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Abstract—Edge computing brings processing and storage ca-
pabilities closer to the data sources, to reduce network latency,
save bandwidth, and preserve data locality. Despite the clear
benefits, this paradigm brings unprecedented cyber risks due to
the combination of the security issues and challenges typical of
cloud and Internet of Things (IoT) worlds. Notwithstanding an
increasing interest in edge security by academic and industrial
communities, there is still no discernible industry consensus
on edge computing security best practices, and activities like
threat analysis and countermeasure selection are still not well
established and are completely left to security experts.

In order to cope with the need for a simplified yet effective
threat modeling process, which is affordable in presence of
limited security skills and economic resources, and viable in
modern development approaches, in this paper, we propose an
automated threat modeling and countermeasure selection strat-
egy targeting edge computing systems. Our approach leverages a
comprehensive system model able to describe the main involved
architectural elements and the associated data flow, with a focus
on the specific properties that may actually impact on the
applicability of threats and of associated countermeasures.

Index Terms—Edge Computing Security, Automated Threat
Modeling, Edge System Modeling

I. INTRODUCTION

The edge computing paradigm allows computation to be

performed at the outskirts of a system, as close as possible to

data sources, where edge nodes locally handle computing tasks

including processing, storage, caching, and load balancing on

data sent to and from the cloud [1]. Cloud services will be only

occasionally resorted for heavy burden tasks such as big data

analytics, machine learning training, etc. This approach is par-

ticularly suited for latency-sensitive applications [2], including

streaming services, gaming platforms, manufacturing plant

automation, self-driving cars, monitoring of energy platforms,

and home automation, where the delay resulting from data

traveling back and forth between the devices and the cloud data

centers may have a negative impact on the user experience,

on system functionality, or even on safety. Moreover, large-

scale data transmission requires very high network bandwidth,

which is quite costly, and it is also critical from a security and

privacy perspective since sensitive or proprietary information

is transferred and processed away from its source, which may

be an issue in presence of data localization laws.

Despite the big potential of edge computing to maximize

the benefits coming from both cloud and edge worlds, it

is undeniable that it brings new, unprecedented cyber risks

[3]. Typical security concerns related to the loss of control

experienced in cloud environments add up with the issues

affecting the edge and device layers, characterized by highly

heterogeneous hardware platforms, operating systems, and

communication protocols, different computation, storage, and

communication capabilities, typically coarse-grained access

control mechanisms, and a general lack of attack awareness

due to the limited interfaces usually offered by devices. To

make things worse, edge systems are widely employed in ap-

plications that collect and process personal and sensitive data,

whose protection should be ensured at any level, independently

of the specific capabilities of involved devices.

In this context, identifying the actual threats that affect

a given deployment is a challenging task, as risks vary

significantly by individual use case and application domain,

and heavily depend on involved components and technologies.

Unfortunately, despite an increasing interest in the edge secu-

rity topic by both the academic and industrial communities,

there is still no discernible industry consensus on edge com-

puting security best practices, and activities like threat analysis

and countermeasure selection are completely left to security

experts. Unluckily, today’s high-speed agile and DevOps IT

environments often involve personnel with limited security

expertise, or existing security teams are too small to efficiently

cope with established requirements. Moreover, to make things

worse, security-related activities including threat modeling

must keep pace with fast development and deployment pro-

cesses, and this inevitably requires their simplification and,

when possible, their automation.

In order to cope with the need for a simplified yet ef-

fective threat modeling process, in this paper we propose

an automated threat modeling and countermeasure selection

methodology targeting edge computing systems. Our approach

leverages a comprehensive system model able to describe

the main involved architectural elements (i.e., the assets)

and the associated data flow, with a focus on the specific

properties that may actually impact on the applicability of

threats and of associated countermeasures. To validate our



approach, we applied it to a simple smart home case study

by using the Microsoft Threat Modelling Tool1 which was

suitably extended to include our system model elements and

threats.

The paper is organized as follows. Section II presents an

overview of existing approaches aimed to model and assess

the security in IoT and edge computing systems. Section III

illustrates the system model behind our proposal, while Section

IV describes our automated threat modeling and countermea-

sure selection strategy. Finally, Section V provides an example

of application of our approach to a simple edge computing

system, to demonstrate its feasibility and effectiveness, and

Section VI draws our conclusions.

II. RELATED WORK

In recent years, there has been a growing interest in ex-

ploring the security of IoT environments and great research

efforts have been directed toward the design and development

of reference secure architectures. On the contrary, at the state

of art, edge computing security has not been fully investigated.

