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1 INTRODUCTION

The Bogomolov–Tian–Todorov (BTT) theorem [2, 33, 34] states that deformations of cohomologi-
cally Kähler manifolds with trivial canonical bundle are unobstructed. This was later proved with
algebraic methods (𝑇1-lifting criterion): If 𝑘 is a field of characteristic 0 and 𝑋 is a proper smooth
𝑘-variety with torsion canonical bundle, then the deformations of 𝑋 are unobstructed [6, 22, 28].
This means that the functor

Def𝑋 ∶ 𝐀𝐫𝐭𝑘 ⟶ 𝐒𝐞𝐭

which parametrizes the deformations of 𝑋 → Spec 𝑘 is smooth. We refer the reader to § 2.3 for
the definition of smoothness of a functor. Here 𝐀𝐫𝐭𝑘 is the category of Artinian local 𝑘-algebras
with residue field 𝑘, and 𝐒𝐞𝐭 is the category of sets. A crucial ingredient in these proofs is that the
Hodge–de Rham spectral sequence degenerates.
In this paper, we generalize the BTT theorem to the context of logarithmic schemes. The setting

is as follows. Fix a field 𝑘 of characteristic 0 and a sharp toric monoid 𝑄. Consider the monoid
𝑘-algebra 𝑘[𝑄] and its completion 𝑘[[𝑄]] at its unique monomial maximal ideal, that is, the ideal
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generated by 𝑄 ∖ {0}. Consider the category𝐀𝐫𝐭𝑘[[𝑄]] of Artinian local 𝑘[[𝑄]]-algebras with residue
field 𝑘. In particular, 𝑘[[𝑄]] (respectively, 𝑘) is the initial (respectively, terminal) object of𝐀𝐫𝐭𝑘[[𝑄]].
Every object 𝐴 in 𝐀𝐫𝐭𝑘[[𝑄]] gives rise to a log scheme Spec(𝑄 → 𝐴); this is the log scheme with

underlying scheme Spec𝐴 and with log structure associated to the monoid homomorphism 𝑄 →
𝐴 induced by the structure ring homomorphism 𝑘[[𝑄]] → 𝐴.
We denote by 𝑆0 the log scheme Spec(𝑄 → 𝑘) induced by 𝑘. Hence 𝑆0 is the log scheme with

underlying scheme Spec 𝑘 and with log structure 𝑄⊕ 𝑘∗ → 𝑘 given by

(𝑞, 𝑎) ↦

{
𝑎 if 𝑞 = 0,
0 if 𝑞 ≠ 0.

Now we fix a log smooth saturated morphism 𝑓0 ∶ 𝑋0 → 𝑆0 of log schemes. Kato has defined
in [20] the functor of the log smooth deformations of 𝑓0, that is, the functor

LD𝑋0∕𝑆0 ∶ 𝐀𝐫𝐭𝑘[[𝑄]] ⟶ 𝐒𝐞𝐭

which to every object 𝐴 in𝐀𝐫𝐭𝑘[[𝑄]] associates the set of isomorphism classes of log smooth defor-
mations 𝑓 ∶ 𝑋 → Spec(𝑄 → 𝐴) of 𝑓0 ∶ 𝑋0 → 𝑆0.
In the logarithmic setting, the Calabi–Yau condition, which appears in the BTT theorem, is

expressed by triviality of the log canonical bundle 𝜔𝑋0∕𝑆0 ∶= Ω
𝑑
𝑋0∕𝑆0

∶=
⋀𝑑 Ω1

𝑋0∕𝑆0
; here 𝑑 is the

relative dimension of 𝑓0 ∶ 𝑋0 → 𝑆0.
Our main result is:

Theorem 1.1. Let 𝑘 be a field of characteristic 0, let 𝑄 be a sharp toric monoid, and let 𝑆0 =
Spec(𝑄 → 𝑘) be the log scheme with underlying scheme Spec 𝑘 and ghost sheaf 𝑄. Let 𝑓0 ∶ 𝑋0 → 𝑆0
be a proper log smooth saturatedmorphismof relative dimension𝑑. If𝜔𝑋0∕𝑆0 is the trivial line bundle,
then the log smooth deformation functor

LD𝑋0∕𝑆0 ∶ 𝐀𝐫𝐭𝑘[[𝑄]] ⟶ 𝐒𝐞𝐭

is smooth.

The proof, which is presented in § 3.4, is divided in two cases. If 𝑄 = 0, we adapt the formal-
ism of differential graded Lie algebras, which was used by Iacono andManetti to give an algebraic
proof of the BTT theorem [16–18], to the context of log schemes. If𝑄 ≠ 0, we use the recent formal-
ism developed by Chan–Leung–Ma [5] (see also [4]) and by Felten–Filip–Ruddat [8] to construct
smoothings of degenerate Calabi–Yau varieties, andwe apply an algebraic result (Proposition 2.8).

1.1 Applications

We explain two applications of the log BTT theorem.

Log Calabi–Yau pairs

Let 𝑋 be a smooth proper variety over a field 𝑘 of characteristic 0 and let 𝐷 be an SNC effective
divisor on 𝑋. Let 𝑋0 be the log scheme given by 𝑋 equipped with the divisorial log structure
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associated to 𝐷. Let 𝑆0 be the log scheme given by Spec 𝑘 with the trivial log structure. Then
𝑋0 → 𝑆0 is log smooth and saturated. One has 𝜔𝑋0∕𝑆0 = 𝜔𝑋(𝐷). Therefore Theorem 1.1 applies
when 𝐷 is an anticanonical divisor, that is, the pair (𝑋, 𝐷) is log Calabi–Yau. If this is the case,
then log smooth deformations of 𝑋0 → 𝑆0 are unobstructed.
Log smooth deformations of 𝑋0 → 𝑆0 are exactly locally trivial deformations of the pair (𝑋, 𝐷),

that is, of the closed embedding 𝐷 ↪ 𝑋. The log BTT theorem implies: If 𝐷 is an SNC effective
anticanonical divisor on 𝑋, then the functor of locally trivial deformations of (𝑋, 𝐷) is smooth.
If 𝐷 is a smooth divisor, then every deformation of (𝑋, 𝐷) is locally trivial. Therefore, if 𝐷 is a

smooth anticanonical divisor on 𝑋, then deformations of the pair (𝑋, 𝐷) are unobstructed: This
recovers a result by Iacono [16], Sano [30], and Katzarkov–Kontsevich–Pantev [21] (see also [24,
25, 35]).
If 𝐷 is a non-smooth SNC divisor on 𝐷, then there might be deformations of the pair (𝑋, 𝐷)

which are not locally trivial and hence not covered by our BTT theorem. By [9], there are — not
only in characteristic 0 but over every field 𝑘 with char(𝑘) ≠ 2— indeed pairs (𝑋, 𝐷) of a smooth
projective variety 𝑋 and an SNC effective anticanonical divisor 𝐷 ⊂ 𝑋 such that (not necessarily
locally trivial) deformations of (𝑋, 𝐷) are obstructed.

