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Soil and Climate Factors Drive Spatio-temporal Variability of Arable Crop 10 

Yields under Uniform Management in Northern Italy 11 

Soil and weather data were used to analyse spatio-temporal yield patterns of winter cereals 12 

(wheat) and spring dicots (sunflower and coriander) in a 11-ha field in Northern Italy (44.5° 13 

N, 12.2° E), during 2010-2014. Three yield stability classes (YSCs) were established over 14 

multiple years, based on spatio-temporal characteristics across the field: high yielding and 15 

stable (HYS), low yielding and stable (LYS), and unstable. The HYS class (46% of field 16 

area) staged a 122% relative yield with low temporal variability. The unstable class (24% of 17 

field area) was slightly more productive (83% relative yield) than the LYS class (30% of 18 

field area, and 80% relative yield), but less consistent over time. Crop yields evidenced 19 

negative correlations with sand content; positive correlations with silt and clay content. Soil 20 

properties were quite consistently classified among YSCs: the LYS and unstable classes 21 

were associated with higher sand content and lower cation exchange capacity, suggesting 22 

that these characteristics lead to fluctuation and depression of final yield. Establishing 23 

YSCs based on spatio-temporal yield appears a sound approach to appraise field potential. 24 

It results in strategic and tactical decisions to be taken, depending on the profile of spatial 25 

and temporal productivity in different field areas. 26 

Keywords: Apparent soil electrical conductivity; crop yield; field spatio-temporal 27 

variability; geostatistics; soil properties  28 

Introduction 29 

Precision agriculture (PA) has a great potential to increase crop growth and final yield through 30 

the application of variable crop inputs (Basso et al. 2017). Specific crop inputs at the right time 31 

and place is highly encouraged in today’s agriculture. Therefore, the focus of this study is to 32 

analyse spatial and temporal variability of field crops, in-season climate conditions, and soil 33 

nutrient status for optimizing crop productivity and sustaining the most efficient use of finite 34 

natural resources (Blackmore 2000; Maestrini and Basso 2018). Soil physical-chemical 35 

properties vary in space and time depending on their interaction with factors such as climate, 36 
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topography and anthropogenic activities (Corwin et al. 2003). Bullock and Bullock (2000) 37 

stressed the importance of adopting efficient methods to characterize soil spatial variability. 38 

Among them, apparent soil electrical conductivity (ECa) directed to soil sampling has been 39 

shown a rapid and reliable method to characterize field variability (Corwin and Lesch 2003). 40 

However, ECa has not always staged consistent results with crop yield, due to its complex 41 

interactions with soil properties and external factors (Corwin et al. 2003). 42 

Climatic factors exert a strong influence on crop productivity under rainfed conditions 43 

(Iizumi and Ramankutty 2015; Asfaw et al. 2018), being responsible for consistently low 44 

yielding areas where insufficient moisture is the most limiting factor. Several studies demonstrate 45 

that the two main climatic factors, precipitation and temperature, significantly influence yield 46 

stability across growing seasons (Kukal and Irmak 2018; Maestrini and Basso, 2018; 47 

Mohsenipour et al. 2018; Shiru et al. 2018). Precipitation is seen to be more impacting than the 48 

temperature on final crop yield (Kang et al. 2009) 49 

During the 21st century, it is expected that higher temperatures influence the regime of 50 

precipitation, and the ultimate availability of water (Mishra et al. 2014). Therefore, registering the 51 

weather course during the crop season stimulates farmers to think critically regarding crop 52 

management (Cuculeanu et al. 2002; Asfaw et al. 2018).  53 

Furthermore, biotic and abiotic factors equally contribute to influence crop growth and 54 

development, and final yield. Among abiotic factors, low water availability and heat exert an 55 

influence on final crop yield (Mariani and Ferrante 2017), also depending on genotype adaptation 56 

to specific adversities (Zandalinas et al. 2018). 57 

In this complex situation, many studies addressed different methods of delineating site-58 

specific crop management (SSCM) zones within a field, by relating yield data with soil properties 59 

and external factors. Da Silva (2006) produced classified zones based on spatio-temporal yield 60 
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maps. Lark and Stafford (1996) used an unsupervised fuzzy clustering method over multiple 61 

years’ yield data. Swindell (1997) analyzed the spatial variability by using several crop harvest 62 

indices. Fraisse et al. (1999) combined topographical variables and ECa through unsupervised 63 

cluster analysis. Maestrini and Basso (2018) produced zones based on spatio-temporal yield of 64 

several crops with soil, crop reflectance and weather data during the growing seasons.  65 

This research was aimed at identifying homogeneous areas for site-specific management, 66 

using soil and crop yield data. The following steps were carried out: i) establishment of spatio-67 

temporal yield stability classes (YSCs) (Blackmore, 2000; Panneton and Brouillard 2002; 68 

Blackmore et al. 2003), based on the yield data of a five-year crop rotation under uniform, rainfed 69 

management; ii) assessment of the spatial variability of soil properties determined in samples 70 

taken according to an ECa; iii) establishment of spatio-temporal YSCs based on soil properties; 71 

iv) analysis of the weather effects on temporal yield variability in the five crop seasons. 72 

