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ON DEFORMATION SPACES OF TORIC SINGULARITIES AND

ON SINGULARITIES OF K-MODULI OF FANO VARIETIES

ANDREA PETRACCI

Abstract. Firstly, we see that the bases of the miniversal deformations of

isolated Q-Gorenstein toric singularities are quite restricted. In particular, we
classify the analytic germs of embedding dimension ≤ 2 which are the bases

of the miniversal deformations of isolated Q-Gorenstein toric singularities.

Secondly, we show that the deformation spaces of isolated Gorenstein toric
3-fold singularities appear, in a weak sense, as singularities of the K-moduli

stack of K-semistable Fano varieties of every dimension ≥ 3. As a conse-

quence, we prove that the number of local branches of the K-moduli stack of
K-semistable Fano varieties and of the K-moduli space of K-polystable Fano

varieties is unbounded in each dimension ≥ 3.

1. Introduction

The setting of this paper is twofold: isolated Q-Gorenstein toric singularities and
K-polystable toric Fano varieties. The symbol C denotes an algebraically closed
field of characteristic 0.

1.1. Deformations of isolated Q-Gorenstein toric singularities. Studying
the bases of miniversal deformations (aka Kuranishi families) is important to un-
derstand the local properties of moduli spaces. Hypersurface singularities, or more
generally local complete intersection singularities, have unobstructed deformations,
i.e. the bases of their miniversal deformations are smooth. Isolated quotient singu-
larities of dimension ≥ 3 are rigid [Sch71], so the base of their miniversal deforma-
tions is just a point.

On the other hand, more complicated singularities may have almost arbitrarily
complicated miniversal deformations: Vakil [Vak06] has shown that the formal
spectrum of every noetherian complete local ring which comes via completion and
base change from a scheme of finite type over Z is, up to a smooth factor, the
base of the miniversal deformation of some isolated normal Cohen–Macaulay 3-fold
singularity. This is the so called Murphy’s law for versal deformation spaces of
isolated normal Cohen–Macaulay 3-fold singularities.

Toric affine varieties provide normal Cohen–Macaulay singularities which can be
much more complicated than local complete intersections or quotient singularities.
Nevertheless their combinatorial nature makes the problem of explicitly computing
miniversal deformations tractable. Thanks to the seminal work by Altmann [Alt97]
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we give a characterisation of noetherian complete local rings with embedding di-
mension ≤ 2 which are the hulls of the infinitesimal deformation functor of isolated
Q-Gorenstein toric singularities:

Theorem A. Let R be a noetherian complete local C-algebra with residue field C
and with embedding dimension ≤ 2. Then the formal spectrum of R is the base of
the miniversal deformation of an isolated Q-Gorenstein toric singularity over C if
and only if R is isomorphic to (exactly) one of the following C-algebras:

0) C,
1.a) C[x]/(x2),
1.b) CJxK,
2.a) C[x, y]/(x2, y2),
2.b) C[x, y]/(x2, xy, y3),
2.c) CJx, yK/(x2, xy),
2.d) CJx, yK.

Moreover, for arbitrary embedding dimension (not necessarily ≤ 2) we find strict
necessary conditions that a ring must satisfy in order to be the hull of the deforma-
tion functor of an isolated Gorenstein toric 3-fold singularity (see Proposition 4.14).
A consequence is the following:

Theorem B. For every n ≥ 1, the ring CJx1, . . . , xnK/(x31) is not the hull of any
isolated Q-Gorenstein toric singularity over C. Therefore Murphy’s law in the sense
of Vakil [Vak06] does not hold for isolated Q-Gorenstein toric singularities.

The proofs of the two theorems above use Altmann’s results [Alt97] on the versal
deformation of isolated Gorenstein toric 3-fold singularities (see §4.2). Altmann’s
results are partially extended to more general toric singularities in [AK13,ACF20a,
ACF20b,Fil20,Fil21]. A conjectural description of the smoothing components of a
(not necessarily isolated) Gorenstein toric 3-fold singularity is given in [CFP20].

1.2. Deformations of K-polystable toric Fano varieties. A Fano variety is
a normal projective variety X over C such that its anticanonical divisor −KX is
Q-Cartier and ample. A del Pezzo surface is a Fano variety of dimension 2. All
Fano varieties considered in this article have log terminal singularities. When we
write Fano n-fold we mean a Fano variety of dimension n; in particular, a Fano
n-fold can be singular. If X is a Fano n-fold, then its anticanonical volume is the
intersection number (−KX)n and is a positive rational number.

Recently there has been a lot of significant progress on constructing moduli
spaces of Fano varieties using K-stability [ABHLX20, Xu20, BLX19, Jia20, BX19,
XZ20,BHLLX21,LXZ21,LWX21]: it is known that, for each integer n ≥ 1 and for
every rational number v > 0, there exists an Artin stackMKss

n,v which is of finite type
over C and which parametrises K-semistable Fano n-folds with anticanonical volume
v; moreover this stack admits a good moduli space MKps

n,v , which is a projective

scheme over C. The closed points of MKps
n,v are in one-to-one correspondence with

the K-polystable Fano n-folds with anticanonical volume v. We refer the reader to
[Xu21] for a survey on these topics.

For every integer n ≥ 1, we consider the following countable disjoint unions:

MKss
n :=

∐
v∈Q>0

MKss
n,v and MKps

n :=
∐

v∈Q>0

MKps
n,v .
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In this way we get an Artin stack (resp. a scheme) which is locally of finite type
over C and which parametrises all K-semistable (resp. K-polystable) Fano n-folds,
because the anticanonical volume is locally constant on a Q-Gorenstein family of
Fano varieties. The stack MKss

n is called K-moduli stack and the scheme MKps
n is

called K-moduli space. It is interesting to study the geometry (of the connected
components) ofMKss

n and of MKps
n ; in this article we focus on some local properties.

If n = 2, then the K-moduli stack MKss
2 , which parametrises K-semistable del

Pezzo surfaces, is smooth because Q-Gorenstein deformations of del Pezzo surfaces

are unobstructed [HP10, ACC+16]. Thus the K-moduli space MKps
2 is a disjoint

union of normal projective varieties with rational singularities (see [KP21, Propo-
sition 2.3]).

An analogous result holds when considering smooth Fano varieties, because defor-
mations of smooth Fano varieties are unobstructed. Therefore MKss

n (resp. MKps
n )

is smooth (resp. normal) in a neighbourhood of a smooth K-semistable (resp. K-
polystable) Fano n-fold. The same holds for terminal Fano 3-folds, because defor-
mations of terminal Fano 3-folds are unobstructed by [San16].

Roughly speaking, we can say that deformations of Fano varieties which are
mildly singular or have low dimension are unobstructed. Therefore in a neighbour-
hood of such Fano varieties the K-moduli stack (resp. K-moduli space) is smooth
(resp. normal). Moreover, by [BGLM21] the K-moduli space is of klt type in a
neighbourhood of every K-polystable Fano variety whose Q-Gorenstein deforma-
tions are unobstructed.

In joint work with Kaloghiros [KP21] we exhibited the first examples of singular
points on MKss

n , for each n ≥ 3. More precisely, we constructed K-polystable toric
Fano varieties with obstructed Q-Gorenstein deformations. In this way we showed
that, if n ≥ 3, MKss

n and MKps
n can be locally reducible or non-reduced (or both).

Even if one considers only the irreducible components of MKps
n , for n ≥ 3, which

generically parametrises smooth K-polystable Fano n-folds, one can get non-normal
singularities on the K-moduli space at the points which correspond to singular Fano
varieties. Indeed, for each n ≥ 3, the example in [KP21, Theorem 1.1] is a singular
K-polystable toric Fano n-fold with Gorenstein canonical singularities which lies at
the intersection of three distinct irreducible components of MKps

n , each of which
generically parametrises smooth Fano n-folds.

Here we prove a much more general statement concerning versal Q-Gorenstein
deformations of K-polystable toric Fano varieties, and consequently concerning the
singularities that appear on K-moduli of Fano varieties:

Theorem C. Let R be a noetherian complete local C-algebra with residue field C.
Assume that R is the hull of the deformation functor of an isolated Gorenstein toric
3-fold singularity over C.

Then, for every integer n ≥ 3, there exists a K-polystable toric Fano n-fold X
over C such that the hull of the Q-Gorenstein deformation functor of X is isomor-
phic to (R⊗̂CR)Jt1, . . . , tmK/I, for some non-negative integer m and for some ideal
I which contains no non-zero constants.

Some remarks are in order.

