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DEFORMATIONS OF LOG CALABI–YAU PAIRS

CAN BE OBSTRUCTED

SIMON FELTEN, ANDREA PETRACCI, AND SHARON ROBINS

Abstract. We exhibit examples of pairs (X,D) where X is a smooth project-
ive variety and D is an anticanonical reduced simple normal crossing divisor

such that the deformations of (X,D) are obstructed. These examples are
constructed via toric geometry.

1. Introduction

In the introduction we assume that the ground field, denoted by C, is algebraic-
ally closed and has characteristic 0.

A log Calabi–Yau pair is a pair (X,D) where X is a smooth projective variety
and D is a reduced normal crossing divisor on X such that KX + D is linearly
trivial. Most authors, e.g. [HX15,KX16,CK16,Kal20,Mau20], consider more gen-
eral definitions and allow singularities on X , but we do not do that.

By comparing with the celebrated Bogomolov–Tian–Todorov theorem [Bog78,
Tia87, Tod89] (see also [Ran92, Kaw92, FM99, IM10, Iac17, CLM, FFR21]), which
asserts that deformations of smooth proper varieties over C with trivial canonical
bundle are unobstructed, one could ask:

Question 1.1. Are deformations of log Calabi–Yau pairs (X,D) over C unobstruc-
ted?

By definition, deformations of a pair (X,D) are (not necessarily locally trivial)
deformations of the closed embedding D →֒ X ; in particular, the singularities of D
are allowed to be smoothed.

The answer to Question 1.1 is positive if at least one of the following three
additional assumptions is satisfied.

(i) D is smooth. This is due to Iacono [Iac15] and to Sano [San14, Remark 2.5]
independently (see also [Kon,KKP08,LRW19,Wan,FP]). Note that in this
case the deformations of (X,D) are locally trivial and coincide with the
log smooth deformations of the log scheme given by X equipped with the
divisorial log structure associated to D.

(ii) X is weak Fano, i.e. −KX is big and nef. This follows from the unob-
structedness of deformations of weak Fano manifolds by Sano [San14, The-
orem 1.1] and the vanishing of H1(ND/X) by Kawamata–Viehweg vanishing.

(iii) X is a surface. IfX is rational, this is due to Friedman [Fri, Proposition 3.5].
If X is irrational, then D is smooth by a slight generalisation of the proof
of [GHK15, Proposition 1.3] (see also [KX16, Proposition 19]) and so one
concludes thanks to (i).
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Examples of log Calabi–Yau pairs are toric pairs, i.e. pairs (X,D) where X is a
smooth projective toric variety and D is the toric boundary of X , i.e. the reduced
sum of the torus-invariant prime divisors of X . Note that the complement of the
toric boundary of X is the big torus of X , i.e. the open torus-orbit.

If (X,D) is a toric pair, then X is rational, −KX is big, D has simple normal
crossings (i.e. the irreducible components of D are smooth), and the pair (X,D) has
maximal intersection in the sense that the snc divisor D has 0-dimensional strata
(see [KX16]).

The purpose of this paper is to provide a negative answer to Question 1.1 by
exhibiting particular toric pairs (X,D):

Theorem 1.2. For every integer n ≥ 3, there exists a smooth projective toric n-
fold X such that the deformations of the pair (X,D), where D denotes the toric
boundary of X, are obstructed.

The idea of the proof is as follows. With the methods of [IT20] one produces ex-
amples of smooth projective toric varieties X which are obstructed. More precisely,
one finds a first-order deformation ξ of X which cannot be extended to the second
order. Let D denote the toric boundary of X , and consider the forgetful map

(1.1) Def(X,D) −→ DefX .

By using the torus action and the consequent grading on all relevant cohomology
groups (see §4), we show that, in some examples, the deformation ξ lies in the image
of (1.1). Obviously, no preimage of ξ can be extended to the second order, therefore
we have constructed a first-order deformation of (X,D) which is obstructed.

Actually the varieties X we consider have a description also outside toric geo-
metry: they are products of Pn−3 with the projectivisation of a certain split rank-2
vector bundle on the second Hirzebruch surface.

Note that the obstructed first-order deformation ξ of X is not homogeneous
with respect to the grading on H1(X,TX) induced by the Euler sequence; indeed,
homogeneous first-order deformations of smooth projective toric varieties are un-
obstructed [IV12] (see also [Mav,HI13,Pet21]).

