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ABSTRACT 

As relevant aspects of PHM, feature extraction and 
diagnostics represent the focus of many paper related to 
predictive maintenance. Feature extraction is a fundamental 
part in PHM, as the accuracy of diagnostic models strongly 
depends on the goodness of the features. In particular, it is 
performed when components are provided with many 
sensors, in order to extract relevant and non-redundant 
information from the raw dataset. Diagnostic is a typical 
pattern recognition problem, in which the data are classified 
according to the operating or fault condition they refer. Thus, 
to obtain a real-time Remaining Useful Life (RUL) of the 
component, usually an offline analysis, including feature 
extraction and diagnostics, is performed, whose results are 
then used for degradation modelling and finally RUL 
prediction. However, when systems do not operate in strictly 
controlled environments, as in case of industrial contexts, it 
is very challenging to obtain information about the operating 
condition at the moment of signal acquisition. This results in 
unlabeled datasets, which cannot be used by supervised 
learning algorithms, as ANNs and SVMs. In addition, 
operating conditions change over time and it is not always 
possible to know a priori all possible conditions. These 
considerations suggest to resort to streaming applications, in 
which models can directly learn from new incoming data. As 
the degradation rate may vary according to the operating 
condition, influencing the RUL prediction, one should 
always know in which condition the machinery is operating, 
or should recognize if a new condition is occurring. In 
addition, it is not possible to extract good features that 
distinguish different conditions, if a condition is not known. 
Therefore, features should be extracted in an unsupervised 
manner and incrementally, so that if a new condition occurs, 

eventually better features can be extracted. Furthermore, an 
incremental clustering should be conducted so to always 
recognize the condition under which the system is operating, 
if known, or to detect a new condition.  
In this paper, a streaming-based procedure for feature 
extraction and clustering is proposed, which is validated on a 
real industrial case study. A batch and supervised feature 
extraction and diagnostics are also performed on the same 
dataset, to demonstrate that the two approaches have similar 
results, in terms of accuracy with respect to the known 
conditions. In addition, thanks to the incremental clustering, 
the proposed approach is also able to detect and automatically 
label new machinery operating conditions.  
 

1. INTRODUCTION 

Maintenance of equipment in manufacturing companies is 
assuming a more and more crucial role in the minimization 
of the life-cycle cost of their systems. Contrary to the past, 
the role of maintenance is not only to repair failed assets, but 
also to achieve the optimum availability, the optimum 
operating conditions, the maximum utilization of resources, 
the optimum equipment life, the minimum spares inventory 
and last but not least the ability to reach quickly (Mobley, 
2002). For more critical components, preventive strategies, 
like Condition-Based Maintenance (CBM) could be replaced 
by Predictive Maintenance (PM) strategies, that not only aim 
to isolate and identify a certain failure, as CBM, but also aim 
to know when a system will fail in advance, so to plan 
maintenance interventions and spare parts supplying with 
sufficient time. Thus, PM can be viewed as an evolution of 
CBM, that adds to the typical activity of CBM, i.e., data 
acquisition, feature extraction and diagnostic, also the 
prognostic task, whose aim is to predict the Remaining 
Useful Life (RUL) of monitored components (Jardine et al., 
2006).  
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As one of the pillars of the fourth industrial revolution, PM 
also experiences the adoption of technologies from different 
domains, including Internet of Things (IoT), Edge 
Computing and Cloud Computing (Katona & Panfilov, 
2018). The Industrial Internet of Things (IIoT) let each asset 
in the industrial plant be connected and communicate with 
other assets. Sensors installed on equipment can send the data 
to a cloud, where Machine Learning  (ML)-based software 
are run  in order to provide information about the health status 
of connected equipment. Basically, Cloud Computing, as a 
centralized service provider, makes possible to gather in a 
unique “place” data from all sensors spread in the industrial 
plant, enabling the sharing of information among the assets 
and the construction of an integrated knowledge of the entire 
plant. However, the high number of sensors increase the 
amount of the generated data, the transmission bandwidths 
and consumed power, the storage spaces and computation 
resources of cloud services (Qian et al., 2019). In addition, 
the data transmission from devices to the cloud put not trivial 
challenges from the privacy point a view. These reasons 
make attractive to perform data storage and processing 
directly at the edge of the network. Edge Computing allows 
to reduce the peaks in traffic flows, the bandwidth 
requirements of the centralized network and the transmission 
latency during data computing and storage, enabling real-
time collection and analysis of the information and providing 
short upload time of massive data (Yu et al., 2018). However, 
because of the limited storage capacity of edge devices, 
several edge nodes will be used and coordinated for storing 
data, increasing the complexity of the data management. The 
integration of Cloud and Edge computing in a structure that 
locally processes high-priority tasks and delay-sensitive tasks 
while processes low-priority and delay-tolerant tasks in the 
cloud could represent the optimal infrastructure for PM 
applications (Calabrese et al., 2019), (Angelopoulos et al., 
2020).  
Prognostic Health Management (PHM) is a step-wise process 
for the realization of PM. Based on this approach, signals are 
first collected from critical components, in each possible 
operating and fault conditions; then, relevant and redundant 
features the best distinguish the health condition from the 
faulty ones and a monotonic Health Indicator (HI) that reflect 
the degradation process are extracted for diagnostic and 
prognostic purposes, respectively; then, diagnostics is 
conducted to find the relationships between the feature space 
and the health conditions, so to be able to classify next 
observations; finally, prognostics is conducted based on the 
extracted HI, in order to predict the RUL of the component 
(Lei et al., 2018).  
Once diagnostics and prognostics models had been trained on 
historical data, they can be applied to streaming data at the 
edge, taking the advantage of cloud services when necessary. 
In this way, it is possible to obtain a real-time feedback on 
the health condition of the monitored equipment and react as 
fast as possible. Examples of edge-cloud structures for 
streaming-based PM can be found in  (Bowden et al., 2019), 