• Let R be a noetherian complete local C-algebra with residue field C and
with maximal ideal m. The symbol R⊗̂CR used in Theorem C denotes
the completed tensor product of R with itself; this is the inverse limit
of R/mn+1 ⊗C R/m

n+1 as n ≥ 0, where ⊗C denotes the ordinary tensor
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product. In this way, if R is a power series ring over C in r variables, then
R⊗̂CR is a power series ring over C in 2r variables.
• Let R and R′ be two noetherian complete local C-algebras with residue field
C. Then R′ is isomorphic to (R⊗̂R)Jt1, . . . , tmK/I, for some non-negative
integer m and for some ideal I with I∩(R⊗̂R) = 0, if and only if there exist
two local C-algebra homomorphisms f : R⊗̂CR → R′ and g : R′ → R⊗̂CR
such that g ◦ f = idR⊗̂CR

, i.e. if there exists a surjection

Spf R′ −→ Spf R⊗̂CR = Spf R×SpecC Spf R

admitting a section. If this is the case, then R⊗̂CR is a subring of R′.
• Thanks to what we have just seen, Theorem C can be rephrased as follows.

If a complex analytic germ (0 ∈ S) is the base of the miniversal deformation
of an isolated Gorenstein toric 3-fold singularity, then for each n ≥ 3 it is
possible to find a K-polystable toric Fano n-fold X such that its miniversal

Q-Gorenstein deformation space DefqGX satisfies the following: there exists
a surjection of analytic germs

DefqGX −→ S × S

which admits a section. (A surjection of germs which admits a section is
called retraction by Jelisiejew [Jel20].)

• Since the germ DefqGX is the local structure of the stack MKss
n near the

closed point to [X], Theorem C implies that the germ S × S appears, up
to retraction, as a singularity on MKss

n , for every n ≥ 3. This is what we
meant in the abstract when we wrote that deformation spaces of isolated
Gorenstein toric 3-fold singularities appear in a weak sense as singularities
of the K-moduli stack of K-semistable Fano varieties of dimension ≥ 3.
• The proof of Theorem C will show that the ring (R⊗̂CR)Jt1, . . . , tmK/I can

be chosen independently from the dimension n.

Examples of hulls of isolated Gorenstein toric 3-fold singularities are given in §4.
Since such hulls are quite restricted, we might expect that toric geometry does not
help to prove that K-moduli of Fano varieties satisfy Murphy’s law in the sense of
Vakil [Vak06] or Murphy’s law up to retraction in the sense of Jelisiejew [Jel20].
Actually, it is not clear to us whether Murphy’s law should hold for K-moduli of
Fano varieties at all.

Nonetheless, hulls of toric singularities are enough to show that K-moduli of
Fano varieties can acquire an arbitrarily large number of local branches:

Theorem D. For every integer n ≥ 3 and for every integer m ≥ 1, there exists a
K-polystable toric Fano n-fold X over C such that MKss

n and MKps
n have at least

m local branches at the point [X].

In this paper we do not consider deformations of toric varieties which are non-
affine and non-Fano. Concerning deformations of smooth projective toric varieties,
the following results are known: smooth projective toric surfaces are unobstructed
[Ilt11], there exist smooth projective toric 3-folds which are obstructed [IT20] (see
also [FPR21]), the deformation space of a smooth projective toric variety cannot
be a non-reduced point [IV12].
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Outline. The setting of isolated Q-Gorenstein toric singularities (as in §1.1) is
studied in §4. The proof of Theorem A and the proof of Theorem B are given in
§4.4.

The setting of K-polystable toric Fano varieties (as in §1.2) is studied in §5. The
proof of Theorem C is given in §5.1. The proof of Theorem D is given in §5.2.

In §2 we give some preliminaries on deformation theory. In §2.1 we present
some basics on deformation theory and we fix the terminology. In §2.2 and §2.3 we
study restriction maps between deformation functors and we consider Q-Gorenstein
deformations, respectively – both sections will be used only with Fano varieties, i.e.
in §5 and not in the proof of Theorems A and B.

In §3 we give some tools in commutative algebra. In §3.1 we recall what a
standard graded algebra is and we state same properties relating a standard graded
algebra to its completion at its homogeneous maximal ideal. In §3.2 we consider
Segre products of standard graded algebras: this notion and its properties will
be used only in the proof of Theorem D in §5.2. In §3.3 we study generalised
Newton identities which are crucial in order to study the standard graded algebras
associated to polygons à la Altmann in §4.

Notation and conventions. The set of non-negative integers is denoted by N.
The symbol C stands for an algebraically closed field of characteristic 0, whereas
k denotes an arbitrary field. Every ring is commutative with identity. Every toric
variety or toric singularity is assumed to be normal. A polygon is by definition a
polytope of dimension 2.

Acknowledgements. I wish to thank Klaus Altmann, Alexandru Constantinescu,
Matej Filip, Anne-Sophie Kaloghiros, and Alessandro Oneto for fruitful conversa-
tions. I am very grateful to Jan Christophersen, Marco Manetti, Jan Stevens, Duco
van Straten, Nikolaos Tziolas for useful comments and observations about defor-
mation theory. Finally I thank Matteo Tanzi for help with the proof of Lemma 5.4.

2. Deformations

2.1. Quick recap of deformation theory. Here we briefly recall some rudiments
on deformation theory, just to fix the terminology. Details and proofs can be found
in any reference about deformation theory, e.g. [Sch68,Ser06,Man09,TV13].

Let (Set) be the category of sets. Let k be a field and let (Artk) be the cate-
gory of artinian local k-algebras with residue field k. A deformation functor is a
covariant functor F : (Artk) → (Set) such that F (k) is a singleton and F satisfies
Schlessinger’s axioms (H1) and (H2). One can define the notions of tangent space
and of obstruction space of a deformation functor. One can define the notion of a
map between deformation functors and define when such a map is smooth.

Let (Compk) denote the category of noetherian complete local k-algebras with
residue field k. Every ring R in (Compk) induces a deformation functor hR =
Hom(Compk)

(·, R), which is called the functor prorepresented by R. A ring R in
(Compk) is called a hull of a deformation functor F if there exists a smooth map
hR → F which induces a bijection on the tangent spaces. A hull is unique, if it
exists.

For a scheme X of finite type over k, let DefX : (Artk) → (Set) be the functor
which maps each A ∈ (Artk) to the set of isomorphism classes of flat deformations
of X over SpecA; it is a deformation functor.
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If R is a hull of DefX , we say that the formal spectrum of R, denoted by Spf R,
is the base of the miniversal deformation of X. If k = C one could work in the
analytic category and R would be the completion of an analytic germ, which is
called the base of the Kuranishi–Grauert deformation (or simply the Kuranishi
space) of the analytification of X. Both in the algebraic/formal category and in
the analytic category we say that Spf R or the corresponding analytic germ is the
(versal) deformation space of X. We say that X is rigid if its deformation space is
a point, i.e. if the hull of its deformation functor is k.

If LX denotes the cotangent complex of X over k, then for every i ≥ 0 we con-
sider the k-vector space Ti

X = Exti(LX ,OX) and the coherent OX -module T i
X =

Exti(LX ,OX). The tangent space of DefX is Ext1X(LX ,OX) and Ext2X(LX ,OX)
is an obstruction space of DefX . Under certain hypotheses one can replace LX

with τ≥0LX = ΩX , which is the OX -module of Kähler differentials of X over k; for
example:

• T0
X = Hom(ΩX ,OX) and T 0

X = Hom(ΩX ,OX);
• if X is reduced and generically smooth over k (e.g. if k is perfect and X is

reduced), then T1
X = Ext1(ΩX ,OX) and T 1

X = Ext1(ΩX ,OX);
• if k is perfect and (X is normal or (X is reduced and lci over k)), then
T2
X = Ext2(ΩX ,OX) and T 2

X = Ext2(ΩX ,OX).

2.2. Restriction maps. This section can be omitted if one is interested in the
proof of Theorems A and B only; it will be applied only in §2.3.

When U is an open subscheme of a scheme X, then one can restrict a deformation
of X to U and get a deformation of U . This produces a natural transformation of
functors DefX → DefU .

Lemma 2.1. Let X be a separated scheme of finite type over k and let U = {Ui}i∈I
be a finite affine open cover of X. If H1(X,T 0

X) = 0, then the product of restriction
maps

DefX −→
∏
i∈I

DefUi

is injective.

Proof. We need to prove that, for every A ∈ (Artk), if ξ and η are two deformations
of X over A such that ξ|Ui is isomorphic to η|Ui for every i ∈ I, then ξ and η are
isomorphic. We prove this by induction on dimk mA, where mA is the maximal ideal
of A. The case dimk mA = 0 (i.e. A = k) is obvious.