In this section, we focus on the proposed approaches for

modeling security threats and assess the security of IoT

networks.

The authors in [4] presented a system capable of auto-

matically identifying the types of devices and subsequently

establishing which rules should be enforced to constrain the

communications of devices affected by potential security vul-

nerabilities. Adopting this security system allows minimizing

the damage resulting from vulnerable devices. A framework

for modeling and assessing the security of IoT was proposed in

[5]. It is employed to build a graphical security model aiming

at capturing potential attack paths in the network. Furthermore,

the authors also provide a security evaluator responsible for

automating the security analysis. The results of the assessment

of the security level of the IoT network provide a clearer

picture of which assets and paths should be protected at first.

Then, the defense strategies are compared in order to choose

the most effective device-level security strategies. Soteria [6]

is a static analysis system proposed to validate whether an IoT

application or IoT environment adheres to identified security,

safety, and functional properties. It translates platform-specific

IoT source code into an intermediate representation and then

extracts a state model on which verifies the desired properties.

In [7], the authors propose an IoT Security Model (IoTSM)

that allows organizations to plan and implement a strategy for

developing end-to-end IoT security. This approach also enables

analyzing, describing, and measuring the security posture,

level, and practise of an IoT organization. Most of the current

state-of-art research efforts target security issues, challenges,

and frameworks for securing edge computing systems [3],

whereas the area of automated threat modeling is still in its

infancy. Along this direction, this paper represents an original

proposal. The only work that has some similarities with ours

is [8], where authors introduced an approach meant to support

1https://www.microsoft.com/en-us/download/details.aspx?id=49168

the security analysis of IoT systems. It is based on an almost

completely automated process for threat modeling and risk

assessment, which also helps identify the security controls to

enforce to mitigate existing security vulnerabilities. Although

this work shares some basic concepts with [8], the latter

considered a more general system model and did not take ex-

plicitly into account the data flow and some relevant attributes

that enable to obtain a fine-grained threat characterization,

which are the focus of this paper.

III. SYSTEM MODELING

Ecosystems where IoT, edge and cloud converge towards

a computing continuum are made up of several heteroge-

neous components that have specific security requirements and

different compute and storage capabilities. A typical cloud

continuum system consists of three layers, namely the cloud

service layer, the edge layer, and the (IoT) device layer.

The edge layer is powerful enough to manage IoT devices

and run containerized applications. Therefore, this distributed

computing paradigm favors a strong integration between cloud

and IoT. However, a downside is the significant number of

connected devices and of interactions with the edge computing

layer, which considerably broaden the attack surface.

In order to facilitate the security analysis of an edge comput-

ing deployment and support developers in the threat modeling

and countermeasure selection phases, we propose a system

modeling approach that enables a developer to specify those

aspects related to the architecture of the system, in terms of

its main hardware and software assets, and to the related data-

flow, that actually impact on security. Building the model re-

quires a limited effort from developers to specify the essential

characteristics of a system, and enables to automatically obtain

a threat model that is as much customized as possible for the

specific system deployment. In the following subsections, we

will illustrate the classification taken into account to model

both assets and data (refer to Figure 1).

A. Asset Modeling

As mentioned previously, an edge computing system in-

volves several types of assets, belonging to different archi-

tectural and functional levels. In particular, we consider three

main asset types, namely physical/virtual processing nodes,

software components/modules, and communication channels,

discussed in the following.

1) Physical/Virtual Processing Nodes: The first asset cate-

gory includes the processing nodes belonging to the different

layers of an edge computing system, devoted to running

application programs and services that implement the system

business logic. At the IoT and edge layers, these nodes are

represented by the physical devices, while at the cloud layer

they basically correspond to the virtual machines offered

according to the IaaS paradigm. Hence, a Processing node

can be classified into the three categories: Edge node, IoT

node and Cloud VM. It is worth reminding that processing

nodes offer different storage and computational capabilities,

which allow for the implementation of different security



mechanisms. This is a key aspect that must be taken into

account during the countermeasure selection process, in or-

der to identify feasible controls on the target architecture.

Generally, cloud-based compute resources and edge nodes

provide sufficient capabilities to support traditional security

mechanisms, while IoT devices are usually characterized by

limited compute and storage capabilities that often only allow

for the implementation of simple and lightweight protocols and

mechanisms. On the other hand, it is worth noting that some

physical characteristics of processing nodes have an impact

on applicable threats: for instance, having a battery-powered

device opens up to specific threats that are not applicable to

AC-powered nodes (e.g., battery exhaustion).