(Yaseen et al., 2018), (Bose et al., 2019), (Qian et al., 2019). 
A streaming-based analysis, can also help solve two main 
issues related to the application of PHM in industrial 
contexts. First, labeled data are not always available. While 
it is quite easy to collect data corresponding to healthy 
conditions, it is difficult to get data during faulty conditions, 
as failures can be very rare or, for safety reasons, it is not 
possible to simulate a failures. As a consequence, the labeled 
dataset may be unbalanced, reducing the performance of 
diagnostic models. Second, external factors strongly affect 
the machinery functioning. Among them, not only 
environmental conditions, like external temperature, 
humidity level or surrounding equipment vibration levels, but 
also the machinery operating conditions. Indeed, machinery 
can work under different settings, because of the difference 
in the processed material or in the product to realize. Also 
these conditions, as the environmental ones, cannot be known 
a priori and can evolve in time, making pre-trained models 
obsolete. In other words, industrial plants are inherently 
dynamic, which limits the simply streaming application of a 
pre-trained PHM approach even to the same component if it 
works in different places.  
To deal with these issues, unsupervised or semi-supervised 
and incremental learning can be introduced in a streaming 
analysis, in order to directly process unlabeled data and let 
models learn by themselves as a new observation is available. 
To this purpose, novelty detection algorithms assume a 
crucial role. Their aim, in a streaming analysis, is to detect a 
change in the machinery behavior and identify if the current 
condition is known or unknown. Based on the novelty 
detection algorithm results, then the activity to carry on for 
diagnostic and prognostic will be different.   
In this paper, a methodology for streaming-based PHM 
application is presented. In particular, the attention has been 
focused on the operating condition recognition problem, 
which requires an incremental feature extraction and an 
incremental unsupervised diagnostic model. Here, the 
Incremental Principal Component Analysis introduced in 
(Lippi & Ceccarelli, 2019), the Anomaly Detection presented 
in (Costa et al., 2015a) and the Incremental Clustering 
presented in (Gu et al., 2018a) have been slightly modified 
and integrated in a unique framework able to select the most 
relevant features on-line, to detect anomalous behaviors and 
to assign each observation to an existing or a new cluster 
(operating condition). The novelty of the methodology, with 
respect to other existing frameworks in literature, is that it can 
start “from scratch” and no previous batch and supervised 
analysis is needed. This methodology is suitable for 
components that experiment a very slow degradation that 
depends on the machinery setting.  
The remaining of the paper is organized as follows. In section 
2, the problem of operating condition recognition is defined. 
and both characteristics and requirements for tackling it in 
real industrial contexts are presented. In section 3, previous 
works related to streaming and semi-supervised analysis for 
fault/condition detection and diagnosis are reviewed and the 
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mathematical formulation of the chosen algorithms is 
reported. In section 4, the proposed methodology is 
described, and the pseudo-code is also provided. In section 5, 
the proposed methodology is applied to a real industrial case, 
in order to verify its goodness in recognizing different 
operating conditions. Finally, in section 6, conclusions and 
directions of future research are provided. 