Materials and Methods 73 

Study site description 74 

The experimental site was an 11.07-ha field of the Agrisfera Cooperative, located near Ravenna, 75 

Italy, at N 44° 29’ 26”, E 12° 07’ 44”, 0 m above sea level (Figure S1). The area falls in the 76 

Mediterranean North Environmental Zone (Metzger et al. 2005). The field was managed in a 77 

uniform rotation system with winter cereals Durum Wheat in 2010 (DW 2010) and Bread Wheat 78 

in 2012 and 2014 (BW 2012 and 2014), and spring dicots, Sunflower in 2011 (SF 2011) and 79 

Coriander in 2013 (CO 2013). Cultivation was based on the good practices for each specific crop, 80 

depending on the local conditions. The previous field history from 1976 to 2005 (Figure S2) 81 

shows three separate parts of approximately equal length (200 m each in the north-south axis), 82 
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cultivated with fruit orchard and vineyard (upper, i.e. northern, part), and arable crops (lower, i.e., 83 

southern, part). In 2006, the three fields were merged into a single arable field (Figure S2). 84 

Crop data management 85 

Five years’ georeferenced grain yield (GY) data was collected by a New Holland CR 9080 (CNH 86 

Industrial N.V., Basildon, UK), equipped with an assisted guiding system based on real-time 87 

kinematic GPS, yield mapping system consisting of a Pektron flow meter (Pektron Group Ltd, 88 

Derby, UK), and Ag Leader moisture sensor (Ag Leader Technology, Ames, IA, USA).  89 

Raw yield data were processed and filtered using Yield Editor software (Version 2.0.7; 90 

USDA-ARS Cropping Systems and Water Quality Research, Columbia, Missouri). An average of 91 

6170 GY data points per crop were retained in the experimental area. The sowing and harvesting 92 

dates were: DW 2010, Oct. 30 (2009) – Jul. 10; SF 2011, Apr. 5 – Sep. 7; BW 2012, Oct. 14 93 

(2011) – Jul. 1; CO 2013, Apr. 11 – Jul. 10; BW 2014, Nov. 9 (2013) – Jul. 7. 94 

Thereafter, a geostatistical analysis was performed on GY data to i) examine the degree of 95 

spatial dependence (SpD) in terms of semivariogram; ii) produce continuous grid points over the 96 

entire field before mapping; iii) combine the interpolated data intersected on the regular grid. 97 

Three main parameters describe semivariogram characteristics: i) nugget (C0), the measurement 98 

error at 0 distance (h=0); ii) sill (C0 + C), the maximum y-axis value that increases with 99 

increasing lag distance (h), and remains constant at a higher distance; iii) range (a), the maximum 100 

distance at which data points are still correlated, i.e. the lag distance at sill value. The degree of 101 

SpD as given by Cambardella et al. (1994) explains the nugget to sill ratio (C0/(C0 + C)): < 25 %, 102 

indicates strong SpD; (ii) 25-75 %, moderate SpD; (iii) >75 %, weak SpD. 103 

We employed the iterative cross-validation technique seeking the highest coefficient of 104 

determination (R2) and minimum mean absolute error (MAE) to choose the best fitting 105 
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semivariogram model among Circular, Spherical, Exponential, Gaussian, and Stable (Xiao et al. 106 

2016). Spatial variability maps were computed by simple kriging (SK) with 10 m cell size, 107 

resulting in 24 columns and 72 rows (Moral et al. 2010; Ali et al. 2019). SK was chosen as it 108 

provides, normally, maximum R² and minimal error parameters (Xiao et al. 2016).  109 

For each crop, standardized interpolated data with 1156 regular grid points were used for 110 

comparison among years, by replacing the actual GY (t/ha) with a relative GY where 100 % 111 

equals field average. This allowed data from different crops to be jointly analyzed. The Equation 112 

(1) was used to characterize the spatial variability maps over a single crop: 113 

𝑆𝑖 = (
𝑦𝑖

�̅�
)  ×  100  (1) 

Where, 𝑆𝑖=standardized yield (%) over 100 % field average at point (i), 𝑦𝑖=interpolated yield at 114 

point i (t/ha), and �̅�=mean interpolated yield over the entire field (t/ha).  115 

For multiple crops, a spatial variability map was produced by simply calculating the mean 116 

standardized yield, laid over the five years according to Equation (2). 117 

𝑆�̅� =
∑ 𝑆𝑛

𝑡=1 𝑖𝐼

𝑛
 

(2) 

Where, 𝑆̅i= mean interpolated yield over 100% field average over n years, S𝑖𝐼= interpolated 118 

standardized yield (%) at point (i). 119 

For multiple crops, a temporal variability map was produced to assess the stability of 120 

standardized GY over the five crop years. The coefficient of variation (CV) of each grid point 121 

over the five years was calculated based on Equation (3) (Blackmore 2000). 122 
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𝐶𝑉𝑆𝑖 =