Based on the above considerations, IoT devices can be

labeled according to their processing/storage capabilities and

power supply by means of a capability attribute. In

particular, following the classification proposed in [9], devices

can be distinguished in Constrained, Limited, Restricted and

Normal. Constrained devices (battery-powered, up to 10KB

RAM, and up to 128KB ROM) are the weakest and do not

support any security mechanisms. Limited devices (battery-

powered, 10-32KB RAM, and 128-512KB ROM) can support

some symmetric key-based protocol. Restricted devices (bat-

tery/AC powered, 32-128KB RAM, and 512KB-10MB ROM)

are more powerful devices able to implement symmetric proto-

cols and lightweight asymmetric key-based protocols. Finally,

normal devices (AC-powered, 128KB and above RAM, 10MB

ROM and above) are powerful devices able to implement any

traditional security protocols.

Besides processing/storage capabilities and power supply

characteristics, in an edge computing scenario also the location

where a node is physically deployed impacts on its security, as

it may lead to specific threats. In order to take this aspect into

account, it is possible to identify another attribute of interest

to label both edge nodes and IoT devices, namely location,

which can assume two values: Protected and Open. The former

refers to assets that are placed in an area that can be only

accessed by authorized personnel, while the latter is related to

assets that can be accessed without any restriction, and that

therefore are more exposed to potential attackers.

2) Communication Channel: The second asset category

includes the communication channels established among the

nodes. Currently, there are many communication protocols

employed in edge computing (Zigbee, Bluetooth, Wi-Fi, etc)

that can be exploited by malicious attackers to compromise

the system. To take into account specific threats associated

with the communication channel, we assigned the protocol

attribute to this asset, which corresponds to the actual protocol

used for communication.

3) Software Component: The third asset category includes

the software components, modules, and services that help

implement the business logic of the system. Involved software

components can be very heterogeneous both from the technol-

ogy and from the complexity point of view. In order to simplify

the characterization of software components, we identified

a service type attribute that can assume one of three

possible values, namely web-based service, if the component

is primarily devoted to processing and exposes its services by

means of a web (HTTP) interface (it is the case of cloud-

based services and of web interfaces exposed by edge devices

to communicate with the cloud layer), storage service, if the

component is devoted to storing structured or unstructured

information (e.g., an on-premise DBMS, a cloud-based storage

service, a key-value store, etc.) and can be accessed remotely,

and IoT service, in case of services/applications running on

IoT or edge nodes and accessible via non-HTTP protocols.

With regard to the software component technologies in an

edge computing context, it is worth mentioning that container-

based virtualization is spreading out, not only at the cloud

service layer, but also at the edge layer, due to the fact that con-

tainers are lightweight and portable, start in few seconds, and

can be deployed, migrated, and upgraded faster on distributed

edge infrastructure compared to virtual machine applications.

Despite the undeniable benefits brought by containerization,

it introduces a unique set of security challenges and risks

that must be addressed properly given its central role in

edge computing systems. Hence, we considered a second

attribute, namely containerized, which can assume a

boolean value, to track whether or not the software component

uses container technology.

B. Data Modeling

For the purpose of providing an effective modeling of the

data involved in an edge computing deployment from the

security point of view, we considered a data classification

based on the subject/element to which the data are related.

Before illustrating such classification, it is worth outlining

that, independently of the source/responsible of data, they can

be classified based on their sensitivity. In fact, according to

the ISO27001 standard, each organization should contemplate

an information classification process in order to assess the

data managed and the level of protection deemed. To address

this fundamental aspect, we introduced a sensitivity

attribute, to be assigned to any type of data, which can

assume one of the following three values: Public, Internal, and

Confidential. Public data (e.g., temperatures of public places,

traffic condition data, etc.) are available to everyone, internal

data (e.g., user profile data, configuration settings, etc.) can

be only accessed by certain entities of the system and, finally,

confidential data (e.g., credentials, biometrics, financial data,

etc.) are only available to the owner. Based on the sensitivity

level, the unauthorized disclosure, alteration, or destruction of

data would result in a low, moderate or significant level of

risk, respectively. Let us now illustrate the considered data

classification.

1) User-related data: User-related data represent the in-

formation belonging to the end-users, and include both the

information used to interact with the system (credentials,

profiling information, etc.), referred to as Service user data,

and so-called personally identifiable information (PII), which

enable to uniquely identify an individual. Since 2016, the

European General Data Protection Regulation (GDPR) [10]



Fig. 1. Asset and data modeling.

established a set of rules aiming at defining what must be

protected in order to preserve the privacy of individuals, so

companies have been forced to keep PII information in a

safe and secure manner. Article 92 of the European GDPR

outlines the personal data that cannot be processed without

the explicit consent of the interested party. To the personal

data category belongs all the information revealing racial or

ethnic origin, political opinions, religious or philosophical

beliefs, or trade union membership. Furthermore, are also

included other information such as biometric data aiming at

uniquely identifying a person, data concerning health or sexual

orientation, judicial information, electronic communication (IP

addresses), geographic location, etc.