For the inductive step we consider a small extension f : A′ → A in (Artk),
with kernel J , and we assume that the thesis holds for A. Let ξ′ and η′ be two
deformations of X over A′ which are locally isomorphic with respect to U , i.e.
ξ′|Ui

' η′|Ui
for every i ∈ I. We want to show that ξ′ and η′ are isomorphic. We

consider the pushforward ξ = f∗(ξ
′) and η = f∗(η

′) in DefX(A). It is clear that ξ
and η are locally isomorphic with respect to U . Therefore, by inductive hypothesis,
we have that ξ and η are isomorphic. From now on we identify η with ξ.

Since the set of liftings of ξ to A′ is a pseudo-torsor under the action of the
abelian group J ⊗k T1

X , the two deformations ξ′ and η′ differ by the action of a
unique element of J ⊗k T1

X , i.e. there exists a unique element g ∈ J ⊗k T1
X such

that g + ξ′ = η′. Since the set of liftings of ξ|Ui
to A′ is a pseudo-torsor under

J ⊗k T1
Ui

and ξ′|Ui
and η′|Ui

are isomorphic, we have g|Ui
= 0 in J ⊗k T1

Ui
, for
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every i ∈ I. This implies that g lies in the kernel of the natural homomorphism
J ⊗k T1

X → J ⊗k H0(X,T 1
X). Now consider the short exact sequence

0→ H1(X,T 0
X)→ T1

X → H0(X,T 1
X)→ H2(X,T 0

X)

which comes from the local-to-global spectral sequence whose second page is Ep,q
2 =

Hp(X,T q
X) and which converges to Tp+q

X . By tensoring the short exact sequence
above with J and by using the hypothesis that H1(X,T 0

X) vanishes, we deduce that
g = 0 in J ⊗k T1

X . Hence ξ′ and η′ are isomorphic. This concludes the proof of the
inductive step. �

Proposition 2.2. Let X be a separated scheme of finite type over k, let x be an
isolated point of the non-smooth locus of X and let Y be an affine open neighbour-
hood of x in X such that Y r{x} is smooth. If H1(X,T 0

X) = 0 and H2(X,T 0
X) = 0,

then the restriction map

(2.1) DefX −→ DefY

is surjective and admits a section.

Remark 2.3. We do not claim that the restriction map (2.1) is smooth. Using
the local-to-global spectral sequence of Ext, it is easy to show that, under the
hypotheses of Proposition 2.2, if X r {x} is lci and H1(X,T 1

X) = 0, then the
restriction map (2.1) is smooth.

Proof of Proposition 2.2. Let U = {Ui}i∈I be an affine open cover of X r {x},
where the index set I is finite and equipped with a total order. Hence {Y } ∪ U is
a finite affine open cover of X. We consider the product of the restriction maps

(2.2) DefX −→ DefY ×
∏
i∈I

DefUi

which is injective by Lemma 2.1.

Claim 2.4. Let A ∈ (Artk), let ξ ∈ DefY (A) be an arbitrary deformation of Y
over A and, for each i ∈ I, let ξi ∈ DefUi

(A) denote the trivial deformation of Ui

over A. Then the tuple (ξ, (ξi)i∈I) lies in the image of the map (2.2).

In order to prove this claim, we need to construct a deformation η ∈ DefX(A)
such that the restriction η|Y is isomorphic to ξ and the restriction η|Ui

is trivial for
each i ∈ I. We proceed by induction on dimk mA, where mA is the maximal ideal
of A. The case dimk mA = 0 is obvious.

For the inductive step we consider a small extension f : A′ → A in (Artk),
with kernel J , and we assume that the claim holds for A. We have an arbitrary
deformation ξ′ ∈ DefY (A′) and trivial deformations ξ′i ∈ DefUi(A

′) and we want to
show that there exists a deformation η′ ∈ DefX(A′) such that η′|Y ' ξ′ and η′|Ui

is
trivial for each i. By inductive hypothesis there exists a deformation η ∈ DefX(A)
such that η|Y ' f∗(ξ′) and η|Ui

is trivial for each i.
We consider the datum of the trivial deformations of Ui over A′ and of the

deformation ξ′; these are deformations, over A′, of the elements of the affine open
cover U ∪ {Y } of X and they are pairwise compatible, i.e. their restrictions to
the double intersections Ui ∩ Uj and Ui ∩ Y are pairwise isomorphic. This is true
because the Ui ∩ Y are smooth and affine, therefore each deformation of Ui ∩ Y
is trivial. By [Oss10, Proposition 3.12] this datum induces an obstruction class in
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J ⊗k H2(X,T 0
X). The vanishing of H2(X,T 0

X) implies that our datum is obtained
from a deformation η′ of X over A′. This concludes the proof of Claim 2.4.

Combining the injectivity of (2.2) and Claim 2.4 we have that the assignment

ξ 7→ (ξ, (trivial deformation of Ui)i∈I)

for all deformations ξ of Y produces a section of the restriction map (2.1). This
concludes the proof of Proposition 2.2. �

Remark 2.5. It is clear that we can generalise Proposition 2.2 to finitely many
isolated points of the non-smooth locus of X.

2.3. Q-Gorenstein deformations. This section can be omitted if one is interested
in the proof of Theorems A and B only; it will be applied only in §5.

Fix a field k of characteristic 0 and fix a Q-Gorenstein normal variety X over k.
The canonical cover stack of X is a certain Deligne–Mumford stack X which has X
as a coarse moduli space and which is defined in [AH11]. Its fundamental properties
are: the construction of X is local on X, the stack X is normal and Gorenstein, and
the structure morphism ε : X → X is an isomorphism on the Gorenstein locus of
X. Notice that ε is proper and cohomologically affine.

By definition [KSB88], Q-Gorenstein deformations of X are deformations of the
canonical cover stack X of X:

DefqGX = DefX.

Therefore Q-Gorenstein deformations of X are controlled by the k-vector spaces

TqG,i
X = Exti(ΩX,OX) and the coherent OX -modules T qG,i

X = ε?Exti(ΩX,OX), for

i = 0, 1, 2. It is always true that TqG,0
X = T0

X and T qG,0
X = T 0

X .
If X is Gorenstein, then the canonical cover stack is isomorphic to X, hence

every deformation of X is Q-Gorenstein, i.e. DefqGX = DefX .
Now, in the context of Q-Gorenstein deformations, we consider restriction maps

similarly to §2.2.

Proposition 2.6. Let k be a field of characteristic 0 and let X be a Q-Gorenstein
normal variety over k. Let x1, . . . , xt be finitely many isolated points of the non-
smooth locus of X. For each i = 1, . . . , t, let Yi be an affine open neighbourhood of
xi in X such that Yir {xi} is smooth. If H1(X,T 0

X) = 0 and H2(X,T 0
X) = 0, then

the product of the restriction maps

DefqGX −→
t∏

i=1

DefqGYi

is surjective and admits a section.

We remark that the points x1, . . . , xt need not be all the singular points of
X. In other words, X r {x1, . . . , xt} can be singular and can have non-isolated
singularities.

Proof of Proposition 2.6. Consider the canonical cover stack ε : X → X. We have
that X is a separated Deligne–Mumford stack of finite type over k. Since ε is coho-
mologically affine and ε?T 0

X = T 0
X , the hypothesis of the vanishing of H1(X,T 0

X)
and of H2(X,T 0

X) implies the vanishing of H1(X,T 0
X ) and of H2(X,T 0

X ).
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For each i, take the preimage Yi = ε−1(Yi) ⊆ X. Obviously Yir{xi} ' Yir{xi}
is smooth. If we were able to apply Proposition 2.2 (and Remark 2.5) verbatim to
X, we would get that the product of the restriction maps

DefX −→
t∏

i=1

DefYi

is surjective and admits a section – this would be a reformulation of the thesis.
Therefore we need to convince ourselves that, with appropriate (but small) mod-

ifications, we can apply Lemma 2.1 and Proposition 2.2 to separated Deligne–
Mumford stacks. So now we consider a separated Deligne–Mumford stack X of
finite type over a characteristic zero field k and we consider its coarse moduli space
ε : X→ X.