(
(𝑛 ∑ 𝑆𝑖𝑡

2 − (∑ 𝑆𝑖𝑡
𝑡=𝑛
𝑡=1 )2𝑡=𝑛

𝑡=1
)

𝑛(𝑛 − 1)
)

0.5

𝑆�̅�

  ×  100  

 

(3) 

Where, 𝐶𝑉𝑆𝑖= coefficient of variation of standardized yield at point (i) over n years; Sit = 123 

standardized yield (%), at point (i); 𝑆�̅� = mean standardized yield at point (i). 124 

To define the threshold levels in spatial maps, four classes were established in both 125 

single- and multiple-year yield, based on the natural break classification method (Toshiro 2002): 126 

very low (VL), medium-low (ML), medium-high (MH) and very high (VH). Each class showed 127 

maximum difference with other classes, while the within-class variability was minimized. 128 

Likewise, four classes were defined for temporal variability map across CV ranges between 2% 129 

and 73%. 130 

Spatio-temporal yield variability analyses  131 

Three yield stability classes (YSCs) were produced by combining the spatial and temporal maps 132 

over multiple crops (Table S1): high yielding and stable (HYS) (𝑆�̅�>100, CVSi<30), low yielding 133 

and stable (LYS) (𝑆�̅�<100, CVSi<30), and unstable (CVSi>30). Each class was derived from 134 

spatio-temporal yield data of multiple crops (equations 2 and 3), by applying the combinational 135 

logic statement (Blackmore 2000).  136 

Soil sampling 137 

The positions for soil samples were based on the procedure developed by Corwin and Lesch 138 

(2005). First, a soil ECa survey was conducted using an on-the-go sensor CMD Tiny 139 

Electromagnetic Conductivity Meter (GF Instruments, s.r.o., Brno, Czech Republic) along a 8 m 140 
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transect over the field area (Figure 1), removing outliers from raw ECa values, which left a total 141 

of 2651 data points (Figure 1). Then, the ECa-directed Response Surface Sampling Design 142 

module in ESAP-95 version 2.01 (Lesch et al. 2000) was used to delineate the scheme for 20 soil 143 

samples to be taken (Figure 1). Soil cores were taken at the 0-30 and 30-60 cm soil depth. The 144 

samples were air-dried at 40 °C and sieved at 2 mm diameter. 145 

Figure 1  146 

Soil physico-chemical analysis, and spatial variability 147 

The twenty soil samples (200-250 g) at 0-30 and 30-60 cm depth were subjected to determination 148 

of the following properties: particle size distribution (sand, silt, and clay content), pH, total 149 

carbonates (CaCO3), total organic carbon (C), total nitrogen (N), available P (P Olsen), 150 

exchangeable cations (K, Ca, Mg, Na), cation exchange capacity (CEC), and electrical 151 

conductivity of a soil extract with a 1:2.5 (w/w) soil-to-water ratio (EC1:2.5). The particle size 152 

distribution was determined by the pipette method (Gee and Bauder 1986). Soil pH was 153 

measured at 1:2.5 (w/w) soil-to-water ratio. The total carbonate content (CaCO3) was 154 

volumetrically determined (Loeppert and Suarez 1996). Total organic C and total N 155 

concentrations were determined by a CHN elemental analyzer (EA 1110 Thermo Fisher, 156 

Waltham, MA, USA). The available P was extracted according to Olsen et al. (1954) and was 157 

measured by inductively coupled plasma optical emission spectrometer (ICP-OES, Ametek, 158 

Spectro Arcos, Kleve, Germany). The cation exchange capacity (CEC) and the exchangeable 159 

cations were determined according to the method proposed by Orsini and Rémy (1976) and 160 

modified by Ciesielski and Sterckeman (1997), and the amounts of Co and exchangeable cations 161 

were measured by ICP-OES. Soil electrical conductivity (EC) was determined on 1:2.5 (w/w) 162 
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soil-to-water ratio aqueous suspension and then reported as EC on the saturation extract (ECe). 163 

For soil spatial variability, we produced the maps of soil properties in the 0-60 cm soil 164 

depth (average of the 0-30 and 30-60 cm layers), by using ordinary kriging with 10 m grid 165 

resolution. Kriging outperforms normally the inverse-distance weighted method in spatial soil 166 

mapping (Kravchenko and Bullock 1999; Reza et al. 2010; Daniel et al. 2017).  167 

Relationship between spatio-temporal YSCs and soil data 168 

Thirty m wide buffers around the 20 positions determined by the ESAP software were created for 169 

statistical correlations between spatio-temporal yield and soil properties. The values of 170 

interpolated GY and selected soil properties falling within the range of each buffer were averaged 171 

for Pearson’s correlations (r) involving the 20 data points. Thereafter, it was evaluated if multi-172 

years spatio-temporal yield could effectively be described by the differences in soil properties 173 

within YSCs. To this aim, interpolated soil data were associated with the YSCs, then the 174 

statistical differences of soil properties among YSCs were assessed in the same way as described 175 

by Li et al. (2008) and Scudiero et al. (2018).  176 

The weather information during the five growing seasons (Hydro-meteorological Service 177 

of the Emilia-Romagna region) was used to interpret temporal yield variability. The wet and dry 178 

periods from initial to maturity stages of the surveyed crops were represented by the balance 179 

between precipitation (P) and crop evapotranspiration (ETC), this latter determined according to 180 