2) Environmental data: Data exchanged/stored in an edge

system may not only concern users, but they may also refer to

the environment where the system is deployed. Environment

data, in particular, may be either generated by sensors or

used to control actuators. Hence, we consider two types of

environmental data, namely Sensing and Actuating. Depending

on the specific application domain, these data may have

different sensitivity features.

3) Service data: Service data include any other data not

directly related to an end-user or to the environment, such as

service credentials and configuration parameters (e.g., deploy-

ment information), and any further information (critical or not)

used by services and applications.

IV. APPROACH

The approach proposed in this paper enables to perform

the threat modeling of edge computing systems in a simple

and automated manner, without requiring particular security

skills. A developer is only required to describe the system

under analysis by identifying and labeling, with the appro-

priate attributes, the involved assets and data, according to

the system model introduced previously. After this modeling

step, the developer will be automatically provisioned with a

comprehensive threat model of the system and with a set

2https://www.privacy-regulation.eu/en/article-9-processing-of-special-
categories-of-personal-data-GDPR.htm

of countermeasures to apply in terms of security controls.

The automation relies upon a complex security data model,

depicted in Figure 2, which suitably links together the concepts

related to assets and data classification and characterization,

and to threats and security controls. The security data model is

instantiated by means of a Threat Catalogue, which includes a

great number of threats classified based on the STRIDE Threat

Model [11] (spoofing, tampering, repudiation, information

disclosure, denial of service, and elevation of privilege).

Fig. 2. Security data model.

As said, besides providing a fine-grained threat modeling

of a specific edge-deployment, we also aim at automatically

binding threats with proper mitigation actions. To accomplish

this goal, for each threat, we identified a set of security

controls belonging to the NIST Security Control Framework

[12] to be applied at each affected asset as a mitigation mea-

sure. The NIST framework contains over 900 unique security

controls that encompass 18 control families, including both

base controls and control enhancements, which strengthen the

fundamental security capability of a base control. According to

our approach, only a subset of the applicable security controls

is selected, based on the actual capabilities (in terms of

computational power and storage capacity) available on each

node. This information is explicit for processing nodes thanks

to the capability attribute, while for software components



TABLE I
EXTRACT OF THE THREAT CATALOGUE.

#
Asset

Typology
Threat STRIDE Category Asset Properties

Data
Typology

Data
Sensitivity

Security
Controls

1 Edge Node Camouflage Spoofing Location:Open - -
IA-3,

IA-3(1, 3),
IA-5, ...

2 Edge Node
Hardware

Trojan
Tampering Location:Open - -

SI-3(3),
SI-16, ...

3 Edge Node
Unauthorized

Access
Control

Elevation of Privilege -

PII, User
Service,

Credential,
Setting

Internal,
Confidential

AC-17,
AC-17(1, 2,
4, 5, 6), ...

4 IoT Node
Battery

Draining
Denial of Service

Location:Open,
Capability:Constrained,

Limited, Restricted

- -
PE-2, PE-3,

...

5 IoT Node
Denial of
Service

Denial of Service - - - SC-5

6 IoT Node
Exhaustion
of Power

Denial of Service,
Spoofing

Capability:Constrained,

Limited, Restricted
- - PE-11

7
Communication

Channel
Jamming

Denial of Service,
Spoofing

- - -
IA-3, SC-5,

...

8
Communication

Channel
Network

Key Sniffing
Information Disclosure Protocol:Zigbee Credential Confidential

SC-8,
SC-13, ...

9
Communication

Channel
Message

Elimination
Information Disclosure,

Spoofing, Tempering
- -

Internal,
Confidential

AC-17,
SA-18, ...

it depends on the capability specified for the processing node

used for their execution (this relationship must be specified by

the developer during system modeling).

In Table I we report an extract of the Threat Catalogue. It

is worth outlining that, in the table, an asset property that

does not influence a threat is simply omitted, while if a

threat is independent of a field of the catalogue, that field

is filled with ”-”. With regards to security controls, the last

column of the table reports some of the NIST controls that

represent valid countermeasures to thwart or mitigate each

threat. As anticipated, during the countermeasure selection

step a subset of these controls will be actually selected based

on the capabilities of involved assets.

