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Group Equivariant Operators (GEOs) are a fundamental tool in the research on neural

networks, since they make available a new kind of geometric knowledge engineering

for deep learning, which can exploit symmetries in artificial intelligence and reduce the

number of parameters required in the learning process. In this paper we introduce a

new method to build non-linear GEOs and non-linear Group Equivariant Non-Expansive

Operators (GENEOs), based on the concepts of symmetric function and permutant.

This method is particularly interesting because of the good theoretical properties of

GENEOs and the ease of use of permutants to build equivariant operators, compared

to the direct use of the equivariance groups we are interested in. In our paper, we

prove that the technique we propose works for any symmetric function, and benefits

from the approximability of continuous symmetric functions by symmetric polynomials.

A possible use in Topological Data Analysis of the GENEOs obtained by this new method

is illustrated.

Keywords: GENEO, permutant, symmetric function, persistence diagram, persistent homology, machine learning

1. INTRODUCTION

In recent years, the theory of equivariant operators has become a topic of great interest to the
scientific community, since these operators allow to make explicit the use of symmetries in deep
learning and artificial intelligence (Mallat, 2012, 2016; Bengio et al., 2013; Zhang et al., 2015;
Anselmi et al., 2016, 2019; Cohen and Welling, 2016; Worrall et al., 2017), thereby reducing
the number of parameters required in the learning process. In particular, group equivariant
non-expansive operators (GENEOs) have been recently proposed as elementary components for
building new kinds of neural networks, benefiting from good mathematical properties, such as
compactness and convexity, under suitable assumptions on the space of data and with respect to
the choice of appropriate topologies (Bergomi et al., 2019). In particular, compactness guarantees
total-boundedness, i.e., for every ε > 0 we can find a finite set F = {F1, . . . , Fs} of GENEOs such
that any other GENEO has a distance less than ε from at least one Fi. This property opens the way
to the search for methods to effectively build such a representative set F , leading us to look for new
techniques to produce GENEOs.
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GENEOs are grounded in Topological Data Analysis (TDA)
and allow to shift the attention from the data to the observers
who process them, and to the properties of invariance and
simplification associated with those observers. The use of these
operators is justified by the fact that in most of the cases we are
not directly interested in data, but in approximating the experts’
behavior in the presence of given data (Frosini, 2016). Since
different agents can have different reactions in the presence of
the same data, it is clear that data analysis has to be based on each
pair (data, observer) rather than on data alone. From the point
of view of AI, the focus on GENEOs corresponds to the rising
interest in the so called “explainable deep learning” (Rudin, 2019;
Carrieri et al., 2021; Hicks et al., 2021), which looks for methods
and techniques that can be understood by humans.

GENEOs transform data according to two properties. First
of all, they are equivariant with respect to the action of a given
transformation group, i.e., they commute with such a group.
Secondly, they do not increase the distance between data. This
kind of regularity is frequently found in applications, since in
several cases the operators we use are required to simplify the
metric structure of data. We can obviously imagine particular
applications where this condition is locally violated, but the
usual long-term goal is to produce representations that are much
simpler and more meaningful than the original data, thereby
leading us to assume that the considered (compositions of any
sufficiently long chain of) operators are non-expansive. This
assumption is not only of use to simplify the information we have
to manage, but it is also fundamental in the proof that the space
of group equivariant non-expansive operators is compact (and
hence finitely approximable), provided that the space of data is
compact with respect to a suitable topology (Bergomi et al., 2019).
This statement becomes false if we renounce non-expansivity.

The use of GENEOs is not limited to machine learning.
Another important reason for the study of these operators follows
from the relationship between GENEOs and TDA. We indeed
know that TDA and Persistent Homology allow for a qualitative
and efficient geometric study of the data space, but suffer from
some important limitations, since Persistent Homology alone
is not able to distinguish between some functions. Fortunately,
the joint use of TDA and GENEOs overcomes this difficulty in
the discrimination of data (Frosini, 2016; Frosini and Jabłoński,
2016; Bergomi et al., 2019). In other words, GENEOs are able
to preserve information on the data that would have been lost
through TDA alone.

Another interesting aspect of GENEOs is that we can also look
at them as operators that change the pseudo-metrics we use in
data comparison. If the real-valued functions ϕ1,ϕ2 represent
the data we have to compare and a GENEO F is given, we can
replace themax-norm distance ‖ϕ1−ϕ2‖∞ with the new pseudo-
metric d′(ϕ1,ϕ2) := ‖F(ϕ1)− F(ϕ2)‖∞. In this approach, F is not
seen as a map that transforms the data we are considering, but
as a new way of comparing data. We will see in section 6 that
the availability of non-linear GENEOs can indeed produce more
flexible pseudo-metrics.

Last but not least, a theory of GENEOs could be a relevant
tool in the investigation of the role of internal conflicts in AI. We
know that the availability of procedures that emulate intelligence

opens the way to the appearance of contradictions, conflicts
and unexpected behaviors (Frosini, 2009). This phenomenon
cannot be ignored in the mathematical study of AI. The use
of a precise geometric formalization of components in machine
learning could be of great help in facing and analyzing this
emerging problem.

However, the main reason for the research about GENEOs
follows from a shift of interest from the spaces of data to the
topological and geometric analysis of the spaces of observers
of the data. This fact naturally leads us to the problem of the
efficient approximation of observers. Such an approximation
requires to make available large and dense sets of GENEOs, each
one representing a possible data-observer interaction. Therefore,
since non-linear interactions between observers and data are
of great importance in applications, new techniques to build
non-linear GENEOs are needed. The main contribution of this
paper consists in introducing a new method to produce non-
linear GENEOs through the concepts of symmetric function
and permutant, thereby extending the procedure illustrated
in Botteghi et al. (2020) for the building of linear GENEOs. In
this way, we strictly expand the set of operators we can use
in applications.