Allen et al. (1998). In the supplementary materials, total precipitation and the average 181 

temperature were computed monthly according to Bagnouls and Gaussen (1953), to indicate wet 182 

and dry periods during the five crop seasons.  183 

Map production and geostatistical data analysis were carried out with the ArcGIS 184 

software (Version 10.3, ESRI, Redlands, CA, USA) under the reference system WGS 84/UTM 185 
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zone 32 °N. Statistical analyses were performed with the Statistica 10 software (StatSoft Corp., 186 

Tulsa, OK, USA). 187 

Statistical analysis 188 

Crop yields and soil data were subjected to descriptive statistics. Pearson’s correlation (r) was 189 

used to evaluate the relationships of soil properties and spatio-temporal relative yield in single 190 

and multiple crops. One way analysis of variance (ANOVA) was run to assess the differences in 191 

soil and yield traits among the three YSCs. The least significant difference (LSD) at P ≤ 0.05 was 192 

used to indicate significantly different levels. 193 

Results 194 

Descriptive statistics of crop yields  195 

Table 1a summarizes the characteristics (mean, minimum, maximum, SD, kurtosis, and 196 

skewness) of standardized GY data in the five years. Crop yield varied greatly across the field. 197 

The widest min.-max. range (183) was found in BW 2012, whereas the tightest range (143) was 198 

shown in DW 2010. Standardized GY variability was generally high, as indicated by SD ranging 199 

from 29 % for DW 2010 to 38 % (SF 2011 and CO 2013). 200 

Table 1 201 

Geostatistics of crop yields 202 

The spatial patterns of crop yields were evaluated in terms of semivariograms and the respective 203 

model fittings (Table 1b). DW 2014 showed a zero nugget effect, followed by SF 2011 and DW 204 

2010 with very low nugget values. All crops exhibited a quite similar total variance (sill variance 205 
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(C0+C) ranging from 0.92 to 1.17), whereas the range (a) varied noticeably between 38 and 121 206 

m. A high/low range indicates high/low continuity, respectively, within the dataset. Based on the 207 

degree of SpD (Cambardella et al. 1994), crop data showed a ‘strong’ continuity in their SpD in 208 

all cases except BW 2012. The results of semivariogram model fitting (R2 and MAE) confirmed 209 

the good performance of the stable and exponential variogram, depending on years, over the 210 

empirical data (Xiao et al. 2016; Bhunia et al. 2018). 211 

Yield maps and spatio-temporal variability 212 

Spatial maps of standardized GY were traced depicting the four yield classes in the fivee years 213 

(Figure 2a, 2b, 2c, 2d, 2e). Spatial variability map over multiple crops (Figure 2f) exhibited 214 

higher minimum (27) and lower maximum (148) relative GY, resulting in a narrower range (121) 215 

compared to single crops. Nevertheless, spatial variability maps in single vs. multiple crops were 216 

quite consistent, i.e. areas at high or low GY tended to repeat in the same position. The upper 217 

field portion (4.12 ha) always showed low and below-average yield, whereas the middle and 218 

lower field portions (6.95 ha) always featured above average and high yield.  219 

In the spatial map over multiple crops (Figure 2f), an area of 1.30 ha (11.7 % of the field 220 

surface) lay in the VL area, 3.86 ha (34.8 %) in the ML area, 3.10 ha (28.1 %) in the MH area, 221 

and 2.81 ha (25.4 %) in the VH area. In the temporal map (Figure 2g), high stability (CV up to 30 222 

%) covered an area of 8.27 ha (76 %) across the field, while the unstable area (CV = 30-73 %) 223 

covered the remaining 2.8 ha (24 %) (Figure 2g). Lastly, the three yield stability classes (HYS, 224 

LYS and unstable) depicted the features of spatio-temporal yield over multiple years (Figure 2h). 225 

Figure 2  226 
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Yield data distribution within spatio-temporal yield stability classes  227 

Data distribution within the classes of spatio-temporal maps is reported in Table 2.  228 

Table 2 229 

For spatial variability classes, in DW 2010 GY data distribution was more skewed 230 

towards high yielding classes, meaning that more grid points belonged to the MH and VH 231 

classes. The same occurred, to a lesser extent, in all the other years except SF 2011. Also the 232 

multiple crops combined showed a slight prevalence of the MH and VH classes. The differences 233 

between the relative GY values in single and multiple crop maps indicate that class limits and 234 

width are not the same between single and multiple datasets. 235 

For temporal variability classes, 334 data points out of 1156 (28.9 % or 3.3 ha) were in 236 

the highly stable class (2-14 % CV), 310 points (26.8 % or 3.1 ha) were in the medium stable 237 

class (14-22 % CV), 235 points (20.3 % or 2.4 ha) in the lowly stable class (22-30 % CV), and 238 

finally 277 data points (24 % or 2.8 ha) were in the unstable class (30-73 % CV).  239 