Simple normal crossing schemes

Fix an algebraically closed field 𝑘. A normal crossing scheme over 𝑘 is a scheme 𝑋 of finite type
over 𝑘 such that every closed point 𝑥 ∈ 𝑋 has an étale neighborhood 𝑥 → 𝑈 → 𝑋 which admits
an étale map

𝑈 → Spec 𝑘[𝑥1, … , 𝑥𝑚]∕(𝑥1⋯𝑥𝑟),

for some 0 ⩽ 𝑟 ⩽ 𝑚, such that 𝑥 maps to the origin. A normal crossing scheme 𝑋 is called d-
semistable if the coherent sheaf 𝑥𝑡1

𝑋
(Ω𝑋,𝑋) is isomorphic to the structure sheaf of the singular

locus of 𝑋 (see [11] and [1]).
If𝑋 is a d-semistable normal crossing scheme of pure dimension 𝑑, then𝑋 has a log smooth log

structure𝑋0 over 𝑆0 = Spec(ℕ → 𝑘) such that the sheaf 𝜔𝑋0∕𝑆0 of log 𝑑-differentials is isomorphic
to the dualizing sheaf 𝜔𝑋 . From Theorem 1.1, we deduce:

Corollary 1.2. Let 𝑋 be a d-semistable normal crossing scheme proper over an algebraically closed
field of characteristic 0 such that 𝜔𝑋 ≃ 𝑋 . Then the functor LD𝑋0∕𝑆0 is smooth.

This removes the assumptions 𝐻𝑑−1(𝑋,𝑋) = 0 and 𝐻𝑑−2(�̃�,�̃�) = 0, where 𝑑 is the dimen-
sion of𝑋 and �̃� → 𝑋 its normalization, from [23, Theorem 4.2]. We remind the reader that, under
the assumptions of Corollary 1.2, 𝑋 is formally smoothable by [5, 8].

1.2 Generalizations

In Theorem 1.1, we assume 𝑓0 ∶ 𝑋0 → 𝑆0 log smooth. However, in many geometric situations
which arise from the degeneration of varieties, the degenerate (log) space 𝑓0 ∶ 𝑋0 → 𝑆0 has log
singularities. The deformation theory of a general log toroidal family in the sense of [8] is not yet
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well understood, but the special cases which arise in the Gross–Siebert program ([13–15]) are. For
example, according to [29], if 𝑓0 ∶ 𝑋0 → 𝑆0 = Spec(ℕ → ℂ) is a simple toric log Calabi–Yau space,
then the functor  ∶ 𝐀𝐫𝐭ℂ[[𝑡]] → 𝐒𝐞𝐭 of divisorial deformations has a hull. Moreover, the theory
in [8] shows that  satisfies Theorem 3.7 below; thus, following our proof of Theorem 1.1 above,
the functor  of divisorial deformations is unobstructed. However, at least when 𝑓0 ∶ 𝑋0 → 𝑆0
carries a polarization, this is not a new result. Namely, 𝑓0 ∶ 𝑋0 → 𝑆0 is a fiber in a whole family
𝑓 ∶ 𝑋 → Spec(𝐴) of toric log Calabi–Yau spaces over an algebraic torus Spec(𝐴) according to [14].
An application of the Gross–Siebert algorithm in [12] — here we use the polarization — then
yields a canonical formal family𝔛 → Spf(𝐴[[𝑡]]), where Spf (𝐴[[𝑡]]) is the completion of Spec(𝐴) ⊆
Spec(𝐴[𝑡]). According to [29], there is an analytic family  → 𝑈 × 𝔻 where 𝑈 ⊆ Spec(𝐴)𝑎𝑛 is a
neighborhood of the point 𝑎 ∈ Spec(𝐴)𝑎𝑛 which corresponds to the space𝑓0 ∶ 𝑋0 → 𝑆0, and𝔻 is a
small disk; whenwe complete it in (𝑎, 0) ∈ 𝑈 × 𝔻, the completion is isomorphic to the completion
of the canonical formal family 𝔛 → Spf(𝐴[[𝑡]]) in 𝑎 ∈ Spf(𝐴[[𝑡]]). According to [29] as well, this
completion of the canonical formal family is a versal family for the divisorial deformation functor
. Since 𝐴 is an algebraic torus, it is smooth, so the hull is a formally smooth ℂ[[𝑡]]-algebra, and
 is unobstructed.

Notation and conventions

Every ring is commutative with identity. The set of non-negative (respectively, positive) integers is
denoted by ℕ (respectively, ℕ+). Every monoid is commutative and denoted additively. A monoid
is said to be sharp if 0 is the unique invertible element. A monoid 𝑄 is said to be toric if there exist
an integer 𝑛 ⩾ 0 and rational polyhedral cone 𝜎 in ℝ𝑛 of dimension 𝑛 such that 𝑄 is isomorphic
to 𝜎 ∩ ℤ𝑛.

2 VALUATIONS AND SMOOTH DEFORMATION FUNCTORS

2.1 Valuations on Noetherian complete local domains

Following [3, VI, § 3], we define valuations on integral domains. On the disjoint unionℕ ∪ {∞}, we
consider the extensions of the sum + and the ordering ≤ from ℕ defined as follows:∞+∞ = ∞,
𝑛 +∞ = ∞+ 𝑛 = ∞ and 𝑛 ⩽ ∞ for every 𝑛 ∈ ℕ.

Definition 2.1. A non-trivial valuation on a ring Λ is a function 𝜈 ∶ Λ → ℕ ∪ {∞} such that:

(i) 𝜈(𝑎𝑏) = 𝜈(𝑎) + 𝜈(𝑏) for all 𝑎, 𝑏 ∈ Λ;
(ii) 𝜈(𝑎 + 𝑏) ⩾ min{𝜈(𝑎), 𝜈(𝑏)} for all 𝑎, 𝑏 ∈ Λ;
(iii) 𝜈−1(∞) = {0};
(iv) 𝜈(Λ) ∖ {0,∞} ≠ ∅.

It follows that Λ is an integral domain and 𝜈(1) = 0.

Definition 2.2. Let (Λ,𝔪) be a local domain. A non-trivial valuation 𝜈 onΛ is said to be compat-
ible with the𝔪-adic topology if the𝔪-adic topology coincides with the linear topology induced by
the following descending filtration of ideals: {𝑎 ∈ Λ ∣ 𝜈(𝑎) ⩾ 𝑛} as 𝑛 ∈ ℕ.
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Remark 2.3. If a local domain (Λ,𝔪) has a non-trivial valuation which is compatible with the𝔪-
adic topology, then Λ is not a field. Although in Lemma 3.1 below we construct such a valuation
on Λ = 𝑘[[𝑄]] for a sharp toric monoid 𝑄 ≠ 0, there is no such valuation on 𝑘 = 𝑘[[0]].