The concept of permutant comes into play when a set 8 of
functions from a space X to R and a group G of permutations
of X are given. The set 8 represents the space of signals we
are interested in, and is assumed to be preserved by right
composition with elements of G. If two signals ϕ1,ϕ2 ∈ 8 are
obtained from each other by right composition with an element
g ∈ G, we say that they are equivalent with respect to G,
just as happens when two images are considered equivalent if
there exists an isometry changing one into the other. In this
setting, a permutant is defined as a finite set H of 8-preserving
permutations of X that is stable under the conjugation action
h 7→ g ◦ h ◦ g−1 of any element of G on H (Camporesi et al.,
2018).

This paper shows that when a symmetric function and a
permutant for the equivariance group G are available, we can
easily build a (non-linear) GENEO with respect to G (section 3).
This fact justifies the theoretical and practical importance of
permutants. Our long-term purpose is the one of developing an
effective theory for the approximation of observers and agents
via GENEOs in a topological-geometrical setting, so extending
the use of these operators in deep learning. While this goal is
challenging, we think that our approach could lead to think of
GENEOs as elementary components in the building of a new
kind of neural networks. This idea is justified by at least two
reasons. First of all, deep learning could benefit from using
components that are guaranteed to be equivariant with respect
to given groups of transformations and are grounded in a
well founded topological theory, thereby allowing neural nets
to save time in the learning process and to take advantage of
techniques developed in TDA. Secondly, an engineering based
on GENEOs would be much more transparent, because of the
intrinsic interpretability of its components.

The reader could wonder why building GENEOs via
permutants should be better than building them by other
methods (for example by integrating on the equivariance group
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G). The key point is that in many applications some permutants
exist, whose size is much smaller than the size of the equivariance
group. In these cases, the approaches based on permutants
can be much simpler than the ones based on G. We observe
that permutants encode part of the information represented by
the data equivalence expressed by G. Of course, by deciding
to build GENEOs via permutants we implicitly accept to lose
some information about such a data equivalence, and make
a compromise between the computational complexity and the
analytical power of the operators we are interested in. The reader
can understand this tradeoff by thinking about the limit case
given by a permutant containing just the identical permutation
id of X. While the singleton {id} is indeed a (trivial) permutant,
it does not give any information about the equivariance group G
we are considering, since {id} is a permutant for any group of8-
preserving permutations of X. However, if we consider a larger
and larger set H of 8-preserving permutations of X, the set of
groups admittingH as a permutant becomes smaller and smaller.
In other words, larger permutants make easier the identification
of G.

This article is part of an extensive research on permutants.
In Botteghi et al. (2020) it has been proved that each linear
G-equivariant non-expansive operator can be produced by
a weighted summation associated with a suitable weighted
permutant, provided that the group G transitively acts on
a finite signal domain. This paper opens the way to the
research about the natural conjecture that each non-linear G-
equivariant non-expansive operator can be produced (or at least
well approximated) by applying our new technique to suitable
symmetric functions and permutants, provided that the group
G transitively acts on a finite signal domain. This probably non-
trivial problem will be attacked in following papers, grounding
on the results obtained in this article.

The outline of the paper is as follows. In section 2, we recall
the main definitions in our mathematical setting. In Section 3, we
show how to associate a group equivariant operator (GEO) with a
symmetric function. Section 4 is devoted to the approximation of
a generic continuous symmetric function by a polynomial in the
elementary symmetric functions, and in section 5, we finally show
how to associate a GENEO with such a polynomial. Section 6
highlights the benefits of our approach.

For more details and proofs about the results and concepts
illustrated in section 2 we refer the interested reader to the
papers (Frosini, 2016; Frosini and Jabłoński, 2016; Frosini and
Quercioli, 2017; Camporesi et al., 2018; Bergomi et al., 2019). The
other sections present our new results about the construction of
non-linear GENEOs via symmetric functions and permutants.

2. MATHEMATICAL SETTING

Let X be a non-empty set and consider a non-empty, compact
subspace 8 of the normed vector space (RX

b
, ‖ · ‖∞), where RX

b
is the set of all bounded real-valued functions with domain X,
and ‖ϕ‖∞ := supx∈X |ϕ(x)|. We can think of the functions in
8 as the data, i.e., the measurements provided by our measuring
instruments (or by any operator), and of X as the space where

the measurements are made. Sometimes the functions in 8 are
also referred as admissible filtering functions or admissible

signals. We now recall the usual setting for the introduction of
group equivariant non-expansive operators. We endow 8 with
the topology induced by the uniform convergence distance

D8(ϕ1,ϕ2) := ‖ϕ1 − ϕ2‖∞ .

At this stage, X is only a set. We endow X with the topology
induced by the pseudo-metric

DX(x1, x2) := sup
ϕ∈8

|ϕ(x1)− ϕ(x2)|.

The idea behind this definition is that two points x1, x2 ∈ X are
considered different only if they are taken to different values by
at least one admissible filtering function.

We recall that a pseudo-metric space is a generalization
of a metric space in which the distance between two distinct
points can be zero. Moreover, a function f from a pseudo-
metric space (P1, d1) to a pseudo-metric space (P2, d2) is called
non-expansive if

d2
(

f (x), f (y)
)

≤ d1
(

x, y
)

for every x, y ∈ P1.

Remark 2.1. Every function ϕ ∈ 8 is non-expansive with respect
to the pseudo-metric DX on X and the Euclidean metric on R.
Therefore, each function ϕ ∈ 8 is continuous with respect to these
topologies.