For yield stability classes, 527 data points (46 % or 5.3 ha) were found in the HYS class, 240 

352 (30 % or 3.5 ha) in the LYS class, and 277 points (24 % or 2.8 ha) in the unstable class.  241 

Spatial variability of soil properties  242 

The descriptive analysis of soil physico-chemical properties in the average of the two depths (0-243 

60 cm) is reported in the supplementary material (Table S2). The soil was loamy, moderately 244 

alkaline, rich in carbonates, poor of organic carbon (< 10 g/kg), and with a low C:N ratio (< 10). 245 

Available P and exchangeable K were also quite low (< 10 mg/kg and < 0.3 cmol+/kg, 246 

respectively). Exchangeable Ca was relatively high (almost 80% of the CEC). ECe denoted a 247 

negligible salinity across the field. Lastly, the three particle size classes (sand, silt, and clay) were 248 
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more heterogeneous (higher SD in proportion to mean data) than the rest of the soil properties. 249 

Spatial soil maps  250 

Spatial maps of soil properties interpolated with ordinary kriging are reported in Figures 3a, 3b, 251 

3c, 3d. Sand exhibited low values in the lower (south) field portion, in exchange for high values 252 

in the upper (north) portion (Figure 3a). Furthermore, sand variability depicted inverse spatial 253 

trends to silt, clay, and CEC (figure 3b, 3c, and 3d, respectively). Silt, clay, and CEC values 254 

exhibited similar trends, showing high values in the south and low values in the north side of the 255 

field. Therefore, silt, clay, and CEC displayed a pattern similar to spatio-temporal yield (Figure 256 

2a, 2b, 2c, 2d, 2e, 2f), whereas sand displayed a pattern in the opposite direction. 257 

Figure 3 258 

Quality control of spatio-temporal YSCs 259 

Significant correlations were evidenced between soil properties and the spatio-temporal yield 260 

data (Table 3). The sand content showed negative correlations with silt and clay, CEC, and 261 

spatio-temporal yield data (except for SF 2011). The silt and clay contents showed a positive 262 

correlation with each other and CEC, and they had positive correlations with crop yields, except 263 

for SF 2011. The CEC was positively correlated with single and multiple crop yields, except for 264 

SF 2011 and BW 2014. Additionally, high correlations were evidenced between spatio-temporal 265 

yields over single and multiple years: DW 2010, CO 2013 and BW 2014 yields showed the 266 

strongest relationship with multiple crop yield (r = 0.97** all) followed by BW 2012 (r = 0.78**) 267 

and SF 2011 (r = 0.73**). 268 

Table 3 269 
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Classification of stable soil physico-chemical properties within the three spatio-temporal 270 

yields classes depicted statistical differences of soil properties (Table 4).  271 

Table 4 272 

The lowest mean value of sand (47.9 %) was associated with the HYS class, resulting in 273 

maximum yield over multiple crops (YSCs). Higher sand content was found in LYS (56.8 %) and 274 

unstable class (57.4 %), which featured a similar but statistically different yield (80 % and 83 %, 275 

respectively). Conversely, silt, clay, and CEC had higher values in the HYS class, compared to 276 

LYS and unstable class.  277 

Ambient conditions during the five cropping seasons 278 

The balance of ambient moisture in the five crop seasons is reported in Table 5.  279 

Table 5  280 

During DW 2010, the crop growing period from tillering to heading (initial to mid-281 

season) received a surplus of 206 mm as P-ETc difference and was considered a wet period, 282 

whereas late-season (ripening stage) staged a 68 mm deficit. BW 2012 and 2014 also received 283 

enough precipitation from tillering to stem elongation (28 and 212 mm surplus in the two 284 

respective years), whereas a dry period occurred from heading to ripening in both years. It 285 

resulted in a respective deficit of 298 and 249 mm. Compared to winter cereals, spring dicots SF 286 

2011 and CO 2013 suffered an increasing water deficit across growth stages. At ripening, a 287 

cumulated deficit of 433 and 219 mm was attained in the two respective crops. 288 

The representation of temperature and precipitation during the five growth seasons 289 

according to Bagnouls and Gaussen (1953) exhibits a similar picture (Figures S3 and S4).  290 

The stronger drought experienced by the spring dicots vs. autumn cereals reflected in a 291 
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stronger variation of yield data (Table 1a). Standard deviation was 38% of the mean GY in both 292 

SF 2011 and CO 2013, whereas it was 31%, averagely, in DW 2010, BW 2012, and BW 2014. 293 

Discussion 294 

The geostatistical analysis of the five crop yields featured quite similar parameters, despite using 295 

two different semivariogram models (Table 1b). BW 2012 represents the only partial exception, 296 

having a far more extended range than the rest of crops, associated with less spatial dependence. 297 