We conclude the introduction with a question in Hodge theory. Assume now
that the ground field C is the field of complex numbers. The unobstructedness of
deformations of n-dimensional smooth projective complex varieties X with trivial
canonical bundle can be proved by using the fact that H1(TX) ≃ H1(Ωn−1

X ) is to-
pological, i.e. a Hodge piece of Hn(X,C) (see the T 1-lifting criterion in [Ran92]).
Similarly, if (X,D) is an n-dimensional snc log Calabi–Yau pair, then the loc-
ally trivial deformations of (X,D) are unobstructed because H1(TX(− logD)) ≃
H1(Ωn−1

X (logD)) is topological, indeed a part of Hn(X r D,C). It is an inter-
esting open question, suggested to us by Richard Thomas, to investigate whether
there is a topological/Hodge-theoretic explanation of the obstructedness of the (not
necessarily locally trivial) deformations of our examples.

Notation and conventions. In the rest of the paper the ground field, denoted
by k, is an arbitrary field of characteristic different from 2. However, §3 and Pro-
position 4.1 are valid over a field of arbitrary characteristic.

Acknowledgements. The first named author thanks the IHÉS for its hospital-
ity. The second named author wishes to thank Richard Thomas for several fruit-
ful conversations concerning Question 1.1, and is grateful to Enrica Floris and to
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Anne-Sophie Kaloghiros for helpful discussions about birational geometry. The
third named author would like to thank Nathan Ilten for helpful conversations.
All authors thank Donatella Iacono and Nathan Ilten for useful comments on a
preliminary version of this article.

2. Cup product

Let X be a smooth variety over k. Let DefX denote the deformation functor of
X . It is well known that H1(TX) is the tangent space of DefX and H2(TX) is an
obstruction space of DefX , where TX is the tangent sheaf of X , i.e. the sheaf of
k-derivations of OX .

By composing the cohomology product H1(TX) ⊗k H1(TX) → H2(TX ⊗k TX)
with the morphism induced on H2 by the Lie bracket [·, ·] : TX ⊗k TX → TX , one
gets a symmetric bilinear form

(2.1) b : H1(TX)⊗k H
1(TX) −→ H2(TX)

which is called the cup product. If one chooses an affine open cover of X and uses
Čech cohomology to describe Hi(TX), then the cup product is given by

b(ξ, ξ′) = {[ξij , ξ
′
jk]}i,j,k

for ξ = {ξij}i,j and ξ′ = {ξ′ij}i,j . If one uses alternating Čech cocycles, then

b(ξ, ξ′) =

{
[ξij , ξ

′
jk]− [ξjk , ξ

′
ij ]

2

}

i,j,k

.

We refer the reader to [IT20, §2] for a thorough account.
Let

q : H1(TX) −→ H2(TX)

be the quadratic form associated to b, i.e. q(ξ) = b(ξ, ξ). In terms of Čech cocycles
we have

q
(
{ξij}i,j

)
= {[ξij , ξjk]}i,j,k .

The quadratic form q is very important in deformation theory and is called the
first obstruction: if ξ ∈ H1(TX) is a first-order deformation of X (i.e. a deformation
of X over Spec k[t]/(t2)), then 1

2q(ξ) ∈ H2(TX) is the obstruction to lift ξ to a

deformation over Spec k[t]/(t3).
This implies that, up to a multiplicative constant, the quadratic form q coincides

with the degree 2 terms of the equations which define the base of the miniversal
deformation of X as a closed subspace of H1(TX). In particular, if q is non-zero,
then DefX is not smooth, i.e. X is obstructed.

3. Deformations of pairs

Let X be a smooth variety over k, and let D be an effective (Cartier) divisor on
X . Let Def(X,D) be the deformation functor of the pair (X,D), i.e. of the closed
embedding D →֒ X . There is an obvious natural transformation (1.1) which forgets
the divisor D.

Let ND/X be the normal bundle of D in X : this is HomOX
(OX(−D),OD).

Consider the map

(3.1) d : TX −→ ND/X
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which maps every k-derivation ∂ : OX → OX to the composition π◦∂|OX(−D), where
∂|OX(−D) is the restriction of ∂ to the ideal OX(−D) of D in X and π : OX ։ OD

is the surjection induced by the closed embedding D →֒ X . It is easy to show that
d is a well-defined homomorphism of OX -modules.