Example 2.4. Fix an integer 𝑚 ⩾ 1. Fix a field 𝑘 and consider the power series ring Λ =
𝑘[[𝑡1, … , 𝑡𝑚]] with maximal ideal 𝔪. Every element 𝑤 = (𝑤1, … ,𝑤𝑚) ∈ (ℕ+)𝑚 induces a non-
trivial valuation 𝜈𝑤 on Λ which is compatible with the𝔪-adic topology as follows: if

𝑎 =
∑

𝑖1,…,𝑖𝑚⩾0

𝑎𝑖1,…,𝑖𝑚 𝑡
𝑖1
1
⋯ 𝑡

𝑖𝑚
𝑚

then

𝜈𝑤(𝑎) = min
{
𝑤1𝑖1 +⋯ + 𝑤𝑚𝑖𝑚 ∣ 𝑖1 ⩾ 0, … , 𝑖𝑚 ⩾ 0, 𝑎𝑖1,…,𝑖𝑚 ≠ 0

}
.

If Λ is a Noetherian complete local ring, then every power series with coefficients in Λ and
finitely many variables can be evaluated on tuples of elements of the maximal ideal ofΛ. Now we
give a sufficient criterion that ensures that the zero power series is the only one for which every
evaluation is zero:

Lemma 2.5. Let (Λ,𝔪) be a Noetherian complete local domain, and let 𝑓 ∈ Λ[[𝑥1, … , 𝑥𝑛]] be a
power series such that

∀𝑎1 ∈ 𝔪,… , ∀𝑎𝑛 ∈ 𝔪, 𝑓(𝑎1, … , 𝑎𝑛) = 0.

If there exists a non-trivial valuation onΛwhich is compatible with the𝔪-adic topology, then 𝑓 = 0.

Note that Lemma 2.5 does not hold for every Noetherian complete local ring: for example, Λ =
𝑘[𝑡]∕(𝑡𝑟+1) and 𝑓 = 𝑡𝑟𝑥 ∈ Λ[[𝑥]], for any integer 𝑟 ⩾ 0.
In the proof of Lemma 2.5, we make use of the following:

Lemma 2.6 [3, VII, § 3, no. 7, Lemma 2]. Let Λ be a ring, and fix a non-zero power series
𝑓(𝑥1, … , 𝑥𝑛) ∈ Λ[[𝑥1, … , 𝑥𝑛]]with coefficients inΛ. Then there exist positive integers𝑢1, … , 𝑢𝑛−1 such
that the power series 𝑓(𝑥𝑢1 , … , 𝑥𝑢𝑛−1 , 𝑥) ∈ Λ[[𝑥]] is non-zero.

Proof of Lemma 2.5. For a contradiction, assume 𝑓 ≠ 0. By Lemma 2.6, there exist 𝑢1, … , 𝑢𝑛−1 ∈
ℕ+ such that the power series g(𝑥) ∶= 𝑓(𝑥𝑢1 , … , 𝑥𝑢𝑛−1 , 𝑥) ∈ Λ[[𝑥]] is non-zero. It is clear that
g(𝑎) = 𝑓(𝑎𝑢1 , … , 𝑎𝑢𝑛−1 , 𝑎) = 0 for every 𝑎 ∈ 𝔪.
Let 𝜈 ∶ Λ → ℕ ∪ {∞} be a non-trivial valuation which is compatible with the𝔪-adic topology.

Set g =
∑
𝑖⩾0 𝑏𝑖𝑥

𝑖 with 𝑏𝑖 ∈ Λ. Let 𝑑 ⩾ 0 be the minimum index 𝑖 ⩾ 0 such that 𝑏𝑖 ≠ 0.
By (3) in Definition 2.1, 𝜈(𝑏𝑑) ∈ ℕ. By (4), there exists an element in Λ whose valuation is a

positive integer. By taking a sufficient high power, since 𝜈 is compatible with the𝔪-adic topology,
we can find 𝑎 ∈ 𝔪 ∖ {0} such that 𝜈(𝑎) > 𝜈(𝑏𝑑).
For every 𝑖 ⩾ 1, we have

𝜈(𝑏𝑑+𝑖𝑎
𝑑+𝑖) = 𝜈(𝑏𝑑+𝑖) + 𝑖𝜈(𝑎) + 𝑑𝜈(𝑎) ⩾ 𝜈(𝑎) + 𝑑𝜈(𝑎) > 𝜈(𝑏𝑑) + 𝑑𝜈(𝑎) = 𝜈(𝑏𝑑𝑎

𝑑).
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Therefore, by (2) in Definition 2.1, for every 𝑟 ⩾ 1, we have

𝜈

(
𝑟∑
𝑖=1

𝑏𝑑+𝑖𝑎
𝑑+𝑖

)
> 𝜈(𝑏𝑑𝑎

𝑑).

By taking the limit for 𝑟 → +∞, since 𝜈 ∶ Λ → ℕ ∪ {∞} is continuous by [3, VI, § 5, no. 1, Propo-
sition 1], we get

𝜈

(∑
𝑗>𝑑

𝑏𝑗𝑎
𝑗

)
> 𝜈(𝑏𝑑𝑎

𝑑).

From

g(𝑎) = 𝑏𝑑𝑎
𝑑 +

(∑
𝑗>𝑑

𝑏𝑗𝑎
𝑗

)
,

we deduce 𝜈(g(𝑎)) = 𝜈(𝑏𝑑𝑎𝑑) ≠∞, so g(𝑎) ≠ 0 which is a contradiction. �

2.2 Formally smooth algebras

We fix a Noetherian complete local ring Λ; let 𝔪 be its maximal ideal and let 𝑘 = Λ∕𝔪 be its
residue field.
We denote by 𝐂𝐨𝐦𝐩Λ the category of Noetherian complete local Λ-algebras with residue field

𝑘. Arrows in 𝐂𝐨𝐦𝐩Λ are Λ-algebra homomorphisms which are compatible with the projection
onto 𝑘. In particular, all arrows in𝐂𝐨𝐦𝐩Λ are local homomorphisms. Let𝐀𝐫𝐭Λ be the full subcat-
egory of 𝐂𝐨𝐦𝐩Λ consisting of Artinian rings. It is clear that 𝐂𝐨𝐦𝐩𝑘 (respectively, 𝐀𝐫𝐭𝑘) is a full
subcategory of 𝐂𝐨𝐦𝐩Λ (respectively, 𝐀𝐫𝐭Λ) by considering a 𝑘-algebra as a Λ-algebra via Λ ↠ 𝑘.
An object 𝑅 in 𝐂𝐨𝐦𝐩Λ is called formally smooth (over Λ) if it is isomorphic to the power series

ring Λ[[𝑥1, … , 𝑥𝑛]] for some non-negative integer 𝑛. We refer the reader to [32, Appendix B] for
properties of formally smooth algebras.

Proposition 2.7. Let (Λ,𝔪, 𝑘) be a Noetherian complete local domain with a non-trivial valuation
which is compatiblewith the𝔪-adic topology. Let𝑅 be an object in𝐂𝐨𝐦𝐩Λ such that, for every integer
𝓁 ⩾ 1, the function

Hom𝐂𝐨𝐦𝐩Λ

(
𝑅,Λ∕𝔪𝓁+1)⟶Hom𝐂𝐨𝐦𝐩Λ

(
𝑅,Λ∕𝔪𝓁)

induced by Λ∕𝔪𝓁+1 ↠ Λ∕𝔪𝓁 is surjective.
Then 𝑅 is a formally smooth Λ-algebra.