If we take an affine open cover UX = {Ui}i of X, by taking the preimages
we obtain a Zariski open cover UX = {ε−1(Ui)}i of X. If X is not a scheme, there
exists an element in the open cover UX which is not an affine scheme. However, each
element of UX is a separated Deligne–Mumford stack whose coarse moduli space is
an affine scheme, namely one of the Ui’s. Since ε−1(Ui) → Ui is cohomologically
affine, we have that every quasi-coherent sheaf on ε−1(Ui) does not have cohomology
in positive degree. Therefore, in order to compute the cohomology of quasi-coherent
sheaves of X, we can use the Čech cohomology with respect to UX. This is the only
observation needed to make Lemma 2.1 and Proposition 2.2 work for separated
Deligne–Mumford stacks of finite type over a field of characteristic 0. �

3. Algebraic intermezzo

3.1. Standard graded algebras. Fix an arbitrary field k.

Definition 3.1. A standard graded k-algebra is an N-graded k-algebraA =
⊕

n≥0An

of finite type over k, generated in degree 1, and with A0 = k.

Lemma 3.2. Let A be a standard graded k-algebra. Let (R,m) be the completion
of A at the maximal ideal of A generated by the homogeneous elements with positive
degree. Then the following statements hold.

(1) The associated graded ring grmR is isomorphic to A as an N-graded k-
algebra.

(2) A is a domain if and only if R is a domain.
(3) If P is a homogeneous prime ideal of A, then the extension PR is a prime

ideal of R and PR ∩A = P .
(4) Extension and contraction of ideals give a 1-to-1 correspondence between

minimal primes of A and minimal primes of R.

Proof. Let M ⊂ A denote the maximal ideal of A generated by the homogeneous
elements with positive degree. Let AM be the localisation of A at M and let MAM

be the maximal ideal of AM . Since we are working over the field k ' A/M = A0

it is easy to show that the localisation homomorphism A → AM is injective. The
completion homomorphism AM → R is faithfully flat and injective. Therefore
A→ R is flat and injective.

(1) For every n ≥ 0, we have the following chain of isomorphisms:

mn/mn+1 ' (MAM )n/(MAM )n+1 'Mn/Mn+1 ⊗A AM 'Mn/Mn+1 ' An.
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By taking the direct sum for n ≥ 0 and observing that these isomorphisms are
compatible with the multiplicative structure we conclude. See [Mat89, Theo-
rem 13.8(iii)].

(2) Since A is a subring of R, if R is a domain, then A is a domain. In order
to prove the opposite implication, let us assume that A is a domain. By (1) we
have that (R,m) is a local noetherian ring such that grmR is a domain; by [AM69,
Lemma 11.23] R is a domain and we conclude.

(3) Let P be a homogeneous prime of A. Consider the short exact sequence

0→ P → A→ A/P → 0.

Its M -adic completion is the short exact sequence

0→ PR→ R→ R/PR→ 0.

Since R/PR is the completion of the domain A/P at its maximal homogeneous
ideal, by (2) we have that R/PR is a domain, hence PR is a prime of R. It remains
to prove that PR ∩A = P .

Since AM ↪→ R is faithfully flat, by [AM69, Exercise 3.16] we have PR ∩AM =
(PAM )R∩AM = PAM . By contracting this to A we get PR∩A = PAM ∩A = P
and we conclude.

(4) is an easy consequence of (3) and of the well known fact that says that the
minimal primes of A are homogeneous. We leave the proof to the reader. �

3.2. Segre products. This section can be omitted if one is interested in the proof
of Theorems A, B and C only; it will be be used only in the proof of Theorem D
in §5.2.

Fix a field k. We consider the following construction dating back to [Cho64]:

Definition 3.3. If A =
⊕

n≥0An and B =
⊕

n≥0Bn are two standard graded
k-algebras, then their Segre product is the standard graded k-algebra A#B :=⊕

n≥0An ⊗k Bn.

The Segre product is a direct summand of the tensor algebra A⊗k B.

Lemma 3.4. Let k be an algebraically closed field. Let A and B be two standard
graded k-algebras. If A has m minimal primes and B has n minimal primes, then
the Segre product A#B has mn minimal primes.

Proof. The minimal primes of A are 1-to-1 correspondence with the irreducible
components of ProjA. The same holds for B and A#B. Since k is algebraically
closed, the fibred product over k of two irreducible schemes of finite type over k is
irreducible. So we conclude with the following observation: there exists a natural
isomorphism of k-schemes

ProjA#B ' ProjA×Spec k ProjB;

this is obtained by gluing the isomorphisms of affine schemes induced by the k-
algebra isomorphisms

(A#B)(f⊗g) ' A(f) ⊗k B(g)

for f ∈ A1 and g ∈ B1. �

Remark 3.5. Let k be a field and let A be a standard graded k-algebra. The N-
grading of A gives an action of the torus Gm = Spec k[t±] on the k-scheme SpecA.
Consider SpecA×Spec k SpecA = Spec(A⊗kA) equipped with the Gm-action given
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by the action above on the first factor and the inverse action on the second factor; in
other words we consider the Z-grading of A⊗kA given by deg(a⊗b) = deg a−deg b,
for a and b homogeneous elements of A. The subalgebra of A⊗k A made up of the
elements of degree 0 is exactly the Segre product A#A. This shows that Spec(A#A)
is the quotient of Spec(A⊗k A) under the action of Gm.

3.3. Generalised Newton identities. In what follows, n denotes a positive in-
teger.

Lemma 3.6. Let A be a ring. Fix a1, . . . , an and x1, . . . , xn in A. For each integer
k ≥ 1, consider

αk =

n∑
i=1

aix
k
i ∈ A.

Then the ideals

(αk | k ≥ 1) and (αk | 1 ≤ k ≤ n)

of A coincide.

Proof. We will prove a generalised version of Newton’s identities of symmetric func-
tions. Set

sr = (−1)r
∑

1≤i1<···<ir≤n

xi1 · · ·xir

for each r = 1, . . . , n. Consider the polynomial

f(t) =

n∏
i=1

(t− xi) = tn + s1t
n−1 + · · ·+ s0 ∈ A[t].

Obviously we have the equalities

xn1 + s1x
n−1
1 + · · ·+ sn = f(x1) = 0,

...

xnn + s1x
n−1
n + · · ·+ sn = f(xn) = 0.

Now fix k > n. We multiply the ith equality above by aix
k−n
i and get

a1x
k
1 + s1a1x

k−1
1 + · · ·+ sna1x

k−n
1 = 0,

...

anx
k
n + s1anx

k−1
n + · · ·+ snanx

k−n
n = 0.

Adding these equalities together, we obtain

αk + s1αk−1 + · · ·+ snαk−n = 0.

This implies that, for each k > n, αk is in the ideal (αk−1, . . . , αk−n). With an
obvious inductive argument, we have that αk is in the ideal (αn, . . . , α1), for each
k > n. �

Lemma 3.7. Let k be a field and let A be a k-algebra. Consider a 2× n matrix(
a1 · · · an
b1 · · · bn

)
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with entries in k and of rank 2. Fix x1, . . . , xn ∈ A and, for each integer k ≥ 1,
consider

αk =

n∑
i=1

aix
k
i ∈ A and βk =

n∑
i=1

bix
k
i ∈ A.

Then the ideals

(αk, βk | k ≥ 1) and (αk, βk | 1 ≤ k ≤ n− 1)

of A coincide.

Proof. Let I be the ideal on the right. By Lemma 3.6 it is enough to show that αn

and βn lie in I. For each k ≥ 0 consider

bnαk − anβk =

n−1∑
i=1

(bnai − anbi)xki .

By Lemma 3.6 applied to bna1 − anb1, . . . , bnan−1 − anbn−1 and to x1, . . . , xn−1,
we have that

bnαn − anβn ∈ (bnα1 − anβ1, . . . , bnαn−1 − anβn−1) ⊆ I.
In a completely analogous way, we prove that bjαn−ajβn ∈ I, for every j = 1, . . . , n.
Since the matrix in the statement has rank 2, there exist two indices j and h such
that bjah − ajbh 6= 0. From bjαn − ajβn ∈ I and bhαn − ahβn ∈ I we deduce that
αn ∈ I and βn ∈ I. �

Remark 3.8. Let k is a field and let(
a1 · · · an
b1 · · · bn

)
be a 2 × n matrix with entries in k and of rank 2. Consider the polynomial ring
S = k[x1, . . . , xn] and the ideal I ⊆ S generated by

αk =

n∑
i=1

aix
k
i and βk =

n∑
i=1

bix
k
i for k ≥ 1.

By Lemma 3.7 I is generated by α1, β1, . . . , αn−1, βn−1. The quotient S/I is a
standard graded k-algebra.

The ideal I does not change if we multiply the matrix above by a matrix in
GL2(k) on the left. The isomorphism class of S/I does not change if we permute
the columns of the matrix above. This implies that the isomorphism class of S/I
depends only on the point in Gr(2,kn)/Sn, which is the quotient of the Grassman-
nian Gr(2,kn) under the action of the symmetric group Sn.