However, negligible nugget or barely exceeding 25% of the total sill, as in the case of BW 2012, 298 

indicates high spatial continuity between data points. This is a circumstance strengthening the 299 

value of the spatial variability maps obtained through kriging interpolation. 300 

In these maps, the differences among the four yield classes that are evidenced in 301 

individual crops (Figure 2a, 2b, 2c, 2d, 2e) are softened in the multiple crops (Figure 2f). 302 

Therefore, the multiple crops play a buffering role vs. single crops, meaning that operating with 303 

the former data is as a sounder basis for crop management decisions to be taken. 304 

The three YSCs proposed by Blackmore (2000) set themselves one step beyond spatial 305 

variability maps, as they combine spatial and temporal variability into a single indicator. The 306 

unstable class is that deserving most attention, as it is an area with a potential for improving crop 307 

yields. In our case, this area covers almost one-fourth of the total field surface (Table 2). 308 

Additionally, the unstable class has a patchy distribution across the field, whereas the two stable 309 

classes, HYS and LYS, have a more consistent shape and distribution (Figure 2h). Lastly, the 310 

unstable and LYS classes denote an increase in sand content and a parallel decrease in silt and 311 

clay content, and CEC (Table 4). Hence it is sensed that sharper values in soil properties lead to 312 

fluctuation and depression of final yield, whereas more balanced values conduct to consistently 313 

higher crop yields (Table 4). 314 
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The ECa survey directs soil sampling towards field areas more prone to indicate 315 

variations in soil properties, in contrast to regular grid sampling (Corwin et al. 2003). In our case, 316 

it is perceived that a higher density of sampling points was placed in the upper field portion 317 

(Figure 1), where the multiple-year data indicate systematic yield loss vs. the rest of the field 318 

(Figure 2f). Therefore, the ECa survey was shown able to predict soil constraints for plant 319 

growth. However, sampling and analysis were needed to detect the underlying causes, as premise 320 

for taking decisions to deal with constraints. 321 

Overall, the mean values of spatial soil properties across the three YSCs show 322 

considerable differences and align with the multiple year yield map (Figure 2h). The considerable 323 

variations of crop yield across the whole field were quite well correlated with the variations of 324 

soil properties (Table 3); SF 2011 was a partial exception, but CO 2013, the other spring sown 325 

crop, behaved as the three winter wheat crops (DW 2010, BW 2012 and 2014). The general good 326 

correlations between crop yield and soil properties are in accordance with the findings of Corwin 327 

et al. (2003). It is evinced from their work and ours how much it is important to understand the 328 

causes of yield variation through soil factors that are expected to contribute to crop productivity. 329 

Temporal stability is seen as a relevant property in multiple crops across multiple years. 330 

The unstable is made a class of its own in the YSC system (Blackmore 2000), to account for 331 

fluctuations which are due to crop type, weather, and undefined factors interacting with them 332 

(Figure 2g). We believe that this field portion that gave a slightly higher yield (83 %) than the 333 

LYS class (80 %) (Table 4), averagely, may require separate cultivation practices, depending on 334 

in-season weather conditions during the specific crop season. The unstable class was 335 

characterized by similar values of soil properties as the LYS class (Table 4), indicating that these 336 

levels of soil properties are prone to reduce crop yield. Therefore, the unstabilizing effect 337 

associated with these properties is responsible for reducing crop yield in areas that could 338 
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potentially give a high yield. Separate cultivation practices aimed at reducing the negative effects 339 

of soil constraints in such areas should provide a gain in crop yields. 340 

The weather pattern during the five growing seasons (Table 5, Figures S3 and S4) 341 

provides some clues to understanding why some field areas gave higher yield than others, and 342 

why some other areas behaved differently over time. The five rainfed crops were exposed to 343 

irregular weather, and the erratic pattern of water availability is acknowledged as one of the 344 

main determinants of crop yield and its variability (Kang et al. 2009; Kukal and Irmak 2018). 345 

Yield losses consequential to drought are commonly reported in the literature for wheat (Karim et 346 

al. 2000; Mirzaei et al. 2011), as well as sunflower (Nel et al. 2001) and coriander (Unlukara et 347 

al. 2016). However, the effect of ambient moisture that we noticed on yield spatial variability 348 

cannot be ascertained in small plot experiments and is relatively novel in the literature.  349 

Additionally, our study suggests that, under favorable weather in a specific year, unstable 350 

field zones could be managed as high yielding ones, i.e. supplying a non-limiting amount of 351 

inputs to harness the favourable conditions conducive to high yield. Conversely, under 352 

unfavourable weather, savings could be made to avoid inefficient use of crop inputs.  353 

In other words, while the stable yield zones of a field should be managed by strategic 354 

planning, the unstable zones shall better be managed by tactical approach, e.g., based on crop 355 

growth status and soil moisture conditions, which are a key factors for final yield in many 356 

agricultural areas around the world. Therefore, it is of paramount importance for the farmers to 357 

monitor their crop and receive timely we ather information for alternative decisions to be 358 

taken (Basso et al. 2011). 359 

One last point concerns the management of fields that become larger and larger by 360 

merging previously separated fields, under the urge to increase the efficiency in agricultural 361 

practice. In the surveyed case, three consecutive fields, each approximately 200 m long in the 362 
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north-south axis, were combined into a single field approximately 600 m long in 2006 (Figure 363 