Proof. Let 𝔪𝑅 be the maximal ideal of 𝑅. Let 𝑛 be the dimension of the 𝑘-vector space 𝑇∨Λ𝑅 =
𝔪𝑅∕(𝔪𝑅 +𝔪

2
𝑅
). By [32, Corollary B.6], there exists a surjection Λ[[𝑥1, … , 𝑥𝑛]] ↠ 𝑅 in 𝐂𝐨𝐦𝐩Λ

whose kernel 𝐼 is contained in𝔪[[𝑥1, … , 𝑥𝑛]] + (𝑥1, … , 𝑥𝑛)2. In other words, 𝑅 = Λ[[𝑥1, … , 𝑥𝑛]]∕𝐼
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and every element in 𝐼 is of the form

𝑐0 + 𝑐1𝑥1 +⋯ + 𝑐𝑛𝑥𝑛 + g (2.1)

where 𝑐0, 𝑐1, … , 𝑐𝑛 ∈ 𝔪 and g is a power series with order ⩾ 2.
Since Λ is 𝔪-adically complete, for every 𝑎 = (𝑎1, … , 𝑎𝑛) ∈ 𝔪 ×⋯ ×𝔪 we can consider the

evaluation homomorphism

ev𝑎 ∶ Λ[[𝑥1, … , 𝑥𝑛]]⟶ Λ

defined by 𝑓 ↦ 𝑓(𝑎). It is a surjective local homomorphism. Denote by 𝐽𝑎 the image of 𝐼 under
ev𝑎; 𝐽𝑎 is an ideal of Λ which is contained in𝔪. We want to show that 𝐽𝑎 = 0. By contradiction,
let us assume that 𝐽𝑎 ≠ 0. By the Krull intersection theorem,

⋂
𝓁⩾0 𝔪

𝓁 = 0. Therefore, there exists
an integer 𝓁 ⩾ 1 such that 𝐽𝑎 ⊆ 𝔪𝓁 and 𝐽𝑎 ⊈ 𝔪𝓁+1. Consider the composition

Λ[[𝑥1, … , 𝑥𝑛]]
ev𝑎
↠ Λ ↠ Λ∕𝐽𝑎 ↠ Λ∕𝔪𝓁 ;

its kernel contains 𝐼, therefore we have a surjective homomorphism

𝜑𝓁 ∶ 𝑅 = Λ[[𝑥1, … , 𝑥𝑛]]∕𝐼 ⟶ Λ∕𝔪𝓁 .

From the assumption, we deduce the existence of a homomorphism

𝜑𝓁+1 ∶ 𝑅⟶ Λ∕𝔪𝓁+1

such that 𝜑𝓁 = 𝜃𝓁◦𝜑𝓁+1, where 𝜃𝓁 ∶ Λ∕𝔪𝓁+1 ↠ Λ∕𝔪𝓁 is the canonical projection map.

For 𝑖 = 1, … , 𝑛, let 𝑏𝑖 ∈ Λ such that 𝑏𝑖 + 𝔪𝓁+1 ∈ Λ∕𝔪𝓁+1 is the image of 𝑥𝑖 + 𝐼 ∈ 𝑅 via 𝜑𝓁+1. Set
𝑏 = (𝑏1, … , 𝑏𝑛) ∈ 𝔪 ×⋯ ×𝔪. In other words, 𝜑𝓁+1 is induced by the evaluation on 𝑏. In partic-
ular, this implies

∀𝑓 ∈ 𝐼, 𝑓(𝑏) ∈ 𝔪𝓁+1. (2.2)

We have a commutative diagram
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whereΛ ↠ Λ∕𝔪𝓁 andΛ ↠ Λ∕𝔪𝓁+1 are the canonical projectionmaps. For every index 1 ⩽ 𝑖 ⩽ 𝑛,
it is clear that 𝑎𝑖 and 𝑏𝑖 have the same image in Λ∕𝔪𝓁 , that is, 𝑎𝑖 − 𝑏𝑖 ∈ 𝔪𝓁 . From the particular
form of elements of 𝐼 in (2.1), we deduce that

∀𝑓 ∈ 𝐼, 𝑓(𝑎) − 𝑓(𝑏) ∈ 𝔪𝓁+1.

By (2.2), this implies 𝑓(𝑎) ∈ 𝔪𝓁+1 for every 𝑓 ∈ 𝐼. Hence 𝐽𝑎 ⊆ 𝔪𝓁+1, which is a contradiction.
Therefore, 𝐽𝑎 = 0.
We have proved that

∀𝑎 ∈ 𝔪 ×⋯ ×𝔪, ∀𝑓 ∈ 𝐼, 𝑓(𝑎) = 0.

By Lemma 2.5, we deduce 𝐼 = 0. Hence 𝑅 = Λ[[𝑥1, … , 𝑥𝑛]]. �

2.3 Deformation functors

Herewe briefly summarize somenotions from [31].We fix aNoetherian complete local ringΛwith
maximal ideal𝔪 and residue field 𝑘 = Λ∕𝔪. A deformation functor is a functor 𝐹 ∶ 𝐀𝐫𝐭Λ → 𝐒𝐞𝐭

such that𝐹(𝑘) is a singleton and𝐹 satisfies Schlessinger’s conditions (H1) and (H2). If𝑅 ∈ 𝐂𝐨𝐦𝐩Λ
then ℎ𝑅 ∶= Hom𝐂𝐨𝐦𝐩Λ(𝑅, −) is a deformation functor. If 𝐹 is a deformation functor, then the set
𝐹(𝑘[𝑡]∕(𝑡2)) has a natural structure as 𝑘-vector space, which is called the tangent space of 𝐹.
A natural transformation 𝐹 → 𝐺 of deformation functors is called smooth if for every surjection

𝐵 → 𝐴 in 𝐀𝐫𝐭Λ the function 𝐹(𝐵) → 𝐹(𝐴) ×𝐺(𝐴) 𝐺(𝐵) is surjective. A deformation functor 𝐹 is
called smooth if the natural transformation 𝐹 → ℎΛ is smooth. For 𝑅 ∈ 𝐂𝐨𝐦𝐩Λ, 𝑅 is a formally
smooth Λ-algebra if and only if ℎ𝑅 is smooth.
A hull for a deformation functor 𝐹 is an object 𝑅 ∈ 𝐂𝐨𝐦𝐩Λ such that there exists a smooth

natural transformation ℎ𝑅 → 𝐹 which induces a bijection on tangent spaces. If a hull exists, it
is unique.
Now we give a sufficient criterion for the smoothness of a deformation functor.

Proposition 2.8. Let (Λ,𝔪, 𝑘) be a Noetherian complete local domain with a non-trivial valuation
which is compatible with the𝔪-adic topology. Let 𝐹 ∶ 𝐀𝐫𝐭Λ → 𝐒𝐞𝐭 be a deformation functor with
finite-dimensional tangent space.
If, for every integer 𝓁 ⩾ 1, the function

𝐹
(
Λ∕𝔪𝓁+1)⟶𝐹

(
Λ∕𝔪𝓁)

induced by Λ∕𝔪𝓁+1 ↠ Λ∕𝔪𝓁 is surjective, then 𝐹 is smooth.