As mentioned, the catalogue has been built by collecting

threats from multiple sources. So far, we have collected more

than 150 threats specific to cloud services, web-based appli-

cation, storage services, IoT and edge devices, and network

protocols, derived from existing standards and scientific stud-

ies [13], [14], [15], [3], [16], [17], [18]. While the effectiveness

of our approach clearly depends on the completeness of the

catalogue, it can be easily extended to include new threats and

cope with new issues.

V. EXAMPLE

In this section, we provide a concrete example of ap-

plication of the proposed approach. The deployment under

study, sketched in Figure 3, is a smart home environment

that involves different IoT devices connected to an edge

node capable of locally managing them and running software

services. As mentioned in the Introduction, for our case study

we adopted the Microsoft’s Threat Modeling Tool, which was

enriched with the assets and data flows described in Section

III, as well as with their related threats.

Fig. 3. Smart home system under study.

Following our approach, for each asset that composes the

system, we have to determine its properties and typology, as

well as the typology and sensitivity of data stored and/or

transmitted. For the sake of brevity, we will focus on edge

nodes, IoT devices and their communication channels, with-

out considering other component types. The edge node is a

gateway deployed inside the habitation, therefore its location

is assumed as protected since only the owners can physically

access it. With reference to the end devices involved, we

considered a system made of smart bulbs, smart locks, smoke

detectors, smart TVs, and smart cameras. In Table II, we report

the specifications of the gateway, IoT devices, and an instance

of communication channels. All the IoT devices are connected

with the gateway by means of the communication channel

asset. We assumed that smart bulbs support ZigBee protocol,

smart locks and smoke detectors use BLE, while smart TVs

and cameras support Wi-Fi protocol.

After having modeled the system, we proceed with the threat

identification and countermeasure selection. The threats and

their mitigation are automatically retrieved through the Threat



TABLE II
ASSET SPECIFICATIONS.

Asset Asset Properties
Data

Typology
Data

Sensitivity

Gateway Location:Protected - -

TV
Location:Protected,
Capability:Normal

Service User Confidential

Internal
Camera

Location:Protected,
Capability:Normal

Sensing, PII
Internal,

Confiden-
tial

External
Camera

Location:Open,
Capability:Normal

Sensing,
Actuating

Public

Smoke
Detector

Location:Protected,
Capability:Restricted

Sensing,
Actuating

Confidential

Internal
Lock

Location:Protected,
Capabil-

ity:Constrained

Sensing,
Actuating

Internal

External
Lock

Location:Open, Ca-
pability:Constrained

Sensing,
Actuating

Confidential

Bulb
Location:Protected,
Capability:Limited

Sensing,
Actuating

Public

Comm.
Channel Ext
Lock-Edge

Protocol:Zigbee

Sensing,
Actuating,
Credential

Confidential

Catalogue. As mentioned previously, each threat depends on

the asset it refers to (in terms of its typology and properties)

and on the type and sensitivity of the data concerned.

For example, with reference to Table I, the gateway cannot

be affected by threats that are applicable to nodes whose

location is public, while it will be affected by the Camouflage

threat. All IoT devices are subject to Batter Draining and ,

except for smart cameras and smart TV, they will be subject

as well to the Exhaustion of Power threat. Communication

channels, independently of the protocol used, can be always

subject to Jamming attacks. Moreover, communication chan-

nels conveying data whose sensitivity level is internal and/or

confidential, will be affected by the Message Elimination

threat. Finally, due to the protocol adopted, the communication

channel between smart bulbs and the edge node will be

threatened by the Newtwork Key Sniffing threat.

VI. CONCLUSIONS AND FUTURE WORK

Taking into account security from the very beginning de-

velopment stages is fundamental to design secure systems,

especially in an edge computing scenario characterized by

several heterogeneous components. In this paper, we first

provided a comprehensive system model able to describe

and characterize the assets that typically make up an edge

computing system and the involved data flow. Then, we

introduced an approach that, based on the system model,

enables to automate the threat modeling and countermeasure

selection processes, and validated our approach with a smart

home case study. As discussed, our approach heavily depends

on the completeness and accuracy of our Threat Catalogue

that, however, has been designed to be fully extensible in order

to include new threats and cope with new attack scenarios. In

our future work, we plan to make available our tool for system

modeling and further enrich the catalogue by including threats

specific to recent device technologies and communication

protocols. Moreover, we plan to refine the countermeasure

selection step by considering more specific actions tailored

to the different assets instead of generic, technology agnostic

security controls.
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