S2). The result is that the northern third, which was planted with deep rooted tree crops, is 364 

scarcely productive, once converted to annual crops: in the multiple year average, a relative 365 

yield of 76 % can be calculated for the upper third, compared to 104 % and 124 % for the 366 

central and lower third.  367 

There is no univocal answer to the dilemma whether to pursue the enlargement of crop 368 

fields, to the expenses of crop advocacy, or save advocacy, to the expenses of efficiency. In 369 

the former case, the assessment of the causes for low productivity in a field portion provides 370 

the grounds for applying the most suited crop husbandry in a site specific manner. 371 

Conclusions 372 

Site-specific zones are the basis in precision agriculture by understanding where variable crop 373 

inputs are needed, based on the spatial and temporal variability of field characteristics. This paper 374 

defines the concept of classified zones by delineating the potential yield stability classes based on 375 

spatio-temporal maps over a five-year series of yields obtained with different crops. 376 

It is evinced that the field areas featuring unstable yield across years should be managed 377 

by considering the in-season weather information to predict whether the unstable field part will 378 

behave as high yielding or low yielding in a specific year. This will provide farmers with 379 

valuable support to decide the appropriate level of crop intensity, e.g., fertilizers or water supply, 380 

in a site-specific way.  381 

Our work concludes that multi-year yield stability classes are a more practical and cost-382 

effective approach than uniform management, as they set the premise for variable inputs to 383 

optimize crop productivity. Based on yield stability classes, strategic and tactical decisions must 384 

be taken in different field areas, depending on the spatial and temporal profile of productivity 385 
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owned by these areas. 386 

However, despite encouraging results based on a five-year data from a mixed cropping 387 

system, it is quite likely that the surrounding conditions play a relevant role in each specific case. 388 

This makes the approach described in this work reproducible, not simply generally valid, in 389 

different crop conditions. 390 
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Table 1. Descriptive statistics of (1a) and semivariogram analysis (1b) of relative yields (average 396 

= 100) over the five years  397 

1a 398 
Crop year Min. Max. SD Kurtosis Skewness K-S 

DW 2010 13 156 29 -0.1 -0.6 ** 

SF 2011 12 190 38 -0.7 0.2 ** 
BW 2012 14 197 32 0.1 -0.1 ** 

CO 2013 19 181 38 -1.0 -0.3 ** 

BW 2014 21 178 33 -0.9 -0.2 ** 

       

1b       

Crop year Model C0 C0+C a (m) C0/(C0+C) (%) SpD 

DW 2010 Stable 0.03 1.05 64 2.5 S 

SF 2011 Exponential 0.01 1.01 38 1.0 S 

BW 2012 Exponential 0.31 1.17 121 26.5 M 

CO 2013 Stable 0.13 0.96 66 13.5 S 

BW 2014 Stable 0.00 0.92 51 0.0 S 

DW, durum wheat; SF, sunflower; BW, bread wheat; CO, coriander. Min., minimum; Max., maximum; SD, standard 399 

deviation; K-S, Kolmogorov-Smirnov test for normal distribution; **, significant at P ≤ 0.01. C0, nugget; C, partial 400 

sill; C0+C, sill; a, range; C0/(C0 + C), nugget to sill ratio; SpD, spatial dependence; S, strong; M, moderate; MAE, 401 

mean absolute error. 402 

  403 
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Table 2. Relative yield (average = 100) and CV data in spatio-temporal and yield stability 404 

classes. 405 

Variables 
Relative yield 

or CV 
Yield or CV classes  Grid points 

Area 

(%) 

DW 2010 

13-61 VL 134 11.6 

62-95 ML 317 27.4 

96-116 MH 301 26 

117-156 VY 404 35 

SF 2011 

12-61 VL 161 13.9 

62-95 ML 439 38 

96-134 MH 293 25.3 

135-190 VY 263 22.8 

BW 2012 

14-67 VL 176 15.2 

68-99 ML 374 32.4 

100-138 MH 506 43.8 

139-197 VY 100 8.6 

CO 2013 

19-60 VL 213 18.4 

61-99 ML 323 27.9 

100-131 MH 335 29 

132-181 VY 285 24.7 

BW 2014 

21-64 VL 176 15.2 

65-99 ML 387 33.5 

100-127 MH 304 26.3 

128-178 VY 289 25 

Spatial map 

27-66 VL 135 11.7 

67-99 ML 402 34.8 

100-120 MH 325 28.1 

121-148 VY 294 25.4 

Temporal map  

(CV data) 

2-14 Highly stable 334 28.9 

14-22 Medium stable 310 26.8 

22-30 Lowly stable 235 20.3 
30-73 Unstable 277 24 

Yield stability classes 

HYS  527 46 

LYS  352 30 

Unstable 277 24 

DW, durum wheat; SF, sunflower; BW, bread wheat; CO, coriander; CV., coefficient of variation; VL, very low; 406 