Let A• be the 2-term cohomological complex given by d, i.e. TX is the term
in degree 0, ND/X is the term in degree 1, all the other terms are zero, and the
differential from degree 0 to degree 1 is d. There is an obvious exact triangle

A• −→ TX
d
−→ ND/X −→

which induces the long exact sequence

0 −→ H
0(A•) −→ H0(TX) −→ H0(ND/X)

−→ H
1(A•) −→ H1(TX) −→ H1(ND/X)

−→ H
2(A•) −→ H2(TX) −→ H2(ND/X).

By [SV90, Proposition 8] H1(A•) is the tangent space of Def(X,D) and the map

induced by (1.1) on the tangent spaces coincides with the map H1(A•)→ H1(TX)
in the long exact sequence above.

Remark 3.1. One could prove that H2(A•) is an obstruction space for Def(X,D),
but we will not need this result below. We just remark that the identification of
H2(A•) as an obstruction space for Def(X,D) allows one to recover the well-known

criterion that says that the forgetful map (1.1) is smooth if H1(ND/X) = 0; indeed,

under the assumption H1(ND/X) = 0, the map (1.1) induces a surjection on tangent
spaces and an injection on obstruction spaces.

Remark 3.2. All the discussion above works for pairs (X,D) where X is a smooth
variety and D is an effective Cartier divisor on X . Note that D might be non-
reduced. If, in addition, one assumes that D is smooth, then one gets the residue
sequence

0 −→ ΩX −→ ΩX(logD) −→ OD −→ 0,

and by dualising it one gets the short exact sequence

0 −→ TX(− logD) −→ TX −→ ND/X −→ 0,

which shows that TX(− logD) is quasi-isomorphic to A•. If D is only assumed to
be snc, then A• might not be quasi-isomorphic to TX(− logD): indeed, whereas
A• controls all deformations of the pair (X,D), TX(− logD) controls only locally
trivial deformations of (X,D).

4. Toric geometry and M -gradings

Let N be a lattice of rank n, let M be its dual, and let 〈·, ·〉 : M × N → Z

be the duality pairing. Consider the torus TN = N ⊗Z Gm = Spec k[M ], where
Gm = Spec k[x, x−1] is the 1-dimensional algebraic torus. If one has a fan Σ in N ,
one gets a toric variety equipped with an action of TN .

The set of the 1-dimensional cones (aka rays) of Σ is denoted by Σ(1), and the
divisor corresponding to ρ ∈ Σ(1) is denoted by Dρ. With slight abuse of notation,
the primitive lattice generator of a ray ρ ∈ Σ(1) is denoted again by ρ. For more
details about toric varieties we refer the reader to [CLS11].

If X is a toric variety and U ⊆ X is an affine toric open subscheme (i.e. the
affine toric variety associated to a cone in the fan Σ defining X), then the torus



DEFORMATIONS OF LOG CALABI–YAU PAIRS CAN BE OBSTRUCTED 5

action on U induces a natural M -grading on Γ(U,OX(D)) for every torus-invariant
Z-divisor D. If U ′ ⊆ U is a smaller affine toric subscheme, then the restriction
maps preserve the M -grading. In particular, the Čech complex with respect to the
open affine covering given by the maximal cones of the fan Σ is naturallyM -graded;
therefore, one has M -gradings on the cohomology groups Hi(X,OX(D)) for every
torus-invariant Z-divisor D. Note that the isomorphism class of the sheaf OX(D)
depends only on the linear equivalence class of D, whereas the M -gradings on
Hi(X,OX(D)) depend on the divisor D. The homogeneous part of Hi(X,OX(D))
of degree u ∈M is denoted by Hi(X,OX(D))u.

Now let X be a smooth toric variety. Using the M -grading on OX(D), we induce
an M -grading on TX via the (dual) Euler sequence. For D the toric boundary, we
get also an M -grading on the normal bundle ND/X such that d : TX → ND/X

preserves the gradings. In order to construct the gradings and show that they are
preserved by d, we employ the following proposition, which holds more generally
for every effective divisor D on X .

Proposition 4.1. Let X be a smooth complete toric variety, let D be the effective
divisor on X defined by the zero-locus of a homogeneous polynomial F in the Cox
ring of X, let β ∈ Pic(X) be the degree of F .