Proof. By [31, Theorem 2.11], the functor 𝐹 has a hull 𝑅. Consider a smooth map ℎ𝑅 → 𝐹.
Fix an arbitrary integer 𝓁 ⩾ 1. Since 𝐹(Λ∕𝔪𝓁+1) → 𝐹(Λ∕𝔪𝓁) is surjective,

𝐹(Λ∕𝔪𝓁+1) ×𝐹(Λ∕𝔪𝓁) ℎ𝑅(Λ∕𝔪
𝓁)⟶ ℎ𝑅(Λ∕𝔪

𝓁) (2.3)
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is surjective. Since ℎ𝑅 → 𝐹 is smooth, the function

ℎ𝑅(Λ∕𝔪
𝓁+1)⟶ 𝐹(Λ∕𝔪𝓁+1) ×𝐹(Λ∕𝔪𝓁) ℎ𝑅(Λ∕𝔪

𝓁) (2.4)

is surjective. By composing (2.4) and (2.3), we obtain that ℎ𝑅(Λ∕𝔪𝓁+1) → ℎ𝑅(Λ∕𝔪
𝓁) is surjective.

By Proposition 2.7, ℎ𝑅 is smooth.
We conclude with [31, Proposition 2.5(iii)]. �
Recall from § 2.2 that 𝐀𝐫𝐭𝑘 is a full subcategory of 𝐀𝐫𝐭Λ.

Lemma 2.9. Let 𝐹 ∶ 𝐀𝐫𝐭Λ → 𝐒𝐞𝐭 be a deformation functor. Consider the restricted functor 𝐹0 ∶=
𝐹|𝐀𝐫𝐭𝑘 ∶ 𝐀𝐫𝐭𝑘 → 𝐒𝐞𝐭. Then:

(1) 𝐹0 is a deformation functor;
(2) if 𝑅 ∈ 𝐂𝐨𝐦𝐩Λ is the hull of 𝐹, then 𝑅 ⊗Λ 𝑘 is the hull of 𝐹0.

Proof. (1) Since the embedding𝐀𝐫𝐭𝑘 ↪ 𝐀𝐫𝐭Λ preserves pull-backs of Artinian rings, the restricted
functor 𝐹0 satisfies Schlessinger’s conditions (H1) and (H2).
(2) It is clear that the tangent space of 𝐹0 coincides with the tangent space of 𝐹. Consider a

smoothmap ℎ𝑅 → 𝐹 which induces a bijection on tangent spaces. It remains smooth after restric-
tion to𝐀𝐫𝐭𝑘, so we have a smoothmap (ℎ𝑅)0 → 𝐹0 of deformation functors which induces a bijec-
tion on tangent spaces. The surjection 𝑅 → 𝑅 ⊗Λ 𝑘 induces an isomorphism

ℎ𝑅⊗Λ𝑘 = Hom𝑘(𝑅 ⊗Λ 𝑘,−) → HomΛ(𝑅,−) = (ℎ𝑅)0

of functors. �

3 PROOFS

3.1 Toric rings

Fix a field 𝑘 andmonoid𝑄. Consider themonoid 𝑘-algebra 𝑘[𝑄] defined as follows: the underlying
𝑘-vector space of 𝑘[𝑄] has a basis {𝑧𝑞}𝑞∈𝑄 indexed by elements of𝑄 and the product on 𝑘[𝑄] is the
𝑘-linear extension of the rule 𝑧𝑞1 ⋅ 𝑧𝑞2 = 𝑧𝑞1+𝑞2 for all 𝑞1, 𝑞2 ∈ 𝑄. If 𝑄 is finitely generated, then
𝑘[𝑄] is of finite type over 𝑘.
If𝑄 is sharp, then the ideal (𝑧𝑞 ∣ 𝑞 ∈ 𝑄 ∖ {0}) is a maximal ideal in 𝑘[𝑄]; we denote by 𝑘[[𝑄]] the

completion of 𝑘[𝑄] with respect to this maximal ideal. Thus, if 𝑄 is finitely generated and sharp,
then 𝑘[[𝑄]] is a Noetherian complete local ring with residue field 𝑘.

Lemma 3.1. If 𝑘 is a field and 𝑄 is a non-zero sharp toric monoid, then 𝑘[[𝑄]] admits a non-trivial
valuation which is compatible with the adic topology of the maximal ideal of 𝑘[[𝑄]].

Proof. This is a generalization of Example 2.4. Set𝑀 ≃ ℤ𝑛 and let 𝜎 be an 𝑛-dimensional rational
polyhedral cone in𝑀ℝ such that 𝑄 = 𝜎 ∩𝑀. We consider the dual lattice𝑁 = Homℤ(𝑀,ℤ)with
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duality pairing ⟨−,−⟩ ∶ 𝑀 × 𝑁 → ℤ and the dual cone

𝜎∨ = {𝑣 ∈ 𝑁ℝ ∣ ∀𝑞 ∈ 𝜎, ⟨𝑞, 𝑣⟩ ⩾ 0}.
Pick 𝑤 ∈ 𝑁 in the interior of 𝜎∨, and consider the valuation 𝜈𝑤 ∶ 𝑘[[𝑄]] → ℕ ∪ {∞} defined by

𝜈𝑤

(∑
𝑞∈𝑄

𝑏𝑞𝑧
𝑞

)
= min{⟨𝑞,𝑤⟩ ∣ 𝑞 ∈ 𝑄, 𝑏𝑞 ≠ 0}.

This is compatible with the adic topology of the maximal ideal of 𝑘[[𝑄]]. �

3.2 Log smooth deformation theory

We fix a field 𝑘 (of arbitrary characteristic) and a sharp toric monoid 𝑄. As explained in the intro-
duction, every ring𝐴 in𝐀𝐫𝐭𝑘[[𝑄]] gives rise to a log scheme Spec(𝑄 → 𝐴)with underlying scheme
Spec𝐴. In particular, 𝑘 gives rise to 𝑆0 ∶= Spec(𝑄 → 𝑘), which is the log scheme on the scheme
Spec 𝑘 with ghost sheaf 𝑄.
We fix a proper log smooth saturatedmorphism 𝑓0 ∶ 𝑋0 → 𝑆0 of log schemes of relative dimen-

sion 𝑑. Let Ω1
𝑋0∕𝑆0

be the sheaf of log differentials of 𝑋0 relative to 𝑆0; let furthermore 𝜔𝑋0∕𝑆0 =
Ω𝑑
𝑋0∕𝑆0

be the log canonical line bundle on 𝑋0.
Kato defines in [20] the functor of log smooth deformations of 𝑋0 → 𝑆0, that is, the functor

LD𝑋0∕𝑆0 ∶ 𝐀𝐫𝐭𝑘[[𝑄]] ⟶ 𝐒𝐞𝐭

which to every object 𝐴 in𝐀𝐫𝐭𝑘[[𝑄]] associates the set of isomorphism classes of log smooth defor-
mations 𝑓 ∶ 𝑋 → Spec(𝑄 → 𝐴) of 𝑓0 ∶ 𝑋0 → 𝑆0 (see [20, Definition 8.1]). This functor is a defor-
mation functor and has a hull by [20, Theorem 8.7].
Now we assume furthermore that 𝑘 has characteristic 0. In [7], the first author proves that