ML, medium-low; MH, medium-high; VH, very high; HYS, high yielding and stable; LYS, low yielding and stable. 407 

408 
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Table 3. Pearson correlations (r) between relevant soil properties and spatio-temporal relative 409 

yields in single and multiple crops. 410 

Traits Sand Silt Clay CEC 
DW 

2010 

SF 

2011 

BW 

2012 

CO 

2013 

BW 

2014 

Silt -1.00**         

Clay -0.96** 0.93**        

CEC -0.91** 0.90** 0.91**       

DW 2010 -0.58** 0.59** 0.50* 0.52*      

SF 2011 -0.40 0.40 0.36 0.35 0.61**     

BW 2012 -0.63** 0.63** 0.57** 0.56** 0.72** 0.36    

CO 2013 -0.54* 0.57** 0.41 0.46* 0.96** 0.61** 0.72**   

BW 2014 -0.47* 0.49* 0.39 0.35 0.94** 0.68** 0.69** 0.94**  

Multiple crops -0.58** 0.60** 0.49* 0.50* 0.97** 0.73** 0.78** 0.97** 0.97** 

* and ** indicate r values significant at P ≤ 0.05 and P ≤ 0.01, respectively (n = 20). 411 

  412 
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Table 4. Statistical differences in soil properties and spatio-temporal relative yield among the 413 

three YSCs. 414 

Variables YSCs 
Data 

points 
Mean Min Max SD 

 

 

% sand 

HYS 527 47.9 b 34.0 73.4 10.6  

LYS 352 56.8 a 33.6 75.6 10.6  

Unstable 277 57.4 a 37.1 73.5 9.4  

% silt 

HYS 527 40.2 a 20.0 50.6 8.2  

LYS 352 32.8 b 17.5 52.4 8.5  

Unstable 277 32.3 b 19.6 48.4 7.4  

% clay 

HYS 527 11.9 a 6.1 16.9 2.5  

LYS 352 10.4 b 6.2 15.0 2.3  

Unstable 277 10.4 b 6.3 14.8 2.1  

CEC (cmol+/kg) 

HYS 527 10.8 a 7.6 13.4 1.1  

LYS 352 10.0 b 6.7 13.4 1.5  

Unstable 277 10.0 b 6.6 12.7 1.2  

Rel. yield (multiple 

crops) 

HYS 527 122 a 100 148 11.5  

LYS 352 80 c 27 100 15.4  

Unstable 277 83 b 29 136 26.4  

YSCs, yield stability classes; HYS, high yielding and stable; LYS, low yielding and stable; SD, standard deviation. 415 

Different letters indicate significantly different mean values (LSD test at P ≤ 0.05). 416 

  417 
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Table 5. Weather conditions during the five crop seasons. 418 

Crop and year 
Growth 

period 

Time 

(days) 

P 

(mm) 

ETc  

(mm) 

P-ETc 

(mm) 

Moisture 

condition 

DW 2010 

Ini 24 17 9 8 Wet 

Dev 65 180 26 154 Wet 

Mid 100 265 221 44 Wet 

Late 64 127 195 -68 Dry 

SF 2011 

Ini 35 31 41 -10 Dry 

Dev 40 29 142 -113 Dry 

Mid 50 67 278 -211 Dry 

Late 30 2 101 -99 Dry 

BW 2012 

Ini 19 35 10 25 Wet  

Dev 68 43 40 3 Wet 

Mid 116 77 245 -168 Dry 

Late 58 50 180 -130 Dry 

CO 2013 

Ini 20 22 23 -1 Dry 

Dev 30 36 83 -47 Dry 

Mid 25 5 141 -136 Dry 

Late 15 17 52 -35 Dry 

BW 2014 

Ini 44 96 13 83 Wet 

Dev 74 188 59 129 Wet 

Mid 79 86 273 -187 Dry 

Late 43 77 139 -62 Dry 

DW, durum wheat; SF, sunflower; BW, bread wheat; CO, coriander; CV., coefficient of variation; P, precipitation; 419 

ETc, crop evapotranspiration; Ini, Initial; Dev, crop development; Mid, mid-season; Late, late-season. 420 

 421 
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 422 

Figure 1. Map of the ECa distribution; green circles indicate the 20 soil sampling positions. 423 
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 424 

Figure 2. Consolidated spatio-temporal yield maps: VL, very low; ML, medium-low; MH, 425 

medium-high; VH, very high; 2a, spatial variability map of DW 2010; 2b, spatial variability map 426 

of SF 2011; 2c, spatial variability map of BW 2012; 2d, spatial variability map of CO 2013; 2e, 427 

spatial variability map of BW 2014; 2f, spatial variability map over 5 years’ multiple crops; 2g, 428 



26 

 

temporal variability map over 5 years’ multiple crops; 2h, yield stability classes over spatio-429 

temporal variability over 5 years’ multiple crops. 430 

 431 

Figure 3a, 3b, 3c, 3d. Spatial variability maps of soil properties. 432 

 433 
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