Here we consider a slight variation of the construction in Remark 3.8.

Lemma 3.9. Let k be a field and consider a 2×m matrix(
a1 · · · am
b1 · · · bm

)
with entries in k and such that the sum of the columns is the zero vector. For each
j = 1, . . . ,m, consider the polynomial ring Sj = k[x1, . . . , x̂j , . . . , xm] and the ideal
Ij ⊆ Sj generated by

αj,k =
∑

1≤i≤m
i 6=j

aix
k
i and βj,k =

∑
1≤i≤m
i6=j

bix
k
i
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for all k ≥ 1. Then the standard graded k-algebras S1/I1, . . . , Sm/Im are all
isomorphic.

Proof. It is enough to show that S1/I1 and Sm/Im are isomorphic. To avoid confu-
sion, we denote the indeterminates of Sm as y1, . . . , ym−1. Consider the k-linear iso-
morphism ϕ : S1 → Sm given by x2 7→ y2− y1, . . . , xm−1 7→ ym−1− y1, xm 7→ −y1.
Then for every k ≥ 1

ϕ(α1,k) = ϕ

(
m∑
i=2

aix
k
i

)
=

m−1∑
i=2

ai(yi − y1)k + am(−y1)k

=

m−1∑
i=2

ai

k∑
l=0

(
k

l

)
yli(−y1)k−l + am(−y1)k

=

k∑
l=0

(
k

l

)
(−y1)k−l

(
αm,l − a1yl1

)
+ am(−y1)k

=

k∑
l=0

(
k

l

)
(−y1)k−lαm,l + am(−y1)k

=

k∑
l=1

(
k

l

)
(−y1)k−lαm,l ∈ Im.

Notice that in the last equality we have used a1 + · · · + am = 0. In a completely
analogous way we can prove ϕ(β1,k) ∈ Im. Therefore ϕ(I1) ⊆ Im. By using the
inverse of ϕ, one can show ϕ(I1) = Im. �

4. Deformations of isolated toric singularities

4.1. From polygons to algebras. Here we consider a construction, due to Alt-
mann [Alt97], of a standard graded algebra associated to a polygon. Here C denotes
the field of complex numbers (see Remark 4.11).

Construction 4.1 (Altmann [Alt97]). Let F be a polygon in R2 with m edges.
Fix an orientation on R2 and a compatible ordering of the edges of F : E1, . . . , Em.
For each i = 1, . . . ,m, let (

ai
bi

)
∈ R2

be the vector associated to the edge Ei, i.e. the difference between the second vertex
of Ei and the first vertex of Ei. In the polynomial ring C[x1, . . . , xm−1] we consider
the homogeneous ideal IF generated by

m−1∑
i=1

aix
k
i and

m−1∑
i=1

bix
k
i for k ≥ 1.

We consider the standard graded C-algebra

AF := C[x1, . . . , xm−1]/IF .

Remark 4.2. Since (
am
bm

)
= −

m−1∑
i=1

(
ai
bi

)
,
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Figure 1. The polygons considered in Proposition 4.4

by Lemma 3.9, the isomorphism class of the graded C-algebra AF depends neither
on the ordering of the edges of F nor on the orientation of Z2.

If we apply an affine transformation to F , the matrix whose columns are the edges
of F is multiplied on the left by an element of GL2(R). Therefore, by Remark 3.8,
the isomorphism class of AF depends only on the GL2(R)nR2-equivalence class of
the polygon F .

Since F has dimension 2, the matrix(
a1 · · · am−1
b1 · · · bm−1

)
has rank 2; therefore, by Lemma 3.7, the ideal IF is generated by

m−1∑
i=1

aix
k
i and

m−1∑
i=1

bix
k
i for 1 ≤ k ≤ m− 2.

Example 4.3. In [Alt97, §9] there are the following three examples. If F is
the quadrilateral with vertices (1, 1), (−1, 0), (−1,−1), (0,−1), then AF is iso-
morphic to C[x]/(x2). If F is the pentagon with vertices (1, 0), (0, 1), (−1, 1),
(−1, 0), (0,−1), then AF is isomorphic to C[x, y]/(x2, xy). If F is the hexagon with
vertices (1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (0,−1), then AF is isomorphic to
C[x, y, z]/(xy, xz).

Proposition 4.4. Let F be a polygon in R2.

(i) If F is a triangle, then AF is isomorphic to C.
(ii) If F is a parallelogram, then AF is isomorphic to C[x].

(iii) If F is a quadrilateral but not a parallelogram, then AF is isomorphic to
C[x]/(x2).

Proof. (i) Up to affine equivalence we can assume that F is the convex hull of (0, 0),
(1, 0) and (1, 1). We consider the 2× 2 matrix whose columns are the first 2 edges
of F :

x1 x2
1 0
0 1

where we have used the indeterminates x1 and x2 to label the edges. The ideal
IF ⊆ C[x1, x2] is generated by x1 and x2.

(ii) Up to affine equivalence we can assume that F is the convex hull of (0, 0),
(1, 0), (1, 1), (0, 1). We consider the 2 × 3 matrix whose columns are the first 3
edges of F

p q x
1 0 −1
0 1 0
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(0, 0) (1, 0)

(1, 1)

(1 + a1, 1 + b1)

(1 + a1 + a2, 1 + b1 + b2)

Figure 2.

where we have used the indeterminates p, q, x to label the edges. The ideal IF ⊆
C[p, q, x] is generated by p− x, p2 − x2, q, and q2.

(iii) Up to affine equivalence we can assume that F is the convex hull of (0, 0),
(1, 0), (1, 1), (c, d), where c, d ∈ R are such that c < 1, d > 0 and (c, d) 6= (1, 1).
We consider the 2× 3 matrix whose columns are the first 3 edges of F

p q x
1 0 c− 1
0 1 d− 1

where we have used the indeterminates p, q, x to label the edges.
The ideal IF ⊆ C[p, q, x] is generated by p+ (c−1)x, p2 + (c−1)x2, q+ (d−1)x,

and q2 + (d− 1)x2. Therefore AF = C[p, q, x]/IF is isomorphic to C[x]/J , where J
is the ideal generated by p2 + (c− 1)x2 and q2 + (d− 1)x2, where p = (1− c)x and
q = (1− d)x. Now p2 + (c− 1)x2 = c(c− 1)x2 and q2 + (d− 1)x2 = d(d− 1)x2. By
the hypotheses on c and d, we have J = (x2). �

Proposition 4.5. Let F be a polygon in R2 with m vertices and let H : N→ N be
the Hilbert function of AF . We have H(1) = m− 3 and, if m ≥ 5, then

H(2) =
m2 − 5m+ 2

2
.

Proof. The first assertion follows from the fact that among the generators of the
ideal IF there are two linear polynomials which are linearly independent. Therefore
dimC(IF )1 = 2. So dimC(AF )1 = (m− 1)− 2.

Now we prove the second assertion, so assume m ≥ 5. Since F is not a paral-
lelogram, there exist 3 consecutive edges which are pairwise non-parallel. Up to
GL2(R)nR2 we can assume that these 3 edges are the following: the first edge goes
from (0, 0) to (1, 0), the second edge goes from (1, 0) to (1, 1), the third edge goes
from (1, 1) to (1 + a1, 1 + b1). See Figure 2. As the third edge cannot be parallel to
the second edge, a1 6= 0. Moreover, by convexity at (1, 1), one must have a1 < 0.
Moreover, it is clear that 1+ b1 > 0. From the non-parallelism assumption between
the first edge and the third edge, b1 6= 0.

Let ` be the line passing through (0, 0) and (1 + a1, 1 + b1), which is depicted in
red in Figure 2. Now consider the fourth edge, which goes from (1 + a1, 1 + b1) to



16 ANDREA PETRACCI

(1 + a1 + a2, 1 + b1 + b2). It is clear that the vertices (1 + a1 + a2, 1 + b1 + b2) and
(1, 0) lie on different sides with respect to `; this easily implies the inequality

a1b2 − a2b1 − a2 + b2 > 0.