Since 8 is compact, the topology induced by the pseudo-metric
DX coincides with the initial topology τin on X with respect
to 8 (see Theorem 2.1 in Bergomi et al., 2019, Supplementary
Methods). We recall that the initial topology is the coarsest
topology on X which makes each function in 8 continuous.
Moreover, the compactness of 8 implies that if X is complete
then it is also compact (see Theorem 2.2 in Bergomi et al., 2019,
Supplementary Methods). In this work, we assume that X is
complete, and therefore compact with respect to the topology
induced by DX . The image of X through the filtering functions
is denoted by Im(8) and is defined as

Im(8) =
{

ϕ(x) s.t. ϕ ∈ 8, x ∈ X
}

.

The following result will be of use in section 5.

Proposition 2.2. If X and8 are compact, Im(8) is compact with
respect to the Euclidean topology.

Proof: Let us consider the function γ : 8 × X → R such that
γ (ϕ, x) := ϕ(x). The space 8 × X is compact with respect to
the product topology, which we recall is induced by the sum
pseudo-distance. Since the continuous image of a compact is
compact, γ (8×X) = Im(8), and every non-expansive function
is continuous, it is sufficient to prove that γ is non-expansive.
Given ϕ1,ϕ2 ∈ 8 and x1, x2 ∈ X, we have that

∣

∣γ (ϕ1, x1)− γ (ϕ2, x2)
∣

∣ =
∣

∣ϕ1(x1)− ϕ2(x2)
∣

∣
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=
∣

∣ϕ1(x1)− ϕ1(x2)+ ϕ1(x2)− ϕ2(x2)
∣

∣

≤ sup
ϕ∈8

∣

∣ϕ(x1)− ϕ(x2)
∣

∣

+ sup
x∈X

∣

∣ϕ1(x)− ϕ2(x)
∣

∣

= DX(x1, x2)+ D8(ϕ1,ϕ2).

We have proved that γ is non-expansive, and therefore Im(8)
is compact.

Definition 2.3. Chachólski et al. (2020) A 8-operation is a
function g : X → X such that, for every ϕ ∈ 8, the composition
ϕ ◦ g also belongs to8.

Definition 2.4. A 8-operation g is invertible if there is a 8-
operation h such that g ◦ h = h ◦ g = idX .

We denote the collection of all invertible 8-operations by
Aut8(X). In other words,

Aut8(X) = {g : X → X | g is a bijection, and ϕ ◦ g,

ϕ ◦ g−1 ∈ 8 for every ϕ ∈ 8}.

We note that Aut8(X) is a group with respect to the usual
composition operation.

Definition 2.5. A perception pair is an ordered pair (8,G)where
8 ⊆ R

X
b
and G is a subgroup of Aut8(X).

As an example,
(

8, Aut8(X)
)

is always a perception pair.

Remark 2.6. When a perception pair (8,G) is given, each element
g ∈ G acts on the set 8 by right composition, taking each function
ϕ ∈ 8 to the function ϕ ◦ g.

2.1. Group Equivariant Non-Expansive
Operators
Definition 2.7. Let us consider two perception pairs (8,G),

(9 ,H) and a homomorphism T : G → H. Each map F : 8 → 9

such that F is T-equivariant (i.e., F(ϕ ◦ g) = F(ϕ) ◦ T(g) for every
ϕ ∈ 8, g ∈ G) is called a Group Equivariant Operator (GEO)

with respect to T.

Definition 2.8. Let us consider two perception pairs (8,G),

(9 ,H) and a homomorphism T : G → H. Each map F : 8 → 9

such that F is T-equivariant (i.e., F(ϕ ◦ g) = F(ϕ) ◦ T(g) for
every ϕ ∈ 8, g ∈ G) and non-expansive (i.e.,

∥

∥F(ϕ)− F(ψ)
∥

∥

∞
≤

‖ϕ − ψ‖∞ for every ϕ,ψ ∈ 8) is called a Group Equivariant

Non-Expansive Operator (GENEO) with respect to T.

After fixing two perception pairs (8,G), (9 ,H) and a
homomorphism T : G → H, we will use the symbol Fall

T to
denote the collection of all GENEOs with respect to T between
such perception pairs. We endow F

all
T with the topology induced

by the metric DGENEO(F1, F2) : = supϕ∈8 D8(F1(ϕ), F2(ϕ)).
For a more in-depth study of the GENEO topology, we refer
the reader to Bergomi et al. (2019). We stress that the non-
expansivity of the operators is pivotal for two reasons. The first

reason is that we want our operators to simplify the data metric,
i.e., not to introduce complexity into the data. The second reason
is that non-expansivity allows us to prove the compactness of
the space Fall

T , provided that 8 and 9 are compact with respect
to the distances D8,D9 (see Theorem 7 in Bergomi et al.,
2019). If we remove the assumption that our operators are non-
expansive, this property of compactness does not hold anymore.
As an example, let 8 = 9 be equal to the set of all constant
functions from R to [0, 1], and G = H be the trivial group
containing just the identity permutation of R. We observe that
8, X = R and G are compact with respect to the topologies we
have defined on them. Let us now consider the sequence (Fn) of
GEOs from 8 to 8 with respect to the identity homomorphism
idG : G → G, defined by setting Fn(ϕ) : = ϕn for every
function ϕ ∈ 8 and every positive integer n. It is easy to check
that limn→∞ DGENEO(Fm, Fn) = 1 for every positive integer m,
and hence the sequence (Fn) does not admit any converging
subsequence. This implies that the space of all GEOs from8 to8
with respect to idG is not compact. The compactness of Fall

T is a
key property in applications, since it guarantees that such a space
can be approximated by a finite set.

If G = H and T = idG, we can say that F :8 → R
X
b
is a G-

equivariant map. From now on, we will make these assumptions,
and use the termsGEO andGENEOwith reference to this setting.

2.2. Permutants
Definition 2.9. Let SX be the set of permutations of X. For each
g ∈ G, the map cg : SX → SX taking each s ∈ SX to g ◦ s ◦ g−1 is
called the conjugation action of g ∈ G on SX . For every subset H
of SX , we denote the set cg(H) by the symbol gHg−1.