LD𝑋0∕𝑆0 is controlled by a 𝑘[[𝑄]]-linear predifferential graded Lie algebra (pdgla, for short)
(𝐿∙
𝑋0∕𝑆0

, [−, −], 𝑑,𝓁). More precisely, (𝐿∙
𝑋0∕𝑆0

, [−, −]) is a graded Lie algebra over 𝑘[[𝑄]] endowed
with a derivation 𝑑 which need not be a differential but admits an element 𝓁 ∈ 𝐿2

𝑋0∕𝑆0
such

that 𝑑2 = [𝓁, −]. Via a modified Maurer–Cartan equation we associate a deformation functor
𝐀𝐫𝐭𝑘[[𝑄]] → 𝐒𝐞𝐭, which is isomorphic to LD𝑋0∕𝑆0 . Directly from the definitions it follows that the
restricted functor LD𝑋0∕𝑆0 |𝐀𝐫𝐭𝑘 is controlled by the 𝑘-linear (ordinary) dgla 𝐿∙𝑋0∕𝑆0 ⊗𝑘[[𝑄]] 𝑘. In par-
ticular, it has a hull; Lemma 2.9 shows that the hull of LD𝑋0∕𝑆0 |𝐀𝐫𝐭𝑘 is 𝑅 ⊗𝑘[[𝑄]] 𝑘 where 𝑅 is the
hull of LD𝑋0∕𝑆0 .

3.3 Homotopy abelianity

In this section, we prove that the restricted deformation functor LD𝑋0∕𝑆0 |𝐀𝐫𝐭𝑘 is unobstructed; in
particular, we obtain the log BTT theorem in the case 𝑄 = 0. We fix a field 𝑘 of characteristic 0.
Recall that a differential graded Lie algebra (dgla, for short) 𝐿∙ is abelian if [−,−] = 0, and

homotopy abelian if it is quasi-isomorphic to an abelian dgla. This is the case if and only if 𝐿∙ is
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formal and𝐻∙(𝐿∙) is abelian; in this case, the associated deformation functorDef𝐿∙ ∶ 𝐀𝐫𝐭𝑘 → 𝐒𝐞𝐭

is smooth. We say that a deformation functor 𝐹 ∶ 𝐀𝐫𝐭𝑘 → 𝐒𝐞𝐭 is controlled by the dgla 𝐿∙ if it is
isomorphic to Def𝐿∙ . We refer the reader to [10, 26] for details.
Now we state Iacono’s abstract Bogomolov–Tian–Todorov theorem from [17] because it will be

useful to us below. Recall that a Cartan homotopy 𝐢 ∶ 𝐿∙ → 𝑀∙ of dglas is a homogeneous linear
map of degree −1 such that

𝐢[𝑎,𝑏] = [𝐢𝑎, 𝑑𝑀𝐢𝑏] and [𝐢𝑎, 𝐢𝑏] = 0

are satisfied; here, 𝐢𝑎 ∶= 𝐢(𝑎) ∈ 𝑀∙ is traditional notation since the elements of𝑀∙ are typically
homomorphisms themselves — compare this with our choice for𝑀∙ below. The Lie derivative of
𝐢 is given by 𝐥𝑎 = 𝑑𝑀𝐢𝑎 + 𝐢𝑑𝐿𝑎; it defines a homomorphism 𝐥 ∶ 𝐿∙ → 𝑀∙ of complexes, which is
homotopic to 0 via the homotopy 𝐢.

Theorem3.2 (Abstract Bogomolov–Tian–Todorov theorem [17, Theorem 3.3]). Let𝐿∙,𝑀∙ be dglas
over a field 𝑘 of characteristic 0, let 𝐢 ∶ 𝐿∙ → 𝑀∙ be a Cartan homotopy, let𝐻∙ ⊆ 𝑀∙ be a sub-dgla,
and assume that

(i) 𝐥𝑎 ∈ 𝐻∙ for every 𝑎 ∈ 𝐿∙;
(ii) 𝐻∙ → 𝑀∙ is injective in cohomology, that is,𝐻∙(𝐻∙) → 𝐻∙(𝑀∙) is injective;
(iii) the morphism 𝐢 ∶ 𝐿∙ → 𝑀∙∕𝐻∙[−1] of complexes is injective in cohomology.

Then 𝐿∙ is homotopy abelian.

Now we move to the logarithmic setting. Recall that the restricted deformation functor
LD𝑋0∕𝑆0 |𝐀𝐫𝐭𝑘 is controlled by the 𝑘-linear dgla 𝐿∙𝑋0∕𝑆0 ⊗𝑘[[𝑄]] 𝑘. We prove:
Theorem 3.3. In the setting of Theorem 1.1, if 𝜔𝑋0∕𝑆0 is the trivial line bundle, then the 𝑘-linear dgla
𝐿∙
𝑋0∕𝑆0

⊗𝑘[[𝑄]] 𝑘 is homotopy abelian. In particular, the restricted functor LD𝑋0∕𝑆0 |𝐀𝐫𝐭𝑘 is smooth.
In the remainder of this section, we explain the proof of Theorem 3.3.
The construction of the 𝑘[[𝑄]]-pdgla 𝐿∙

𝑋0∕𝑆0
in [7] relies on the Thom–Whitney resolution; we

briefly recall its basic properties. For a more complete treatment, cf. [7, 18 27]. Given a sheaf 
of 𝑘-vector spaces on 𝑋0 and an affine Zariski open cover  = {𝑈𝑖} of 𝑋0, we obtain the semi-
cosimplicial Čech resolution ( ), which is a semicosimplicial sheaf on 𝑋0. Similarly, when ∙

is a complex of sheaves, we obtain a semicosimplicial complex of sheaves ∙( ). Now the Thom–
Whitney resolution TW∙,∙(∙( )) is a double complex — in the sense that 𝑑1𝑑2 + 𝑑2𝑑1 = 0 —
such that 𝑝 → TW𝑝,∙(∙( )) is a resolution of the sheaf 𝑝. If 𝑝 is quasi-coherent, then the
resolution is acyclic so that it computes the cohomology𝐻𝑞(𝑋0,𝑝). The Thom–Whitney resolu-
tion is more subtle than the usual Čech complex ̌∙( ;∙), which can be obtained by just taking
alternating sums of boundary maps in ∙( ); this additional complexity allows to extend alge-
braic structures (like a Lie bracket or a product) from ∙ to the actual complex TW∙,∙(∙( )), not
only to its cohomology 𝐻∙(𝑋0,∙)— cf. the construction of the cup product in cohomology. In
the notation TW𝑝,𝑞(−) of [7], there is a switch of indices relative to the standard notation — that
is, TW𝑝,𝑞(−) ∶= 𝐶

𝑞,𝑝
TW
(−). This does not affect the formation of the total complex TotTW(−). The

Thom–Whitney resolution does not naively commute with the shift functor; instead, we have an
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isomorphism

𝑠 ∶ TotTW(
∙( ))[𝑚]