Then there is a commutative diagram of coherent sheaves on X with exact rows

0 // N1(X)⊗Z OX

(βρxρ)ρ
//

β

��

⊕
ρ∈Σ(1)OX(Dρ)

(
∂F
∂xρ

)
ρ

��

// TX

d

��

// 0

0 // OX
F

// OX(D) // ND/X
// 0

where xρ denotes the Cox coordinate associated to the ray ρ and βρ ∈ Pic(X)
denotes its degree, the group N1(X) is HomZ(Pic(X),Z), the top exact sequence is
the dual of the Euler sequence [CLS11, Theorem 8.1.6], and the right vertical map
is the homomorphism (3.1).

By [IT20, Equation (5)] the homomorphism
⊕

ρ∈Σ(1)OX(Dρ) → TX is defined

as follows: the image of a local section χw of OX(Dρ) over an affine toric subscheme
U ⊆ X is the derivation ∂(ρ, w) : OU → OU defined by

(4.1) ∂(ρ, w)(χu) = 〈u, ρ〉χu+w.

Example 4.2. For X = Pn the diagram in Proposition 4.1 is

0 // OPn

(x0,...,xn)
//

β

��

OPn(1)⊕(n+1)

(
∂F
∂xi

)
i

��

// TPn

d

��

// 0

0 // OPn
F

// OPn(β) // ND/Pn // 0

where F ∈ k[x0, . . . , xn] is a homogeneous polynomial of degree β. The commut-
ativity of the left square is the Euler identity

βF =

n∑

i=0

xi
∂F

∂xi
.

Let us now analyse the commutativity of the right square. Restrict to the affine
chart U = {x0 6= 0} which is isomorphic to A

n with affine coordinates yk = xk/x0
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for k = 1, . . . , n. Consider the dehomogenisation

f(y1, . . . , yn) = F (x0, . . . , xn)/x
β
0 = F (1, y1, . . . , yn).

We have the equalities

(4.2)
∂F

∂xk
(1, y1, . . . , yn) =

∂f

∂yk
for k = 1, . . . , n

and

(4.3) βf =
n∑

k=1

yk
∂f

∂yk
+

∂F

∂x0
(1, y1, . . . , yn).

By using the trivialisations

OU ≃ OPn(1)|U g 7→ x0g,

OU ≃ OPn(β)|U g 7→ xβ
0 g,

O⊕n
U ≃ TPn |U (g1, . . . , gn) 7→

n∑

i=1

gi
∂

∂yi
and (∂(y1), . . . , ∂(yn))←[ ∂,

the right square in the diagram becomes

Γ(U,OU )
⊕(n+1)




−y1 1
...

. . .

−yn 1




//

(
∂F
∂xi

(1,y1,...,yn)
)
i=0,...,n

��

Γ(U,OU )
⊕n

(
∂f
∂yi

)
i=1,...,n

��

Γ(U,OU )
·

// Γ(U,OD∩U )

where · : Γ(U,OU ) = k[y1, . . . , yn] ։ Γ(U,OD∩U ) = k[y1, . . . , yn]/(f) denotes the
projection modulo f . This square commutes because of (4.2) and (4.3).

Proof of Proposition 4.1. The existence of the two short exact sequences is clear.
The commutativity of the left square is the Euler relation [CLS11, Exercise 8.1.8].
It remains to prove the commutativity of the right square. We proceed in a way
analogous to Example 4.2.

We restrict to the affine toric subscheme U ⊆ X associated to an n-dimensional
cone σ ∈ Σ. Assume that the rays of σ are ρ1, . . . , ρn, and ρn+1, . . . , ρn+r are the
rays of Σ not in σ. Here r is the Picard rank of X . For brevity, set xi := xρi

,
Di := Dρi

, βi := βρi
.

Since X is smooth, ρ1, . . . , ρn form a basis of the lattice N . Hence we can write
ρj = −

∑n
k=1 akjρk for every j = n + 1, . . . , n + r. We have that βn+1, . . . , βn+r

is a basis of Pic(X) and βk =
∑

j=n+1 akjβj for every k = 1, . . . , n. We also write

β =
∑n+r

j=n+1 bjβj . Let w1, . . . , wn ∈M be the dual basis of ρ1, . . . , ρn.
Set yk := χwk for every k = 1, . . . , n. It is clear that U is isomorphic to An

with coordinates y1, . . . , yn. Under the Cox isomorphism [CLS11, Equation (5.3.1)]
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yk = xk

∏n+r
j=n+1 x

−akj

j . The dehomogenisation of F is

f(y1, . . . , yn) =
F

∏n+r
j=n+1 x

bj
j

= F (y1, . . . , yn, 1, . . . , 1).