Definition 2.10. Camporesi et al. (2018) A finite set H ⊆

Aut8(X) is called a permutant for G if either H = ∅ or gHg−1 =

H for every g ∈ G.

Remark 2.11. In general, a permutant is not a normal subgroup
of G. Indeed we require neither that H is a group nor that H is
a subset of G. We observe that the sets ∅ and {idX} are trivial
permutants for any subgroup G of Aut8(X). Both G and Aut8(X)
are also permutants for G, provided that they are finite groups.

Example 2.12. Let 8 be the set of all functions ϕ :X = S1 =

{(x, y) ∈ R
2|x2 + y2 = 1} → [0, 1] that are non-expansive with

respect to the Euclidean distances on S1 and [0, 1]. Let us consider
the group G of all isometries of R. If h is the clockwise rotation of ℓ
radians for a fixed ℓ ∈ R, then the set H = {h, h−1} is a permutant
for G.

Example 2.13. Let 8 be the set of all functions ϕ :X = S1 =

{(x, y) ∈ R
2|x2 + y2 = 1} → [0, 1] that are non-expansive with

respect to the Euclidean distances on S1 and [0, 1]. Let G be the
group generated by the reflection with respect to the axis x = 0. If
ρ is the clockwise rotation of π/2 around the origin (0, 0), then the
set H = {idS1 , ρ, ρ

2, ρ3} is a permutant for G.

Example 2.14. Let us consider the set X of the vertices of a cube in
R
3, and assume that 8 is the set of all functions from X to [0, 1].

Let G be the group of the orientation-preserving isometries of R3
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that take X to X. Let π1,π2,π3 be the three planes that contain
the center of mass of X and are parallel to a face of the cube. Let
hi : X → X be the orthogonal symmetry with respect to πi, for
i ∈ {1, 2, 3}. We have that the set H = {h1, h2, h3} is an orbit
under the conjugation action of G on Aut8(X), and therefore a
permutant for G.

Remark 2.15. If the group G is Abelian, every finite subset of G is
a permutant for G, since the conjugation action of G on Aut8(X)
is just the identity.

Remark 2.16. In this section, the symbol ‖ · ‖∞ has been used to
denote the max-norm of functions. With a slight abuse of notation,
in the rest of the paper such a symbol will be also used to denote the
max-norm of points of Rm, i.e., ‖(α1, . . . ,αm)‖∞ : = max

1≤i≤m
|αi|.

3. BUILDING GEOS FROM SYMMETRIC
FUNCTIONS

Definition 3.1. Let C be a symmetric subset of Rn, i.e., a subset C
such that π(C) = C for every permutation π of the coordinates. A
function f : C → R is said to be symmetric on C if its value is the
same no matter the order of its arguments. That is,

f (a1, . . . , an) = f (aπ(1), . . . , aπ(n))

for every (a1, . . . , an) ∈ C and every permutation π of the set
{1, . . . , n}.

Proposition 3.2. Let f be a continuous real-valued symmetric
function defined on a compact symmetric subset K of Rn. Then

f is the restriction of a continuous real-valued symmetric function
f̄ defined on R

n.

Proof: The Tietze Extension Theorem (Dugundji, 1966) implies

that f can be extended to a continuous function f̂ : Rn → R. If Sn
is the symmetric group over the set {1, . . . , n}, we can easily check

that the function f̄ (a1, . . . , an) : = 1
n!

∑

π∈Sn
f̂ (aπ(1), . . . , aπ(n))

has the wanted property.

Proposition 3.2 guarantees that the concept of continuous real-
valued symmetric function defined on a compact symmetric
subset K of Rn coincides with the concept of restriction to K of a
continuous real-valued symmetric function defined on R

n.
Let S : R

n → R be a symmetric function. If H = {hi}
n
i=1 is a

non-empty permutant for G ⊆ Aut8(X), then we can define an
operator SH : 8→ R

X
b
by setting, for any ϕ ∈ 8,

SH(ϕ) : = S(ϕ ◦ h1, . . . ,ϕ ◦ hn),

where S(ϕ ◦ h1, . . . ,ϕ ◦ hn)(x) : = S((ϕ ◦ h1)(x), . . . , (ϕ ◦ hn)(x))
for every x ∈ X.

Proposition 3.3. If S : R
n → R is a symmetric function and

G ⊆ Aut8(X), then SH is a GEO from8 to RX
b
with respect to the

identity homomorphism idG :G → G.

Proof: For every g ∈ G, it holds that

SH(ϕ ◦ g) = S
(

ϕ ◦ g ◦ h1, . . . ,ϕ ◦ g ◦ hn
)

= S

(

(ϕ ◦ hπg (1)) ◦ g, . . . , (ϕ ◦ hπg (n)) ◦ g
)

= S
(

(ϕ ◦ h1) ◦ g, . . . , (ϕ ◦ hn) ◦ g
)

= S
(

ϕ ◦ h1, . . . ,ϕ ◦ hn
)

◦ g

= SH (ϕ) ◦ g,

where πg is the permutation such that g ◦ hi ◦ g
−1 = hπg (i), that

is g ◦hi = hπg (i) ◦ g. Therefore, SH(ϕ ◦ g) = SH(ϕ)◦ g, and hence
SH is a GEO.

Corollary 3.4. If S : R
n → R is a symmetric function and its

restriction to Im(8)n is non-expansive, then SH is a GENEO from
8 to RX

b
with respect to idG.