We consider the 2× (m− 1) matrix

p q x1 x2 · · · xm−3
1 0 a1 a2 · · · am−3
0 1 b1 b2 · · · bm−3

and the C-algebra AF = C[p, q, x1, . . . , xm−3]/IF . The polynomials

p+ a1x1 + a2x2 + · · ·+ am−3xm−3

p2 + a1x
2
1 + a2x

2
2 + · · ·+ am−3x

2
m−3

q + b1x1 + b2x2 + · · ·+ bm−3xm−3

q2 + b1x
2
1 + b2x

2
2 + · · ·+ bm−3x

2
m−3

are contained in IF . Then AF is isomorphic to C[x1, x2, . . . , xm−3]/J , where J is a
certain homogeneous ideal such that the degree 1 part of J is zero and the degree
2 part of J is spanned by the following two quadrics:

f = (−a1x1 − a2x2 − · · · − am−3xm−3)2 + a1x
2
1 + a2x

2
2 + · · ·+ am−3x

2
m−3

= a1(a1 + 1)x21 + 2a1a2x1x2 + a2(a2 + 1)x22 + · · · ,
g = (−b1x1 − b2x2 − · · · − bm−3xm−3)2 + b1x

2
1 + b2x

2
2 + · · ·+ bm−3x

2
m−3

= b1(b1 + 1)x21 + 2b1b2x1x2 + b2(b2 + 1)x22 + · · · .
Since

det

(
a1(a1 + 1) 2a1a2
b1(b1 + 1) 2b1b2

)
= 2a1b1(a1b2 − a2b1 − a2 + b2) 6= 0,

the quadrics f and g are linearly independent. This implies dimC J2 = 2, therefore

dimC(AF )2 = (m−3)(m−2)
2 − 2. �

Lemma 4.6. Let f, g ∈ C[x, y] be two non-zero homogeneous polynomials of degree
2 such that they are coprime. Then (x, y)3 ⊆ (f, g) and C[x, y]/(f, g) is isomorphic
to C[x, y]/(x2, y2) as standard graded C-algebras.

Proof. The ideal containment follows from the graded C-algebra isomorphism be-
tween C[x, y]/(f, g) and C[x, y]/(x2, y2), because the isomorphism will be given by
a linear change of coordinates. Therefore it is enough to construct the graded
isomorphism between these two N-graded C-algebras.

Since f and g are coprime, they are linearly independent and their zero loci V(f)
and V(g) in P1 are disjoint. With a linear change of coordinates we can assume
[0 : 1] ∈ V(f) and [1 : 0] ∈ V(g). Thus, up to multiplicative constants, f = x(x−αy)
and g = y(y − βx) for α, β ∈ C with αβ 6= 1. Notice that V(f) = {[0 : 1], [α : 1]}
and V(g) = {[1 : 0], [1 : β]}.

For [λ : µ] ∈ P1 consider the form λf + µg = λx2 − (λα + µβ)xy + µy2. Its
discriminant is ∆ = (λα+µβ)2−4λµ = α2λ2+2(αβ−2)λµ+β2µ2. The discriminant
of ∆ is (αβ − 2)2 − α2β2 = 4(1 − αβ) 6= 0. Therefore ∆ has two simple zeroes in
P1. In other words, the pencil spanned by f and g contains exactly 2 non-reduced
forms h1 and h2. With a linear change of coordinates we can assume that h1 = x2

and h2 = y2. �
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Figure 3. The pentagon in Example 4.7

Figure 4. The pentagon in Example 4.8

Example 4.7. Let F be the lattice pentagon depicted in Figure 3. The first 4
edges of F , starting from the bottom, are the columns of

p q x y
1 0 −1 −2
0 1 1 −1

and the algebra AF is isomorphic to C[x, y]/J , where J is the ideal generated by
f = p2 − x2 − 2y2, g = q2 + x2 − y2, p3 − x3 − 2y3, q3 + x3 − y3, where p = x+ 2y
and q = −x+y. One has f = 2xy+y2 and g = x2−xy. Since f and g are coprime,
by Lemma 4.6 we have J = (f, g) and that AF is isomorphic to C[x, y]/(x2, y2).

Example 4.8. Let F be the lattice pentagon depicted in Figure 4. The first 4
edges of F , starting from the bottom, are the columns of

p q u v
1 1 −2 −3
0 2 1 −1

and the algebra AF is isomorphic to C[u, v]/J , where J is the ideal generated by
f2 = p2+q2−2u2−3v2, g2 = 2q2+u2−v2, f3 = p3+q3−2u3−3v3, g3 = 2q3+u3−v3,
where p = −(q − 2u− 3v) and q = − 1

2 (u− v). One has

f2 =
9

2
u2 + 12uv +

7

2
v2 =

9

2

(
u+

1

3
v

)(
u+

7

3
v

)
g2 =

3

2
u2 − uv − 1

2
v2 =

3

2

(
u+

1

3
v

)
(u− v) .

So f2 and g2 are not coprime. With the linear change of coordinates given by
x = u+ 1

3v and y = u, one sees that AF is isomorphic to C[x, y]/(x2, xy, y3).

Proposition 4.9. If F is a pentagon in R2, then AF is isomorphic to one of the
following standard graded C-algebras:

C[x, y]/(x2, y2), C[x, y]/(x2, xy, y3), C[x, y]/(x2, xy).
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Proof. We know that IF is generated by two linear forms, two degree 2 forms,
and two degree 3 forms. As in the proof of Proposition 4.5 we have that AF is
isomorphic to C[x, y]/J , where J is a homogeneous ideal generated by two linearly
independent quadrics f, g and by two degree 3 forms. If f and g are coprime, then
we conclude by Lemma 4.6.

Assume that f and g are not coprime. With a linear change of coordinates we
can assume that the greatest common divisor between f and g is x. So f = xh1
and g = xh2, where h1 and h2 are some degree 1 forms. By replacing f and g with
appropriate linear combinations with coefficients in C, we can assume f = x2 and
g = xy. Then

C[x, y]3 = spanC
(
x3, x2y, xy2, y3

)
⊇ J3 ⊇ spanC

(
x3, x2y, xy2

)
.

Therefore there are two cases depending on whether J 3 y3 or not. �

Remark 4.10. By Proposition 4.4 and Proposition 4.9 it is natural to ask whether
AF is always a monomial algebra for every polygon F . This is not the case: for
instance see Example 4.13.

Remark 4.11. All the results in this section remain valid if the field of complex
numbers is replaced by any algebraically closed field k which contains the coordi-
nates of the edges of the polygon F : the linear parts of the affine transformations
used in the proofs are in GL2(k ∩ R). Starting from the next section we will be
using lattice polygons only, therefore we can work over an arbitrary algebraically
closed field of characteristic 0, which is denoted by C for simplicity.

4.2. Deformations of isolated Gorenstein toric 3-fold singularities after
Altmann. Every Gorenstein toric affine 3-fold without torus factors arises in the
following way from a lattice polygon: if F is a lattice polygon in Z2, consider the
cone R≥0(F × {1}) in the lattice Z2 ⊕ Z = Z3 and the corresponding toric affine
variety. This establishes a 1-to-1 correspondence between isomorphism classes of
Gorenstein toric affine 3-folds without torus factors and GL2(Z) n Z2-equivalence
classes of lattice polygons in Z2. Furthermore, in this situation, the singular locus
has dimension at most 0 if and only if F has unit edges, i.e. if its edges have lattice
length 1.

If F0, . . . , Fr are lattice polytopes in Z2, then their Minkowski sum is

F0 + · · ·+ Fr := {v0 + · · ·+ vr | v0 ∈ F0, . . . , vr ∈ Fr}.
A Minkowski decomposition of a lattice polygon F is the expression of F as a
Minkowski sum of lattice polytopes; of course we identify two Minkowski decompo-
sitions if they are the same after reordering the summands and after translation. In
Figure 5 two Minkowski decompositions of the same lattice hexagon are depicted.

Altmann [Alt95] has noticed that Minkowski decompositions of F induce de-
formations of the toric affine variety associated to F (see also [IV12, HI13, Mav09,
Pet21a]). Moreover, he computes the miniversal deformation of an isolated Goren-
stein toric 3-fold singularity:

Theorem 4.12 (Altmann [Alt97]). Let F be a lattice polygon in Z2 with unit edges.
Let X be the toric affine C-variety associated to the cone R≥0(F×{1}) in the lattice
Z2 ⊕ Z. Let R be the hull of DefX . Then the following statements hold true.

(1) R is the completion of the standard C-algebra AF , introduced in Construc-
tion 4.1, at its maximal homogeneous ideal.
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= + = +

Figure 5. The hexagon in Example 4.13 and its two maximal
Minkowski decompositions

(2) The embedding dimension of R is m − 3, where m is the number of edges
of F .

(3) There is a canonical 1-to-1 correspondence between minimal primes of R
and maximal Minkowski decompositions of F . Moreover, if a minimal
prime p ⊂ R corresponds to the maximal Minkowski decomposition F =
F0 + F1 + · · ·+ Fr, then dimR/p = r.

(4) R is artinian if and only if F is Minkowski indecomposable.