≅
�→ TotTW(

∙[𝑚]( )),

which is given on TW𝑝,𝑞(−) by multiplication with (−1)𝑞𝑚. Finally, note that our construction of
the Thom–Whitney resolution follows the standard but differs from [18] by the order of the tensor
factors; this makes a difference in some signs.
In [7], the Thom–Whitney resolution PV𝑋0∕𝑆0 ∶= TW

∙,∙(𝐺∙
𝑋0∕𝑆0

( )) of the Gerstenhaber alge-
bra 𝐺∙

𝑋0∕𝑆0
of polyvector fields is considered; it gives rise to a Thom–Whitney resolution 𝐺−1

𝑋0∕𝑆0
→

PV−1,∙
𝑋0∕𝑆0

of log derivations. It is clear from the construction in [7] that

𝐿∙
𝑋0∕𝑆0

⊗𝑘[[𝑄]] 𝑘 ≅ Γ(𝑋0, PV
−1,∙

𝑋0∕𝑆0
) = Γ(𝑋0, TotTW(Θ

1
𝑋0∕𝑆0

( ))),

where Θ1
𝑋0∕𝑆0

is considered as a complex concentrated in degree 0.

Proof of Theorem 3.3. In preparation for applying Theorem 3.2 in our situation, we apply
the semicosimplicial Čech resolution to the de Rham complex Ω∙

𝑋0∕𝑆0
; this yields the semi-

cosimplicial Čech complex Ω∙
𝑋0∕𝑆0

( ). We denote the singly graded total complex of the
Thom–Whitney resolution by TΩ∙ ∶= Γ(𝑋0, TotTW(Ω∙𝑋0∕𝑆0( ))). Similarly, we write TΩ𝑖 ∶=
Γ(𝑋0, TotTW(Ω

𝑖
𝑋0∕𝑆0

[−𝑖]( ))) for the resolutions of the individual sheaves of differential forms.
Then we have injective graded maps TΩ𝑖 → TΩ∙ because the Thom–Whitney construction is
exact. Namely, TotTW(−( )) transforms exact sequences of sheaves into exact sequences of
sheaves by the construction in [7, 5.3] and the exactness result in [27, 2.4]; then Γ(𝑋0, −) is only
left exact, but TotTW(( )) is acyclic at least whenever  is quasi-coherent by [7, 5.6]. How-
ever, only for 𝑖 = 𝑑, the graded linear map TΩ𝑑 → TΩ∙ is a homomorphism of complexes since
only Ω𝑑

𝑋0∕𝑆0
[−𝑑] → Ω∙

𝑋0∕𝑆0
is compatible with the differential. Here, 𝑑 is the relative dimension

of 𝑓0 ∶ 𝑋0 → 𝑆0. Moreover, the composed map TΩ𝑑−1 → TΩ∙∕TΩ𝑑 is a homomorphism of com-
plexes since TΩ∙∕TΩ𝑑 is the resolution of Ω∙

𝑋0∕𝑆0
∕Ω𝑑

𝑋0∕𝑆0
[−𝑑] and Ω𝑑−1

𝑋0∕𝑆0
→ Ω∙

𝑋0∕𝑆0
∕Ω𝑑

𝑋0∕𝑆0
[−𝑑]

is a homomorphism of complexes. The two homomorphisms of complexes are injective in coho-
mology by the argument in [18, Theorem 6.4] and the fact that the Hodge–de Rham spectral
sequence𝐻𝑞(𝑋0,Ω

𝑝

𝑋0∕𝑆0
) ⇒ ℍ𝑝+𝑞(𝑋0,Ω

∙
𝑋0∕𝑆0

) degenerates at 𝐸1— this is proven in [19] as well as
a special case of [8, Theorem 1.9].
We now set 𝐿∙ ∶= 𝐿∙

𝑋0∕𝑆0
⊗𝑘[[𝑄]] 𝑘 and𝑀∙ ∶= Hom𝑘(TΩ

∙, TΩ∙); the latter space is a dgla by the
construction in [17, Example 2.2]. Using the Künneth formula, we compute its cohomology via
the natural isomorphism

𝐻∙(𝑀∙)
≅
�→ Hom∙

𝑘
(𝐻∙(TΩ∙),𝐻∙(TΩ∙)).

A contraction ⨼ ∶ 𝐿∙ × TΩ∙ → TΩ∙ is (by definition) a bilinear map of degree −1 such that the
inducedmap𝐿∙ → 𝑀∙ = Hom𝑘(TΩ

∙, TΩ∙) is aCartanhomotopy.We construct such a contraction
—and thus a Cartan homotopy— from a semicosimplicial contraction, that is, a system of contrac-
tions⨼𝑛 ∶ Θ1𝑋0∕𝑆0( )𝑛 × Ω

∙
𝑋0∕𝑆0

( )𝑛 → Ω∙
𝑋0∕𝑆0

( )𝑛 which is compatible with the cofacemaps of
the semicosimplicial complex — cf. [17]. Concretely, this contraction is given by contracting log



THE LOGARITHMIC BOGOMOLOV–TIAN–TODOROV THEOREM 1063

derivations with differential forms — that is, by the unique map ⨼ ∶ Θ1
𝑋0∕𝑆0

× Ω
𝑝

𝑋0∕𝑆0
→ Ω

𝑝−1

𝑋0∕𝑆0

which satisfies 𝜃 ⨼ 𝜔 = ⟨𝜔, 𝜃⟩ for 𝜔 ∈ Ω1
𝑋∕𝑆

and

𝜃 ⨼ (𝜔 ∧ 𝜂) = (𝜃 ⨼ 𝜔) ∧ 𝜂 + (−1)|𝜔|𝜔 ∧ (𝜃 ⨼ 𝜂).
We set

𝐻∙ ∶= {𝑚 ∈ 𝑀∙ |𝑚(TΩ𝑑) ⊂ TΩ𝑑} ⊂ 𝑀∙;

it is a sub-dgla whose embedding is injective in cohomology by [17, Example 2.17] because TΩ𝑑 ⊂
TΩ∙ is a sub-dg-vector space whose embedding is injective in cohomology.
We show the condition 𝐥𝜃 ∈ 𝐻 by explicit computation. We have decompositions

𝐿∙ =
⨁
𝜆

Γ(𝑋0, TW
0,𝜆(Θ1

𝑋0∕𝑆0
( ))) and TΩ𝑑 =

⨁
𝜇

Γ(𝑋0, TW
𝑑,𝜇−𝑑(Ω∙

𝑋0∕𝑆0
( ))),

so let 𝜃 = (𝑡𝑛 ⊗ 𝜃𝑛)𝑛 ∈ 𝐿∙ be of bidegree (0, 𝜆) and 𝜔 = (𝑎𝑛 ⊗ 𝜔𝑛)𝑛 ∈ TΩ𝑑 be of bidegree (𝑑, 𝜇 −
𝑑). Then

𝐥𝜃(𝜔) = 𝑑𝐢𝜃(𝜔) + (−1)
𝜆𝐢𝜃(𝑑𝜔) + 𝐢𝑑𝜃(𝜔)

= ((𝑡𝑛 ∧ 𝑎𝑛) ⊗ 𝑑(𝜃𝑛 ⨼ 𝜔𝑛))𝑛 ∈ Γ(𝑋0, TW
𝑑,𝜇−𝑑+𝜆(Ω∙

𝑋0∕𝑆0
( ))).