Proof: It is sufficient to prove the non-expansivity of SH with
respect to the max-norms on 8 and R

X
b
, since the group

equivariance is already granted by Proposition 3.3. If ϕ,ψ ∈ 8,
then for every x ∈ X

∣

∣(SH (ϕ)) (x)− (SH (ψ)) (x)
∣

∣

=
∣

∣S
(

ϕ ◦ h1, . . . ,ϕ ◦ hn
)

(x)− S
(

ψ ◦ h1, . . . ,ψ ◦ hn
)

(x)
∣

∣

≤
∥

∥

(

(ϕ ◦ h1)(x)− (ψ ◦ h1)(x), . . . , (ϕ ◦ hn)(x)− (ψ ◦ hn)(x)
)
∥

∥

∞

= max
1≤i≤n

∣

∣(ϕ ◦ hi)(x)− (ψ ◦ hi)(x)
∣

∣

≤ max
1≤i≤n

∥

∥ϕ ◦ hi − ψ ◦ hi
∥

∥

∞

= ‖ϕ − ψ‖∞ .

In conclusion,
∥

∥SH(ϕ)− SH(ψ)
∥

∥

∞
≤ ‖ϕ − ψ‖∞ and SH is

a GENEO.

So far we have shown how to construct GEOs associated with
a symmetric function. These operators are actually GENEOs if
the function they are associated with is non-expansive. In the
next sections, we will show how to adapt this concept to build
GENEOs even in the presence of symmetric functions that are
not non-expansive.

We stress that our approach requires no integration over the
(possibly infinite and large) group G, but just the availability
of a permutant and the computation of a symmetric function.
This approach generalizes the method introduced in Camporesi
et al. (2018), concerning the symmetric function S(a1, . . . , an) =
1
n

∑n
i=1 ai.

4. APPROXIMATING SYMMETRIC
FUNCTIONS WITH SYMMETRIC
POLYNOMIALS

Let us now explore the concept of approximation of symmetric
functions by symmetric polynomials. For more details, we refer
the reader to Davidson and Donsig (2009), Blum-Smith and
Coskey (2017). In the sequel, we will denote the symmetric
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group over the set {1, . . . , n} as Sn. Let K be a compact metric
space, and C(K) be the vector space of continuous real-valued
functions on K. With a slight abuse of notation, in the following
we will confuse each polynomial with the function it represents,
restricted to the domain we are considering. Furthermore, if
I is a finite subset of N

n, we will say that a polynomial
∑

(k1 ,...,kn)∈I
ck1,...,kny

k1
1 · . . . · y

kn
n is symmetric if π(I) = I, and

ck1 ,...,kn = cπ(k1),...,π(kn) for every multi-index (k1, . . . , kn) ∈ I and
every permutation π ∈ Sn.

Definition 4.1. Davidson and Donsig (2009) A subset A of C(K)
is an algebra if it is a vector subspace of C(K) that is closed under
multiplication (i.e., if f , g ∈ A then f · g ∈ A). A set S of functions
on K separates points if for each pair of points s, t ∈ K there is
a function f ∈ S such that f (s) 6= f (t). A set S of functions on K
vanishes at s ∈ K if f (s) = 0 for all f ∈ S.

Theorem 4.2 (Stone - Weierstrass Theorem). Davidson and
Donsig (2009) An algebra A of continuous real-valued functions
on a compact metric space K that separates points and does not
vanish at any point is dense in C(K) with respect to the max-norm
referred to the domain K.

Corollary 4.3. Davidson and Donsig (2009) Let K be a compact
subset of Rn. The algebra of all polynomials p(y1, . . . , yn) in n
variables is dense in C(K) with respect to the max-norm referred
to the domain K.

This theorem allows us to approximate a continuous symmetric
function S : K → R by a polynomial with arbitrary accuracy,
provided that K is a compact subset of Rn. However, this is not
exactly what we need, as we would like such a polynomial to
be symmetric. This can be obtained by a symmetrization of the
previously found polynomial, as shown by the next proposition,
which proves that any symmetric continuous function on a
compact and symmetric domain can be approximated with
arbitrary precision by a symmetric polynomial.

Proposition 4.4. Let K be a compact subset of Rn, verifying the
property π(K) = K for every π ∈ Sn. If S|K : K → R is the
restriction to K of a continuous symmetric function S : R

n → R

and ‖ · ‖∞ is the max-norm referred to the domain K, then for
every ε > 0 there exists a symmetric polynomial q in n variables
such that

∥

∥S|K − q|K
∥

∥

∞
≤ ε.

Proof: From Corollary 4.3 it follows that there exists a
polynomial p : Rn → R such that

∥

∥S|K − p|K
∥

∥

∞
≤ ε. Let

us now define the symmetric polynomial q(a1, . . . , an) : =
1
n!

∑

π∈Sn
p(aπ(1), . . . , aπ(n)). If a = (a1, . . . , an) ∈ K, we define

aπ = (aπ(1), . . . , aπ(n)) for every permutation π ∈ Sn. Then

∥

∥S|K − q|K
∥

∥

∞
= max

a∈K

∣

∣S(a)− q(a)
∣

∣

= max
a∈K

∣

∣

∣

∣

∣

∣

S(a)−
1

n!

∑

π∈Sn

p(aπ )

∣

∣

∣

∣

∣

∣

= max
a∈K

∣

∣

∣

∣

∣

∣

1

n!

∑

π∈Sn

S(a)−
1

n!

∑

π∈Sn

p(aπ )

∣

∣

∣

∣

∣

∣

≤
1

n!
max
a∈K

∑

π∈Sn

∣

∣S(a)− p(aπ )
∣

∣

=
1

n!
max
a∈K

∑

π∈Sn

∣

∣S(aπ )− p(aπ )
∣

∣

=
1

n!

∑

π∈Sn

max
a∈K

∣

∣S(aπ )− p(aπ )
∣

∣

=
1

n!

∑

π∈Sn

max
a∈K

∣

∣S(a)− p(a)
∣

∣

=
1

n!

∑

π∈Sn

∥

∥S|K − p|K
∥

∥

∞

≤
1

n!

∑

π∈Sn

ε = ε.