There are the following Euler relations:

bjF =

n∑

k=1

akjxk
∂F

∂xk
+ xj

∂F

∂xj
for j = n+ 1, . . . , n+ r.

We have

(4.4)
∂f

∂yk
=

∂F

∂xk
(y1, . . . , yn, 1, . . . , 1) for k = 1, . . . , n

and

(4.5) bjf =
n∑

k=1

akjyk
∂f

∂yk
+

∂F

∂xj
(y1, . . . , yn, 1, . . . , 1) for j = n+ 1, . . . , n+ r.

We want to show that the diagram

⊕n+r
i=1 Γ(U,OX(Di))

∂F
∂xi

��

// Γ(U, TX)

d

��

Γ(U,OX(D)) // Γ(U,ND/X)

commutes. By using the trivialisations

Γ(U, TX) ≃ Γ(U,OU )
⊕n ∂ 7→ (∂(y1), . . . , ∂(yn))

Γ(U,OU ) ≃ Γ(U,OX(Dk)) g 7→ gy−1
k for k = 1, . . . , n

Γ(U,OU ) = Γ(U,OX(Dj)) for j = n+ 1, . . . , n+ r

and the two following consequences of (4.1)

∂(ρi,−wi)(χ
wk) = 〈wk, ρi〉χ

wk−wi = δik i = 1, . . . , n,

∂(ρj , 0)(χ
wk) = 〈wk, ρj〉χ

wk = −akjyk j = n+ 1, . . . , n+ r,

this diagram becomes

Γ(U,OU )
⊕(n+r)




1
. . . −akjyk

1




//

(
∂F
∂xi

(y1,...,yn,1,...,1)
)
i=1,...,n+r

��

Γ(U,OU )
⊕n

(
∂f
∂yi

)
i=1,...,n

��

Γ(U,OU )
·

// Γ(U,OD∩U )

where · : Γ(U,OU ) = k[y1, . . . , yn] ։ Γ(U,OD∩U ) = k[y1, . . . , yn]/(f) denotes the
projection modulo f . This square commutes because of (4.4) and (4.5). �
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The restriction to every affine toric open subscheme U ⊆ X of the sheaf ho-
momorphism N1(X) ⊗Z OX → ⊕ρ∈Σ(1)OX(Dρ) appearing in the top short exact
sequence in Proposition 4.1 is homogeneous with respect to the M -grading. This
implies that the cohomology groups Hi(X,TX) inherit an M -grading. We denote
by Hi(X,TX)u the part of Hi(X,TX) of degree u ∈M .

Remark 4.3. One can prove that the cup product (2.1) preserves the M -grading;
in [IT20] Ilten and Turo give a combinatorial description of its homogeneous parts
with respect to the M -grading.

5. The example

We construct an explicit smooth projective toric variety of each dimension n ≥ 3
that turns out to give a counterexample to Question 1.1.

Proposition 5.1. For every n ≥ 3, there exist a smooth projective toric n-fold X
and elements u′, u′′ ∈M , where M denotes the character lattice of the big torus of
X, such that:

(1) the cup product H1(X,TX)u′ ⊗k H
1(X,TX)u′′ → H2(X,TX)u′+u′′ is non-

zero,
(2) H1(X,OX(D))u′ = 0 and H1(X,OX(D))u′′ = 0, where D is the toric

boundary of X.

The rest of this section is devoted to the proof of Proposition 5.1. Firstly, we
consider the case n = 3; the 3-fold we construct is the projectivisation of a split
rank-2 vector bundle on the second Hirzebruch surface. Secondly, in dimension
n ≥ 4 we consider the product of this 3-fold with P

n−3.

Example 5.2. Consider the lattice N = Z3 and its dual M . Let ρ1, . . . , ρ6 ∈ N
be the columns of the matrix



1 0 −1 0 0 0
0 1 2 −1 0 0
0 0 −2 3 1 −1


 .

Let Σ be the fan in N with rays given by ρ1, . . . , ρ6 and with the following 3-
dimensional cones: σ125, σ126, σ145, σ146, σ235, σ236, σ345, σ346, where σijk denotes
the cone with rays ρi, ρj , ρk. The fan Σ can be visualised by looking at Figure 1:
by considering ρ6 as a vertex at infinity, we can describe the maximal cones of Σ
by the 2-simplices of the simplicial complex in Figure 1.