The original formulation of Theorem 4.12(1) in [Alt97] is slightly different, but
it is equivalent to what we have written above thanks to the proof of [Alt97,
Lemma 3.4(1)].

Example 4.13. Consider the lattice hexagon F depicted in Figure 5. The first 5
edges of F , starting from the bottom and going anticlockwise, are the columns of

p q x y z
1 0 −1 −2 1
0 1 1 1 −2

and the algebra AF is isomorphic to C[x, y, z]/J , where J is the ideal generated by

f2 = (x+ 2y − z)2 − x2 − 2y2 + z2

f3 = (x+ 2y − z)3 − x3 − 2y3 + z3

f4 = (x+ 2y − z)4 − x4 − 2y4 + z4

g2 = (−x− y + 2z)2 + x2 + y2 − 2z2

g3 = (−x− y + 2z)3 + x3 + y3 − 2z3

g4 = (−x− y + 2z)4 + x4 + y4 − 2z4.

Via the linear change of coordinates x = 4u+ 4v
y = u+ w
z = 3u+ 4v + w

and via a Gröbner basis calculation we see that AF is isomorphic to C[u, v, w]/K,
where K is the ideal generated by uv, uw+ vw, u3, v2w. Let R denote the comple-
tion of AF with respect to the homogeneous maximal ideal, hence R is isomorphic
to

CJu, v, wK/(uv, uw + vw, u3, v2w).

The primary components of the ideal K are:

• (u+ v, v2) with radical (u, v),
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• (u,w) which is prime,
• (u3, v, w) with radical (u, v, w).

The first primary component of K gives the irreducible component of SpecAF

(or of SpecR by Lemma 3.2(4)) which, under the 1-to-1 correspondence in The-
orem 4.12(3), corresponds to the Minkowski decomposition of F into the sum of
a quadrilateral and a segment (see the middle of Figure 5). The second primary
component of K gives the irreducible component of SpecAF which corresponds to
the Minkowski decomposition of F into the sum of two triangles (see the right of
Figure 5). The third primary component of K gives an embedded prime of AF .

We want to show that R is not isomorphic to the quotient of a power series ring
modulo a monomial ideal.

The degree 2 part of the ideal K, i.e. the C-vector space spanned by uv and
uw + vw, gives a pencil Λ of conics in P2 such that the 4 lines (u = 0), (v = 0),
(w = 0), (u+v = 0) in P2 are the irreducible components of the 2 reducible members
of Λ. Since P2 has only 3 coordinate lines, it is not possible to have a monomial
basis of Λ after any linear coordinate change. This implies that the standard graded
algebra AF is not isomorphic to a standard graded monomial algebra.

Let m denote the maximal ideal of R. If R were isomorphic to the quotient of
a power series ring modulo a monomial ideal, then by Lemma 3.2(1) grmR ' AF

would be isomorphic to a standard graded monomial algebra; but this was excluded
above. Therefore R is not isomorphic to the quotient of a power series ring modulo
a monomial ideal.

4.3. Necessary conditions and characterisation of the deformation spaces
of isolated Gorenstein toric 3-fold singularities. Let (CompC) denote the
category of noetherian complete local C-algebras with residue field C.

Proposition 4.14. Let R ∈ (CompC) with maximal ideal m and with embedding
dimension d. If R is the hull of the deformation functor of an isolated Gorenstein
toric 3-fold singularity over C, then the following statements hold true.

(1) If d ≥ 2, then dimC(m2/m3) = (d2 + d− 4)/2.
(2) If R is formally smooth over C, then R is isomorphic either to C or to

CJxK.

Proof. (1) follows from Theorem 4.12 and Proposition 4.5. If R is formally smooth
over C, then dimC m2/m3 = (d2 + d)/2; thus by (1) we deduce d ≤ 1. �

Theorem 4.15. Let R ∈ (CompC) with embedding dimension ≤ 2. Then R is the
hull of the deformation functor of an isolated Gorenstein toric 3-fold singularity if
and only if R is isomorphic to (exactly) one of the following C-algebras:

0) C,
1.a) C[x]/(x2),
1.b) CJxK,
2.a) C[x, y]/(x2, y2),
2.b) C[x, y]/(x2, xy, y3),
2.c) CJx, yK/(x2, xy).

Proof. It follows from Theorem 4.12, Proposition 4.4, Proposition 4.9, Example 4.3,
Example 4.7, Example 4.8. �
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4.4. Deformations of isolated Q-Gorenstein toric singularities. Cyclic quo-
tient surface singularities are exactly toric surface singularities. Their deformations
have been studied quite extensively [Rie74, Chr91, Ste91, BR95, Ste13]. An easy
consequence is the following:

Lemma 4.16. Let R ∈ (CompC) with embedding dimension ≤ 3. Then R is the
hull of the deformation functor of an isolated toric surface singularity if and only
if R is isomorphic to one of the following C-algebras: CJxK, CJx, yK, CJx, y, zK.

Proof. One implication is easy: for each integer m ≥ 1, the formally smooth algebra
CJx1, . . . , xmK is the hull of the deformation functor of the surface Am-singularity,
i.e. 1

m+1 (1,m).
For the other implication, assume that R is the hull of the singularity X =

1
n (1, q), where n and q are coprime integers such that 1 ≤ q ≤ n− 1. Let e denote
the embedding dimension of X. The case q = n − 1 (i.e. e = 3) gives the An−1-
singularity and has been considered above. We can assume q < n − 1 (i.e. e ≥ 4).
One considers the continuous fraction expansion

n

n− q
= [a2, a3, . . . , ae−1] = a2 −

1

a3 −
1

a4 −
. . .

where a2, . . . , ae−1 are integers ≥ 2. By [Rie74, Satz 11] we have

3 ≥ embdimR = dimT1
X =

e−1∑
i=2

ai − 2 =

e−1∑
i=2

(ai − 2) + 2e− 6 ≥ 2e− 6.

This implies that we need to have e = 4, hence

n

n− q
= a2 −

1

a3

and 3 ≥ embdimR = a2 + a3 − 2, i.e. a2 + a3 ≤ 5. There are 3 possibilities.

• The continuous fraction expansion [2, 2] = 3
2 is associated to the singularity

X = 1
3 (1, 1); this implies that R is isomorphic to CJx, yK.

• The continuous fraction expansion [3, 2] = 5
2 is associated to the singularity

X = 1
5 (1, 3); this implies that R is isomorphic to CJx, y, zK.

• The continuous fraction expansion [2, 3] = 5
3 is associated to the singularity

X = 1
5 (1, 2) which is isomorphic to 1

5 (1, 3).

This concludes the proof of Lemma 4.16. �

Remark 4.17. We now mention two consequences of [Alt95, (6.5)]:

(1) every isolated Q-Gorenstein toric singularity of dimension ≥ 4 is rigid;
(2) every isolated Q-Gorenstein non-Gorenstein toric 3-fold singularity is rigid.

Proof of Theorem A. Combine Theorem 4.15, Lemma 4.16, and Remark 4.17. �

Proof of Theorem B. Fix n ≥ 1 and consider R = CJx1, . . . , xnK/(x31). We need to
prove that there is no isolated Q-Gorenstein toric singularity X such that R is the
hull of the deformation functor of X. By contradiction let us assume that there is
such an X.

If X has dimension 2, then each irreducible component of Spf R is a smoothing
component of X; therefore, by openness of versality, we have that every irreducible
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component of Spf R is generically smooth, in particular generically reduced. This
contradicts the fact that Spf CJx1, . . . , xnK/(x31) has a unique irreducible compo-
nent, which has multiplicity 3. Therefore X has dimension ≥ 3.

By Remark 4.17, X has dimension 3 and is Gorenstein. Also this situation is
impossible by Proposition 4.14(1). �

5. Deformations of toric Fano varieties

5.1. From toric singularities to toric Fano varieties. From a lattice polygon
we construct a 3-dimensional lattice polytope:

Construction 5.1. If F be a lattice polygon in Z2, then PF denotes the 3-
dimensional lattice polytope which is the convex hull of (F ×{1})∪ ((−F )×{−1})
in Z3.

The polytope PF has two facets that are isomorphic to F : the top one and the
bottom one.

It is clear that the origin lies in the interior of PF and that every vertex of PF is
a primitive lattice vector of Z3. In other words, PF is a Fano polytope. Therefore,
one can consider the face fan of PF (which is the fan given by the cones over the
faces of PF ) and the corresponding toric variety, which is a Fano 3-fold.

Since PF is centrally symmetric, the Fano 3-fold associated to the face fan of PF

is K-polystable by [Ber16].