Definition 4.5. The elementary symmetric polynomials in the n
variables a1, . . . , an, also called elementary symmetric functions,
are defined as:

σ1 : = a1 + . . .+ an

σ2 : = a1 · a2 + a1 · a3 + . . .+ an−1 · an =
∑

1≤i<j≤n

ai · aj

...

σr : =
∑

1≤i1<i2<···<ir≤n

ai1 · ai2 · . . . · air =
∑

1≤i1<i2<···<ir≤n

ir
∏

j=i1

aj

...

σn : = a1 · a2 · . . . · an.

We now recall an important result in the theory of
symmetric polynomials:

Theorem 4.6. (Fundamental Theorem on Symmetric

Polynomials). Blum-Smith and Coskey (2017) Any symmetric
polynomial in n variables a1, . . . , an is representable in a unique
way as a polynomial in the elementary symmetric polynomials
σ1, . . . , σn.

Remark 4.7. It is a well know fact (see Rao, 2005; Davidson and
Donsig, 2009; Blum-Smith and Coskey, 2017) that the proofs of
Theorems 4.2 and 4.6 are constructive. This means that, if K is
a compact symmetric subset of Rn, and the restriction S|K of a
continuous symmetric function S :R

n → R is given, we are
able to effectively approximate S|K with an error less than ε by
the restriction to K of an explicitly defined polynomial in the
elementary symmetric functions.

In conclusion, if an equivariance group G is chosen and a
GEO F is built by applying Proposition 3.3 to the continuous
symmetric function S : R

n → R, we can approximate F in
the following way, provided that X and 8 are compact. First
of all, we can approximate the continuous function S by a
polynomial p : Rn → R, with an arbitrarily small error ε on
the symmetric set Im(8)n, which is guaranteed to be compact
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by Proposition 2.2. Then, we can consider the symmetric
polynomial q(a1, . . . , an) : = 1

n!

∑

π∈Sn
p(aπ(1), . . . , aπ(n)).

Finally, we can consider the GEO F′ defined by setting F′(ϕ) : =
q(ϕ ◦ h1, . . . ,ϕ ◦ hn) for every ϕ ∈ 8. Since H ⊆ Aut8(X),
‖F(ϕ) − F′(ϕ)‖∞ = maxx∈X |S(ϕ(h1(x)), . . . ,ϕ(hn(x))) −

q(ϕ(h1(x)), . . . ,ϕ(hn(x)))| ≤ ‖S|Im(8)n − q|Im(8)n‖∞ ≤ ε for any
ϕ ∈ 8, and hence the operator F′ can be chosen arbitrarily close
to F.

5. BUILDING GENEOS FROM
POLYNOMIALS IN THE ELEMENTARY
SYMMETRIC FUNCTIONS

Proposition 2.2 shows that Im(8) is compact. Moreover, the
equality π

(

Im(8)n
)

= Im(8)n trivially holds for every π ∈ Sn.
Therefore, Proposition 4.4 and the Fundamental Theorem on
Symmetric Polynomials guarantee that the restriction to Im(8)n

of any continuous symmetric functions can be approximated
arbitrarily well by the restriction to Im(8)n of a polynomial in
the elementary symmetric functions, defined as

S̃(a1, . . . , an) =

m1
∑

k1=0

· · ·

mn
∑

kn=0

ck1 ,...,kn

n
∏

i=1

σ
ki
i (a1, . . . , an) ,

where mi ∈ N for every i ∈ {1, . . . , n}, ck1,...,kn ∈ R for
every k1 ∈ {0, . . . ,m1}, . . . , kn ∈ {0, . . . ,mn} and σi is the i-th
elementary symmetric polynomial for every i ∈ {1, . . . , n}. From
Proposition 3.3, we already know that the associated operator is a
GEO. We can indeed obtain a GENEO by applying Corollary 3.4
to a suitable multiple of S̃ . In the sequel, we will need the
following constants:

MIm(8)n : = max
α∈Im(8)n

‖α‖∞ = max
ϕ∈8

‖ϕ‖∞ (5.1)

M1 : = max
1≤i≤n

{

ki

(

n

i

)ki

iM
iki−1
Im(8)n

}

(5.2)

M2 : = max
1≤i≤n

{

(

n

i

)ki

M
iki
Im(8)n

}n−1

(5.3)

C = n

m1
∑

k1=0

· · ·

mn
∑

kn=0

∣

∣ck1 ,...,kn
∣

∣M1M2, (5.4)

Let us consider a non-empty permutant H = {hi}
n
i=1 for G ⊆

Aut8(X). We can define an operator ŜH : 8→ R
X
b
by setting

ŜH(ϕ) : =
1

C
S̃

(

ϕ ◦ h1, . . . ,ϕ ◦ hn
)

for any ϕ ∈ 8, where S̃
(

ϕ ◦ h1, . . . ,ϕ ◦ hn
)

(x) : =

S̃
(

(ϕ ◦ h1)(x), . . . , (ϕ ◦ hn)(x)
)

for every x ∈ X and C is the
constant defined in (5.4).

Theorem 5.1. If S̃ is a polynomial in the n elementary symmetric
functions, then ŜH is a GENEO from8 to RX

b
with respect to idG.

Proof: The thesis immediately follows from Corollary 3.4, once it
is proved that the restriction of 1

C S̃ to Im(8)n is non-expansive.
For every α = (α1, . . . ,αn) ,β = (β1, . . . ,βn) ∈ Im(8)n, by
applying Lemma 1.5 in Appendix 1, we have that

∣

∣

∣

∣

1

C
S̃(α)−

1

C
S̃(β)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1

C

m1
∑

k1=0

· · ·

mn
∑

kn=0

ck1 ,...,kn

n
∏

i=1

σ
ki
i (α)

−
1

C

m1
∑

k1=0

· · ·

mn
∑

kn=0

ck1 ,...,kn

n
∏

i=1

σ
ki
i (β)

∣

∣

∣

∣

∣

∣

≤
1

C

m1
∑

k1=0

· · ·

mn
∑

kn=0

∣

∣ck1,...,kn
∣

∣

∣

∣

∣

∣

∣

n
∏

i=1

σ
ki
i (α)−

n
∏

i=1

σ
ki
i (β)

∣

∣

∣

∣

∣

≤
1

C

m1
∑

k1=0

· · ·

mn
∑

kn=0

∣

∣ck1,...,kn
∣

∣ n ‖α − β‖∞M1M2

=





1

C
n

m1
∑

k1=0

· · ·

mn
∑

kn=0

∣

∣ck1,...,kn
∣

∣M1M2



 ‖α − β‖∞

= ‖α − β‖∞ .

