in a scenario in
which the scope is to read multiple registers at once. In the
second test, yellow bars of Fig.3, and Fig.4, we increased the
reading frequency to 8Hz for a total of 8 values per second for
each register monitored. An accordingly increase of resource
usage was expected, in fact the MEM usage of EdgeX node
had a remarkable increment, while the CPU usage roughly
tripled its value. While, its amount of data exported almost
doubled in value, exchanging roughly 600KB, Fig.6. On the
other hand, Azure IoT platform showed a very different and
unexpected results. In this case, the data transferred drastically
dropped from 25 MB of the previous test, to 1.1 MB (Fig.5,
and Fig.6). This result has led to deeper investigation on values
and data stored locally on the edge node. It turned out that only
5 values were stored, showing that Azure Modbus connector
was not capable of keeping up with reading at frequency lower
than 4Hz. From the tests performed, it has emerged that there
is not an absolute right choice about the IoT framework to
use, but it is strictly related to the context. More precisely,
in case there is the need of multiple registers reading, Azure
IoT platform results to be better than EdgeX Foundry. On the
other hand, EdgeX Foundry is a better choice than Azure IoT
in case of high frequency readings scenario.

Azure IoT EdgeX
0

20

40

60

80

100

CP
U

U
sa

ge
(%

) Reading Fr=4Hz
Reading Fr=8Hz

Fig. 3: CPU usage

V. CONCLUSIONS AND ONGOING WORK

The paper presented MIINT, a service oriented middleware
for IIoT platforms integration. MIINT aims to overcome the
large heterogeneity among the various IIoT platforms in the
market. MIINT enables integration by grouping the most com-
mon functionalities of the IIoT platforms and then it provides
standard APIs to interact with different vendors’ solutions. To
prove the effectiveness of our solution and to assess it in real
settings, we have integrated two widely used IIoT frameworks,
Azure IoT and EdgeX Foundry. In addition, in this research

https://gitlab.com/riccardo.venanzi/middleware-for-iiot-platforms-integration
https://gitlab.com/riccardo.venanzi/middleware-for-iiot-platforms-integration

AzureIoT EdgeX
0

100

200

300

400

500

M
EM

U
sa

ge
(M

B) Reading Fr=4Hz
Reading Fr=8Hz

Fig. 4: MEM usage

Fig. 5: Azure IoT and EdgeX Data exchanged (Fr=4Hz)

we developed and deployed a field data reading functionality.
We tested the performance of the two platforms by exploiting
this functionality to read from a MODBUS simulator. We
also shared the code to allow our colleagues to reproduce
and validate our research. Finally, in our ongoing effort we
are extending the common standardized features exposed by
MIINT middleware and integrating more IIoT platforms, such
as Siemens MindSphere.

Fig. 6: Azure IoT and EdgeX Data exchanged (Fr=8Hz)

ACKNOWLEDGMENT

The authors would sincerely thank our graduated M.Sc.
student, Andrea Sturiale, for the amazing work he has done
for his dissertation, and on which this research is based. We
wish him a brilliant career.

REFERENCES

[1] Okano, Marcelo T. ”IOT and industry 4.0: the industrial new revolution.”
International Conference on Management and Information Systems
September. Vol. 25. 2017.

[2] Kagermann, Henning, Wolf-Dieter Lukas, and Wolfgang Wahlster. ”In-
dustrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. industriellen
Revolution.” VDI nachrichten 13.1 (2011): 2-3.

[3] Hugh Boyes, Bil Hallaq, Joe Cunningham, Tim Watson, The in-
dustrial internet of things (IIoT): An analysis framework, Comput-
ers in Industry, Volume 101, 2018, Pages 1-12, ISSN 0166-3615,
https://doi.org/10.1016/j.compind.2018.04.015.

[4] Kim, Jin Ho. ”A review of cyber-physical system research relevant to the
emerging IT trends: industry 4.0, IoT, big data, and cloud computing.”
Journal of industrial integration and management 2.03 (2017): 1750011.

[5] Shohin Aheleroff, Xun Xu, Yuqian Lu, Mauricio Aristizabal, Juan
Pablo Velásquez, Benjamin Joa, Yesid Valencia, IoT-enabled smart
appliances under industry 4.0: A case study, Advanced Engi-
neering Informatics, Volume 43, 2020, 101043, ISSN 1474-0346,
https://doi.org/10.1016/j.aei.2020.101043.

[6] Sittón-Candanedo, Inés, et al. ”Edge computing architectures in industry
4.0: A general survey and comparison.” International Workshop on
Soft Computing Models in Industrial and Environmental Applications.
Springer, Cham, 2019.

[7] S. Trinks and C. Felden, ”Edge Computing architecture to support Real
Time Analytic applications : A State-of-the-art within the application
area of Smart Factory and Industry 4.0,” 2018 IEEE International Con-
ference on Big Data (Big Data), 2018, pp. 2930-2939, doi: 10.1109/Big-
Data.2018.8622649.

[8] https://azure.microsoft.com/en-us/overview/iot/
[9] https://www.edgexfoundry.org/

[10] IoT Cloud Platform Market by Offering (Platform and Service), Deploy-
ment Mode (Public Cloud, Private Cloud, and Hybrid), Organization
Size, Application Area (Building & Home Automation and Connected
Healthcare), and Region - Global Forecast to 2025, MarketsAndMarkets,
2020.

[11] Shanong Liu, Number of publicly known Internet of Things (IoT)
platforms worldwide from 2015 to 2019, Statista, 2021.

[12] Jameela Al-Jaroodi, Nader Mohamed, and Imad Jawhar. 2018.
A service-oriented middleware framework for manufacturing
industry 4.0. SIGBED Rev. 15, 5 (October 2018), 29–36.
DOI:https://doi.org/10.1145/3292384.3292389

[13] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal and Q. Z. Sheng, ”IoT
Middleware: A Survey on Issues and Enabling Technologies,” in IEEE
Internet of Things Journal, vol. 4, no. 1, pp. 1-20, Feb. 2017, doi:
10.1109/JIOT.2016.2615180.

[14] T. Glock et al., ”Service-Based Industry 4.0 Middleware for Partly Auto-
mated Collaborative Work of Cranes,” 2019 8th International Conference
on Industrial Technology and Management (ICITM), 2019, pp. 229-235,
doi: 10.1109/ICITM.2019.8710661.

[15] Agarwal, Preeti, and Mansaf Alam. ”Investigating IoT middleware plat-
forms for smart application development.” Smart Cities—Opportunities
and Challenges. Springer, Singapore, 2020. 231-244.

[16] Charles Steinmetz, Achim Rettberg, Fabı́ola Gonçalves C. Ribeiro,
Greyce Schroeder, Michel S. Soares, Carlos E. Pereira, Using Ontology
and Standard Middleware for integrating IoT based in the Industry 4.0,
IFAC-PapersOnLine, Volume 51, Issue 10, 2018, Pages 169-174, ISSN
2405-8963, https://doi.org/10.1016/j.ifacol.2018.06.256.

[17] P. Lalanda, D. Morand and S. Chollet, ”Autonomic Mediation Middle-
ware for Smart Manufacturing,” in IEEE Internet Computing, vol. 21,
no. 1, pp. 32-39, Jan.-Feb. 2017, doi: 10.1109/MIC.2017.18.

[18] cAdvisor (Container Advisor) - https://github.com/google/cadvisor.