Proof of Theorem C. Let Y be an isolated Gorenstein toric 3-fold singularity and let
R be the hull of its deformation functor. The toric affine variety Y is associated to a
lattice polygon F in Z2 with unit edges. Consider the 3-dimensional lattice polytope
PF as in Construction 5.1 and the K-polystable toric Fano 3-fold X associated to
the face fan of PF .

Let Y+ (resp. Y−) denote the toric affine variety associated to the cone over the
top (resp. bottom) face of PF . In this way Y+ and Y− are isomorphic to Y and are
open neighbourhoods of two isolated points of the singular locus of X.

Since H1(X,T 0
X) = 0 and H2(X,T 0

X) = 0 by [Tot12, Proof of Theorem 5.1] (see
also [Pet19]), by Proposition 2.6 we have that the product of restriction maps

(5.1) DefqGX −→ DefqGY+
×DefqGY−

is surjective and admits a section. As Y is Gorenstein, DefqGY±
= DefY± . This proves

Theorem C in dimension n = 3. In higher dimension it is enough to consider the
product of X with a projective space, by [KP21, Proposition 4.1]. �

Remark 5.2. One can prove that away from the singular points of Y+ and of Y− the
stack X is locally unobstructed, i.e. X is locally qG-unobstructed. It is tempting to
speculate that the map (5.1) is smooth. Unfortunately we were not able to prove
this (see Remark 2.3).

Example 5.3. Two examples of Construction 5.1 and of Theorem C are contained
in [KP21] and one example is contained in [Pet21b]. In all these 3 examples the
map (5.1) is smooth.
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5.2. Arbitrarily many branches. Here we prove that the K-moduli stack and
the K-moduli space can have arbitrarily many local branches.

Lemma 5.4. Let e1 and e2 be the vectors of the standard basis of the lattice Z2.
Consider the matrix

L =

(
5 2
2 1

)
∈ SL2(Z).

Then, whenever m and n are distinct non-negative integers, the two subsets

{Lme1, L
m(e1 + e2), Lme2,−Lme1,−Lm(e1 + e2),−Lme2}

{Lne1, L
n(e1 + e2), Lne2,−Lne1,−Ln(e1 + e2),−Lne2}

are disjoint.

Proof. Since L maps the first quadrant (R≥0)2 to itself, it is enough to consider the
iterates of e1, e2 and e1 + e2 under L.

The matrix L is diagonalisable and its eigenvalues are 3 + 2
√

2 and 3 − 2
√

2,
which are not roots of unity. Therefore no power of L has an eigenvalue which is
equal to 1. This implies that the iterates of e1 (resp. e2, e1 + e2) are all distinct.

In order to conclude it is enough to show that the three sets {Lne1 | n ∈ N},
{Lne1 | n ∈ N}, {Ln(e1 + e2) | n ∈ N} are pairwise disjoint. This is true because
modulo 2 the matrix L becomes the identity, so the reduction modulo 2 of every
iterate of e1 (resp. e2, e1 + e2) is (1, 0) (resp. (0, 1), (1, 1)) in (Z/2Z)2. �

Proof of Theorem D. Fix an arbitrary integer r ≥ 1. Consider the hexagon H
which is the convex hull of (1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (0,−1) in Z2. It is
well known that H has two maximal Minkowski decompositions: one expresses H
as the sum of two triangles and one expresses H as the sum of three unit segments.

Let L be the matrix considered in Lemma 5.4. Consider the Minkowski sum

F = H + LH + L2H + · · ·+ LrH.

By Lemma 5.4 the polygon F has 6r+ 6 vertices and has unit edges. Moreover, F
has at least 2r+1 distinct maximal Minkowski decompositions.

Let A = AF be the standard graded algebra associated to F via Construction 4.1.
Let Y be the isolated Gorenstein toric 3-fold singularity associated to the cone over
F . Let R denote the hull of DefY . By Theorem 4.12 R is the completion of A at its
maximal homogeneous ideal and Spf R has at least 2r+1 irreducible components.
By Lemma 3.2 A has at least 2r+1 minimal primes.

Consider the 3-dimensional polytope P = PF as in Construction 5.1. Since
H and F are centrally symmetric, it is clear that P is a prism over F , i.e. P is
the product of F with a segment of lattice length 2. Let X be the toric Fano

3-fold associated to the face fan of P . Let R′ denote the hull of DefqGX . From
the surjectivity of (5.1) in the proof of Theorem C we deduce that R′ has at least
(2r+1)2 = 22r+2 minimal primes. This shows that the K-moduli stackMKss

3 has at
least 22r+2 local branches at the point corresponding to X.

Now we investigate the local structure of the K-moduli spaceMKps
3 near the point

corresponding to X. Let G be the automorphism group of X, which is reductive
by [ABHLX20]. By [AHR20] the completion of the stalk of the structure sheaf of

MKps
3 at [X] is isomorphic to the invariant subring (R′)G of R′ under the action of

G.
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Let T denote the big torus (C∗)3 acting on the toric variety X. Since every facet
of the polar of P has no interior lattice points, by [KP21, Proposition 2.8] G is
the semidirect product of the torus T with the automorphism group Aut(P ) of the
polytope P . In our case we have that Aut(P ) is generated by two reflections: one
which swaps top and bottom 1 0 0

0 1 0
0 0 −1


and one which is the central symmetry on the horizontal plane and keeps the vertical
direction fixed −1 0 0

0 −1 0
0 0 1

 .

In particular Aut(P ) is isomorphic to C2 × C2, where C2 denotes the cyclic group
of order 2.

The map (5.1) and its section are clearly T -equivariant. Therefore, by taking
invariants with respect to the action of T , there exist two local ring homomorphisms

f : (R⊗̂CR)T −→ (R′)T and g : (R′)T −→ (R⊗̂CR)T

such that g ◦ f = id(R⊗̂CR)T . Let us better understand the ring (R⊗̂CR)T . Let

d be the embedding dimension of R, so that R is a quotient of the power series
ring CJt1, . . . , tdK. Therefore R⊗̂CR is a quotient of CJt1,+, . . . , td,+, t1,−, . . . , td,−K,
where ti,+ (resp. ti,−) denotes a coordinate on T1

Y+
(resp. T1

Y−
). Recall that Y+

and Y− are the toric affine open subschemes of X corresponding to the top face
and to the bottom face of P . Moreover T1

Y+
and T1

Y−
are linear representations of

the torus T , so they split completely as direct sums of characters of T . By [Alt97]
T1
Y+

(resp. T1
Y−

) is homogeneous of degree (−1, 0, 0) ∈ Z3 (resp. (1, 0, 0) ∈ Z3). By

Remark 3.5 (R⊗̂CR)T is the completion of the Segre product A#A. By Lemma 3.4
A#A has at least 22r+2 minimal primes. By Lemma 3.2 (R⊗̂CR)T has at least
22r+2 minimal primes. From the existence of f and g we deduce that (R′)T has at
least 22r+2 minimal primes. Since T has index 4 in G, we deduce that (R′)G has
at least 22r+2/4 = 22r minimal primes.

In conclusion, MKss
3 has at least 22r+2 local branches at [X] and MKps

3 has
at least 22r local branches at [X]. This proves Theorem D in dimension n = 3.
In higher dimension it is enough to consider the product of X with a projective
space. �
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Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5,

40126 Bologna, Italy

Email address: a.petracci@unibo.it

https://arxiv.org/abs/2102.09405
https://arxiv.org/abs/0902.0967
https://arxiv.org/abs/1912.01538
https://arxiv.org/abs/2105.02307

	Copertina_postprint_IRIS_UNIBO (2)
	2_TransAMS_Murphy
	1. Introduction
	1.1. Deformations of isolated Q-Gorenstein toric singularities
	1.2. Deformations of K-polystable toric Fano varieties
	Outline
	Notation and conventions
	Acknowledgements

	2. Deformations
	2.1. Quick recap of deformation theory
	2.2. Restriction maps
	2.3. Q-Gorenstein deformations

	3. Algebraic intermezzo
	3.1. Standard graded algebras
	3.2. Segre products
	3.3. Generalised Newton identities

	4. Deformations of isolated toric singularities
	4.1. From polygons to algebras
	4.2. Deformations of isolated Gorenstein toric 3-fold singularities after Altmann
	4.3. Necessary conditions and characterisation of the deformation spaces of isolated Gorenstein toric 3-fold singularities
	4.4. Deformations of isolated Q-Gorenstein toric singularities

	5. Deformations of toric Fano varieties
	5.1. From toric singularities to toric Fano varieties
	5.2. Arbitrarily many branches

	References