We have shown that 1
C S̃ is non-expansive and therefore the

associated operator ŜH is a GENEO.

Example 5.2. Let us consider the setting of Example 2.12 and
the polynomial S̃(a1, a2) = −σ1(a1, a2) + σ 2

2 (a1, a2) −

3σ1(a1, a2)σ2(a1, a2) = −a1 − a2 + a21a
2
2 − 3a21a2 − 3a1a

2
2. Then

the operator

ŜH(ϕ) =
1

40
(−(ϕ ◦ h)− (ϕ ◦ h−1)+ (ϕ2 ◦ h) · (ϕ2 ◦ h−1)

− 3(ϕ2 ◦ h) · (ϕ ◦ h−1)− 3(ϕ ◦ h) · (ϕ2 ◦ h−1))

is a GENEO.

Example 5.3. Let us consider the setting of Example 2.13
and the polynomial S̃(a1, a2, a3, a4) = σ1(a1, a2, a3, a4) +

σ4(a1, a2, a3, a4) = a1 + a2 + a3 + a4 + a1a2a3a4. In this case,
the operator

ŜH(ϕ) =
1

1040

(

ϕ + (ϕ ◦ ρ)+ (ϕ ◦ ρ2)+ (ϕ ◦ ρ3)

+ ϕ · (ϕ ◦ ρ) · (ϕ ◦ ρ2) · (ϕ ◦ ρ3)
)

is a GENEO.

Example 5.4. Let us consider the setting of Example 2.14 and
the polynomial S̃(a1, a2, a3) = σ2(a1, a2, a3) · σ3(a1, a2, a3) =

a21a
2
2a3 + a21a2a

2
3 + a1a

2
2a

2
3. Then the operator

ŜH(ϕ) =
1

162

(

(ϕ2 ◦ h1) · (ϕ
2 ◦ h2) · (ϕ ◦ h3)

Frontiers in Artificial Intelligence | www.frontiersin.org 7 February 2022 | Volume 5 | Article 786091

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Conti et al. On the Construction of GENEOs

+ (ϕ2 ◦ h1) · (ϕ ◦ h2) · (ϕ
2 ◦ h3)

+ (ϕ ◦ h1) · (ϕ
2 ◦ h2) · (ϕ

2 ◦ h3)
)

is a GENEO.

Remark 5.5. It is worth noticing that if we replace the constant
C, defined as in (5.4), with any constant C̄ ≥ C, the operator ŜH
defined as in Theorem 5.1 is still a GENEO. However, it should
be specified that the larger the constant C̄ is, the more difficult
it becomes to distinguish different signals, since their distance is
smaller. For this reason, a larger C̄ means that more information
is lost when applying the GENEO. Nonetheless, in some cases
rough constants which are easier to compute may be preferred.
For this reason, we present here a possible alternative to C. Let
c = max |ck1 ,...,kn |,m = maxjmj,µ =

∏n
j=1(mj + 1) and

M̄Im(8)n = max
{

MIm(8)n , 1
}

, where MIm(8)n is defined as in
(5.1). We define the constant

C̄ = cµn2m

(

n

⌈ n2 ⌉

)mn

M̄mn2−1
Im(8)n

. (5.5)

We can easily show that C̄ ≥ C. Therefore, the operator S̄H ,
obtained by replacing C with C̄ in the definition of ŜH and applying
Theorem 5.1, is still a GENEO. In Example 5.2, C̄ = 2, 304, which
is far larger than C = 40. In Example 5.3, C̄ = 82, 944, while
C = 1, 040. Finally, in Example 5.4 C̄ = 972 and C = 162.
We stress that the constant C defined in (5.4) is optimal if we do
not add any further assumption. We can realize this by applying
Theorem 5.1 to the symmetric function S̃(a1) = σ1(a1) = a1
in just one variable, provided that 8 is the collection of all non-
expansive functions from X : = [0, 1] to itself, and we set both G
and the permutant H equal to the trivial group containing only the
identity of X. On the one hand, it can be easily checked that in this
case the GEO S̃H defined by applying Proposition 3.3 is the identity
map, and hence a GENEO. Therefore, any constant C′ that could
replace C in the definition of ŜH must be not smaller than 1 in
order to preserve the non-expansivity of ŜH . On the other hand,
we can immediately see that C = M1 = M2 = MIm(8)n = 1. It
follows that C′ ≥ C.

6. GENEOS INCREASE OUR ABILITY TO
DISTINGUISH DATA

In this section, we illustrate a few examples showing that our
approach can produce useful non-linear GENEOs and increase
our ability to distinguish data. As already discussed in the
Introduction, it is of fundamental importance to make a large
number of GENEOs available in machine learning, as each of
them models a data-observer pair. The results presented in this
paper could be of great help in the task of extending the set of
available GENEOs and the consequent possibilities of using them
in applications.

The next example shows that our new method indeed extends
the approach introduced in Botteghi et al. (2020).