Let X be the toric variety associated to the fan Σ; it is a smooth projective
3-fold with Picard rank 3. One can prove that X is the projectivisation of a split
rank-2 vector bundle over the second Hirzebruch surface – see [Rob, Theorem 3.6].

For a torus invariant divisor D =
∑

ρ∈Σ(1) aρDρ and u ∈ M , we consider the

simplicial complex

VD,u =
⋃

σ∈Σ

conv (ρ ∈ σ(1) | 〈u, ρ〉 < −aρ) .

WhenD = Dρ, we simply denote it by Vρ,u. Various VD,u’s are depicted in Figure 2.
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(1, 2, 5)(2, 3, 5)

(3, 4, 5) (1, 4, 5)

(1, 2, 6)(2, 3, 6)

(3, 4, 6) (1, 4, 6)

ρ5 ρ1

ρ2

ρ3

ρ4

Figure 1. A schematic picture of the fan Σ in Example 5.2. The
four triangles correspond to the four 3-dimensional cones in Σ
which contain ρ5, and the four 2-dimensional unbounded regions
correspond to the four 3-dimensional cones in Σ which contain ρ6.

We have the following isomorphisms from [CLS11, Theorem 9.1.3] and [IT20,
Proposition 3.1]:

Hi(X,OX(D))u ≃ H̃i−1(VD,u, k),(5.1)

Hi(X,TX)u ≃
⊕

ρ∈Σ(1)

H̃i−1(Vρ,u, k).(5.2)

Now fix u′ = (−1,−1, 0) and u′′ = (0,−1,−1) in M . By looking at (A), (B),
(C) in Figure 2 and by using (5.2), we get

H1(X,TX)u′ = k, H1(X,TX)u′′ = k, H2(X,TX)u′+u′′ = k.

Now we have all the necessary conditions in [IT20, Theorem 4.3], but it is not
immediately clear whether the cup product is non-zero. To see this, we proceed as
follows.

We use the notation and the constructions from [IT20, §5]. Consider Z = ρ1,
Z ′ = ρ2 and the simple 1-cycle α = E1+E2+E3+E4 in VD5,u′+u′′ as in Figure 2C.
We have then α(Z) = {E1, E4}, α(Z

′) = {E1, E2}, b1 = b4 = 1, b2 = b3 = 0. It
is immediate to show Z ∗α Z ′ 6= 0. Now [IT20, Theorem 5.3] implies that the cup
product is non-zero. This proves (1) in Proposition 5.1.

Now we consider the toric boundary D =
∑6

i=1 Di of X . From Figure 2D and
Figure 2E we can see that VD,u′ is empty and VD,u′′ is a point. Therefore by
(5.1) we get H1(X,OX(D))u′ = 0 and H1(X,OX(D))u′′ = 0. This proves (2) in
Proposition 5.1.

Remark 5.3. Let X be the smooth projective toric 3-fold in Example 5.2. One can
prove that H1(X,TX) has dimension 3 and the following degrees: u′ = (−1,−1, 0),
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ρ1ρ1ρ3

(A) D = D2,

u = (−1,−1, 0)

ρ2

ρ4

(B) D = D5,

u = (0,−1,−1)

ρ1

ρ2

ρ3

ρ4

E1E2

E3 E4

(C) D = D5,

u = (−1,−2,−1)

(D) D =
∑

6

i=1
Di,

u = (−1,−1, 0)

ρ4

(E) D =
∑

6

i=1
Di,

u = (0,−1,−1)

Figure 2. The simplicial complex VD,u in red for different values
of D and u, in Example 5.2

u′′ = (0,−1,−1), (−1, 0, 1). Moreover, H2(X,TX) has dimension 1 and degree
u′ + u′′ = (−1,−2,−1). Using the M -grading and the fact that the cup product
is non-zero on H1(X,TX)u′ ⊗k H

1(X,TX)u′′ , one can show that the hull of DefX is
kJt1, t2, t3K/(t1t2).

Remark 5.4. One can check that the toric variety in [IT20, §6] is a smooth pro-
jective toric 3-fold which has Picard rank 6 and satisfies the conditions of Propos-
ition 5.1. The variety described in Example 5.2 is much simpler and has minimal
Picard rank among obstructed smooth projective toric varieties.