To prove the final condition, let 𝜂 ∈ Ω𝑑
𝑋0∕𝑆0

be a volume form. In the diagram

themap 𝛼 induced by contraction is a homomorphism of complexes: In a computation analogous
to that of 𝐥𝜃(𝜔), the differentials 𝑑(𝜃𝑛 ⨼ 𝜔𝑛) vanish, forΩ𝑑−1𝑋0∕𝑆0

[−𝑑 + 1] is concentrated in a single
degree. The evaluation evΩ maps a morphism 𝜙 ∶ TΩ𝑑 → TΩ𝑑−1 to the image (−1)𝑑|𝜙|𝜙(1 ⊗ Ω)
where 1 ⊗ Ω ∈ TΩ𝑑 is the element induced by Ω in degree 𝑑 and |𝜙| is the degree of the original
map (without shift in the Hom complex). It is a homomorphism of complexes because 𝑑Ω = 0.
The map 𝑠 is the above mentioned comparison map for the two shifted versions of the Thom–
Whitney resolution. When we evaluate the contraction atΩ, this gives an isomorphism Θ1

𝑋0∕𝑆0
≅

Ω𝑑−1
𝑋0∕𝑆0

, and 𝛾 is the induced map of Thom–Whitney complexes. The diagram is commutative, so
𝛼 is injective in cohomology (as 𝛾 is an isomorphism). The homomorphism 𝛼 fits into a diagram
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because TΩ𝑑−1 → TΩ∙∕TΩ𝑑 is injective in cohomology, 𝜂 is injective in cohomology by the Kün-
neth theorem. Thus, 𝐿∙ → 𝑀∙∕𝐻∙[−1] is injective in cohomology. �
Remark 3.4. Theorem 3.3 remains true if we relax the Calabi–Yau condition in the sense that we
only require that 𝜔⊗𝑁

𝑋0∕𝑆0
is trivial for some 𝑁 > 0. In this case, the 𝑁-cyclic covering

𝜋 ∶ 𝑌0 ∶= 𝑋0[𝑁
√
𝜔𝑋0∕𝑆0] → 𝑋0

is a finite étale covering; we endow 𝑌0 with the induced log structure from 𝑋0, thus we turn
𝑌0 → 𝑆0 into a proper and saturated log smooth morphism with 𝜔𝑌0∕𝑆0 ≅ 𝑌0

. The canonical
map Θ1

𝑋0∕𝑆0
→ 𝜋∗Θ

1
𝑌0∕𝑆0

induces a homomorphism

𝐿∙
𝑋0∕𝑆0

⊗𝑘[[𝑄]] 𝑘 → 𝐿∙
𝑌0∕𝑆0

⊗𝑘[[𝑄]] 𝑘

of dglas, which is injective in cohomology (because𝐻∙(𝑋0, Θ1𝑋0∕𝑆0) → 𝐻∙(𝑌0, Θ
1
𝑌0∕𝑆0

) is injective).
Thus, 𝐿∙

𝑋0∕𝑆0
⊗𝑘[[𝑄]] 𝑘 is homotopy abelian by [17, 2.11].

We do not know if Theorem 1.1 remains true in this situation because it is unclear if Theorem 3.7
below holds. The latter relies on the existence of a volume form, which is used to transport the
de Rham differential to the polyvector fields and thus construct the Batalin–Vilkovisky operator;
such a volume form is not given in the situation where the log canonical bundle is only a torsion
line bundle but not trivial.

Remark 3.5. In case 𝑄 ≠ 0, the smoothness of LD𝑋0∕𝑆0 |𝐀𝐫𝐭𝑘 follows from Theorem 3.7 below as
well. This second proof does not generalize to the torsion case discussed in the Remark above.

Remark 3.6. Theorem 3.3 holds as well for log toroidal families 𝑓0 ∶ 𝑋0 → 𝑆0 in the sense of [8];
we do not need to construct a version of 𝐿∙

𝑋0∕𝑆0
in this case — the correct dgla is obtained by

the Thom–Whitney resolution of the reflexive sheafΘ1
𝑋0∕𝑆0

. This dgla then controls the functor of
locally trivial log deformations—anotionwhichmakes sense on the subcategory𝐀𝐫𝐭𝑘 ⊆ 𝐀𝐫𝐭𝑘[[𝑄]]
but not on the full category 𝐀𝐫𝐭𝑘[[𝑄]]. Theorem 3.3 holds because the Hodge–de Rham spectral
sequence of the reflexive de Rham complex𝑊∙

𝑋0∕𝑆0
degenerates at 𝐸1. As in the log smooth case,

it suffices to assume that𝜔𝑋0∕𝑆0 is a torsion line bundle; in fact, the cyclic covering𝑋0[𝑁
√
𝜔𝑋0∕𝑆0] →

𝑆0 of a log toroidal family is a log toroidal family as well.

3.4 Proof of Theorem 1.1

We start by recalling a fundamental result about smoothings of log Calabi–Yau spaces:

Theorem 3.7 (Chan–Leung–Ma [5], Felten–Filip–Ruddat [8], Felten [7]). Let 𝑘, 𝑄, and 𝑋0 → 𝑆0
be as in Theorem 1.1. Denote by𝔪 the maximal ideal of 𝑘[[𝑄]]. If𝜔𝑋0∕𝑆0 is the trivial line bundle, then
the function

LD𝑋0∕𝑆0(𝑘[[𝑄]]∕𝔪
𝓁+1)⟶ LD𝑋0∕𝑆0(𝑘[[𝑄]]∕𝔪

𝓁)

is surjective for every integer 𝓁 ⩾ 1.
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Proof. This follows from an algebraic version of the method in [5], which is also employed
in [8]. Given a Maurer–Cartan solution in 𝐿∙

𝑋0∕𝑆0
⊗𝑘[[𝑄]] (𝑘[[𝑄]]∕𝔪

𝓁), we must find a lifting in
𝐿∙
𝑋0∕𝑆0

⊗𝑘[[𝑄]] (𝑘[[𝑄]]∕𝔪
𝓁+1). Its existence follows from the analogue of [5, Theorem 5.5] once we

algebraize the theory in [5] in the spirit of [7]. The crucial ingredient here is the fact that the
Hodge–de Rham spectral sequence

𝐻𝑞(𝑋0,Ω
𝑝

𝑋0∕𝑆0
) ⇒ ℍ𝑝+𝑞(𝑋0,Ω

∙
𝑋0∕𝑆0

)

degenerates at 𝐸1—see [19] or [8]— and that 𝜔𝑋0∕𝑆0 ≅ 𝑋0
. The algebraization is rather straight-

forward; the first author will elaborate it in a separate paper, where he provides the technical
machinery in more generality. �
Proof of Theorem 1.1. If𝑄 = 0, we use Theorem 3.3. If𝑄 ≠ 0, we combine Theorem 3.7, Lemma 3.1
and Proposition 2.8. �
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