Example 6.1. Let us set X = {1, 2, 3} and 8 equal to the set
of all functions from X to [0, 1]. In this case, Aut8(X) = S3,

FIGURE 1 | The functions ϕ and ψ have the same persistence diagram.

and we define G = S3. We now consider the symmetric function
S̃(a1, a2) = a1 · a2 = σ2(a1, a2) and the permutant H =

{(1, 2, 3), (1, 3, 2)} = :{h1, h2}. From Theorem 5.1 we get that

ŜH(ϕ) = (ϕ◦h1)·(ϕ◦h2)
4 is a GENEO. Such an operator is not

linear, and hence it cannot be obtained by the method described
in Botteghi et al. (2020).

In next Example 6.2 we illustrate the synergy between GENEOs
and TDA. TDA is mainly grounded on Persistent Homology
(PH), which is an algebraic topological theory devised to describe
“holes” in geometrical data, focusing on their persistence under
the action of noise. In particular, TDA takes benefit from the
topological comparison of data bymeans of persistence diagrams,
which are the main tools in PH. For more details about TDA
and PH, we refer the interested reader to Edelsbrunner and
Harer (2008), Edelsbrunner and Morozov (2013). Example 6.2
shows that the use of new GENEOs increases our ability of
distinguishing data by persistence diagrams.

Example 6.2. Let us consider the following functions: ϕ(x) =

| sin(x)| and ψ(x) = sin(x)2 ∈ 8, where 8 is the space of
all 1-Lipschitz functions from the unit circle S1 to [0, 1] and the
invariance group G is composed of all rotations of S1. If we are
looking at 8 only through Persistent Homology, then ϕ and ψ are
indistinguishable, since they induce the same persistence diagram
(see Figure 1). Let us now consider the GENEOs F1 = id : 8→ 8

and F2(ϕ) = ϕ ◦ ρ π
2
, where ρ π

2
is the clockwise rotation through

a π
2 angle. We highlight the fact that the joint use of TDA, F1 and

F2 does not allow us to distinguish ϕ from ψ , since the functions
F1(ϕ) and F1(ψ) have the same persistence diagram, and the
same happens for F2(ϕ) and F2(ψ) (see Figures 2, 3). However,
if we consider the symmetric function σ2 and the permutant

H =
{

idS1 , ρ π2

}

, from Theorem 5.1 we get that ŜH(ϕ) : =
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FIGURE 2 | F1(ϕ) and F1(ψ ) have the same persistence diagram.

FIGURE 3 | F2(ϕ) and F2(ψ ) have the same persistence diagram.

1
4

(

ϕ · (ϕ ◦ ρ π
2
)
)

is a non-linear GENEO. We observe that the

joint use of TDA and ŜH allows us to distinguish ϕ and ψ , since
the persistence diagrams of the functions ŜH(ϕ) and ŜH(ψ) are
different from each other (see Figure 4).

Finally, we stress another important aspect of the GENEOs.
The use of GENEOs can be seen as a methodology for
changing the max-normmetric that we use to compare functions
in 8. We can indeed change the distance ‖ϕ1 − ϕ2‖∞ into
the pseudo-metric

∥

∥F(ϕ1)− F(ϕ2)
∥

∥

∞
, where F is a GENEO.

FIGURE 4 | ŜH (ϕ) and ŜH (ψ ) have different persistence diagrams, and hence

they are distinguishable by Persistent Homology. The bottleneck distance

between their persistence diagrams is 0.0625.

In Example 6.3 we show how the pseudo-metrics associated
with non-linear GENEOs are much more flexible than those
generated by linear operators, thus guaranteeing a wider range
of applications.

Example 6.3. Let us consider8 as the set of all functions from the
set with just two elements X = {A,B} to [0, 1]. The functions in8
can be described by ordered pairs

(

ϕ(A),ϕ(B)
)

. In this setting, the
group G is composed of the permutations of two elements. As usual,
in 8 we have the metric D8(ϕ1,ϕ2) = ‖ϕ1 − ϕ2‖∞, therefore the
distance between the functions (0, 0), (0, 1), (1, 0), (1, 1) is always
1. Suppose that we need a GENEO F such that the pseudo-
metric

∥

∥F(ϕ1)− F(ϕ2)
∥

∥

∞
vanishes between functions with a null

component, while maintaining positive the distance between (1, 1)
and the other three functions belonging to 8. No linear GENEO
can induce such a pseudo-metric, since if a linear transformation
maps (1, 0) and (0, 1) to (0, 0), it must also map (1, 1) to (0, 0).
It is worth noticing that through the GENEO associated with the
elementary symmetric function σ2(a1, a2) = a1 · a2 and with
the permutant H = G, we can obtain a pseudo-metric with the
desired property.

7. CONCLUSIONS

In our paper, we have introduced a new method to build
GENEOs, grounded on the concepts of symmetric function
and permutant. Our main goal is the one of building a good
theory of GENEOs, making available methods to define and use
these operators in machine learning. The main advantage of
our approach is the fact that it requires no integration over the
(possibly infinite and large) group G, but just the availability of a
permutant and the computation of a symmetric function. Many
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lines of research still remain to be explored in this field. For
example, the reader can observe that in section 3 the requirement
that the function S is symmetric could be weakened without
losing the property thatSH is a GEO. It would be indeed sufficient
to assume that S is invariant when we apply to its argument any
permutation corresponding to the permutation of H associated
with the conjugation action h 7→ g ◦ h ◦ g−1 that is defined
by any g ∈ G. We have decided to postpone the research
concerning this extension of the theory, since it would have
added a dependence onH of the choice of S , thereby introducing
some technicalities. Another line of research that we would
like to explore in the future is the possibility of adapting our
approach to permutant measures, which are a sort of extension
of the concept of permutant to the case that H has infinite
cardinality. However, the most challenging problem we will
have to face is likely to be the proof or disproof of the natural
conjecture that each non-linear G-equivariant non-expansive
operator can be produced (or at least well approximated) by
applying our new technique to suitable symmetric functions and
permutants, provided that the groupG transitively acts on a finite
signal domain. We plan to devote some subsequent papers to
these topics.
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