Proof of Proposition 5.1. LetX be the smooth projective toric 3-fold in Example 5.2.

Set X̃ = X × P
n−3; the character lattice of the big torus of X̃ is M̃ = M ⊕ Z

n−3.

We will show that X̃ satisfies the conditions (1) and (2) for v′ = (u′, 0) ∈ M̃ and

v′′ = (u′′, 0) ∈ M̃ .

If Σ is the fan of X and Σ0 is the fan of Pn−3, then X̃ can be described by the

fan Σ̃ = Σ × Σ0. The image of ρi ∈ Σ(1) in Σ̃(1) is denoted by ρ̃i, and the image

of τi ∈ Σ0(1) in Σ̃(1) is denoted by τ̃i.
The first-order deformation of X corresponding to the degree u′ (resp. u′′) in-

duces a first-order deformation of X̃ = X × P
n−3 corresponding to the degree v′
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(resp. v′′) by deforming only the first factor. From a combinatorial point of view this
can be seen from (5.2) and by observing that Vρ2,u′ = Vρ̃2,v′ and Vρ5,u′′ = Vρ̃5,v′′ .

For computing the cup product, first observe that 〈τ̃i, v
′〉 = 0 = 〈τ̃i, v

′′〉 for
τi ∈ Σ0(1). Hence by restricting the attention to the cones generated by the rays
ρ̃i, following the recipe in [IT20, §5] is exactly the same as in Example 5.2. Thus,
we can see that the cup product is non-zero.

Finally, observe that VD,u′ = VD̃,v′ and VD,u′′ = VD̃,v′′ , where D (resp. D̃) is

the toric boundary of X (resp. X̃). Hence the condition (2) is immediate from
(5.1). �

6. Proof of Theorem 1.2

Let X be one of the smooth projective toric varieties constructed in Proposi-
tion 5.1, let D be the toric boundary of X , and let u′, u′′ ∈ M be the degrees
satisfying the conditions (1) and (2) in Proposition 5.1.

Let ξ′ ∈ H1(TX)u′ and ξ′′ ∈ H1(TX)u′′ be such that the cup product b(ξ′, ξ′′) ∈
H2(TX)u′+u′′ is non-zero – they exist by (1). By the polarisation identity for quad-
ratic forms we have that either q(ξ′ + ξ′′) 6= 0 or q(ξ′ − ξ′′) 6= 0. Hence there
exists a linear combination ξ of ξ′ and ξ′′ such that q(ξ) 6= 0. This implies that
the first-order deformation of X associated to ξ cannot be extended to the second
order.

Let Σ be the fan defining the toric variety X . Consider the monomial F =∏
ρ∈Σ(1) xρ in the Cox ring of X . The zero-locus of F is exactly the toric boundary

D of X . Since F is a monomial, the homomorphism Γ(U,OX) → Γ(U,OX(D))
given by the multiplication by F preserves the natural M -gradings for every open
affine toric subscheme U ⊆ X . By the bottom exact sequence in the diagram
in Proposition 4.1, the cohomology groups Hi(ND/X) carry natural M -gradings.
Since X is rational, OX does not have higher cohomology, therefore we have an
isomorphism of M -graded vector spaces

H1(OX(D)) ≃ H1(ND/X).

By (2) in Proposition 5.1 we have H1(ND/X)u′ = 0 and H1(ND/X)u′′ = 0.
Since the derivatives of F are monomials in Cox coordinates, the multiplication

by ∂F
∂xρ

preserves theM -grading when restricted to every open affine toric subscheme

of X . The commutativity of the diagram in Proposition 4.1 implies that, for every
i, the homomorphism

Hi(TX) −→ Hi(ND/X)

induced by (3.1) preserves the M -grading. From the above result on the M -grading
of H1(ND/X), we deduce that the two elements ξ′, ξ′′ ∈ H1(TX) maps to zero in

H1(ND/X). Therefore ξ maps to zero in H1(ND/X).

By the long exact sequence in §3 we have that ξ lies in the image of H1(A•)→
H1(TX). This implies that the first-order deformation ξ of X can be lifted to a
first-order deformation η of the pair (X,D). Since ξ cannot be extended to the
second order, also the first-order deformation η of (X,D) cannot be extended to
the second order. In particular, Def(X,D) is not smooth.
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