2. PROBLEM SETTING 

The ultimate goal of PHM is to predict the RUL of a 
component/system, in order to anticipate the occurrence of a 
failure, while maximizing its useful life. This goal is achieved 
by extracting a Health Indicator (HI) from collected signals 
and building a degradation model that follows the 
degradation trend. Given the degradation model, at any point 
in time the RUL can be computed as the difference between 
the time in which the HI is expected to reach a prefixed FT 
and the current time. The essence of degradation modelling 
is to develop a “good” probability model that is able to 
describe the degradation phenomenon (Ye & Xie, 2015). In 
the data-driven approach, it can be done by resorting to 
statistical or stochastic models, whose parameters are 
estimated based on historical failures data, in order to 
minimize the Maximum Likelihood Estimation (MLE) (Ye et 
al., 2013), (Xia et al., 2018), (Sikorska et al., 2011), (Si et al., 
2011). Adaptive degradation models have also attracted 
many researches in this filed, as they can adapt their 
parameters also based on actual data, instead of relying only 
on historical data (Zhai & Ye, 2017), (Datong et al., 2011).  
Machinery operating conditions (e.g., a different load, or a 
different set of temperatures) affect the degradation 
phenomenon. Operating conditions may change depending 
on the machinery user, on the material that has to be 
processed, on the environmental conditions of the industrial 
plant. Thus, the degradation models should include a  
different degradation rate that varies according to the 
operating condition (Moghaddass & Zuo, 2014). For 
example, in (Bian et al., 2015), the operating conditions are 
assumed to evolve as a continuous-time Markov chain and 
the resulting degradation model parameters are updated in 
real-time within the Bayesian framework. Although that 
approach is highly promising, it still requires the total number 
of settings to be known a priori. In addition, in many cases, a 
subset of the acquired signals could define the particular 
condition that is implemented. A change in one or more 
variable values included in the subset determines a change in 
the machinery setting. In these cases, if the operating 
condition is known, then the corresponding degradation 
model can be selected. So, basically, the problem of updating 
degradation models based on the operating condition, could 
be reduced to a condition operating recognition problem, 
which is similar to diagnostics or fault detection and 
identification problems, where fault conditions are replaced 
by multiple normal operating conditions.  

As a pattern recognition problem, it can be faced by means of 
supervised ML models, which are trained on historical data 
related to different conditions to derive rules to classify new 
unlabeled observations (Liu et al., 2018). Although these 
models work effectively in recognizing two or more 
conditions, supervised models require to know a priori all 
possible operating conditions. However, the same issues as in 
the diagnostic task, i.e., the lack of labeled data and dynamic 
nature of the industrial environments, also apply to the 
operating condition recognition problem. Thus, 
unsupervised, or semi-unsupervised and incremental learning 
may be adopted in order to process unlabeled data and create 
a new cluster each time a new operating condition occurs (Y. 
Hu, Baraldi, Di, et al., 2017).   
As in the supervised learning, the unsupervised learning also 
depend on the extracted features. In general, there are two 
main issues related to the choice of the most suitable features. 
The first one is connected to the frequency of the data 
acquisition (sampling). The second one is connected to the 
number of the collected signals (dimensionality reduction). 
Indeed, signals are usually collected at high frequencies, so 
to get as much information as possible. However, signals 
collected at high frequencies present a very oscillating trend, 
which may compromise the classification/clustering task. For 
this reason, a sampling activity, usually referred as feature 
extraction, is often conducted (Lee et al., 2014). In this step, 
statistics of the signals in the time or frequency domain are 
computed over a time window, so to greatly reduce the 
number of data samples. Alternatively, the signal is 
transformed in the time-frequency domain, and statistics, as 
well as energy information of the signals, are extracted in this 
domain. However, this activity results in an increased number 
of variables, which may be or may not be relevant for the 
classification/clustering problem. In addition, very often 
machinery are provided with a high number of sensors, from 
which several signals can be collected. For each added signal, 
the number of extracted statistics doubles down, resulting 
often in a very high-dimensional dataset. For this reason, a 
second step, named feature selection or feature extraction is 
performed in order to transform the high-dimensional dataset 
in a lower dimensional dataset, by automatically selecting or 
extracting only relevant and non-redundant features (R. Hu et 
al., 2017), (Wang et al., 2017).  
In our problem, even if signals representing the operating 
condition are known,  the different trends they assume in each 
condition is unknown. In particular, besides the amplitude of 
the signal, the number of signals that change also affects the 
operating condition. Thus, all signals should be monitored 
simultaneously, increasing the complexity of the algorithm 
and limiting their processing in streaming. A synthetic 
feature, computed for instance as the mean of all the signal 
values, may be not appropriate as the signals may assume 
very similar values among each other and the synthetic value 
may result to be the same for two different settings. To clarify 
this concept, an example of signal trends in different 
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operating conditions is shown in Fig. 1. Here, the mean of the 
three signals is similar for setting 2 and 3.  
 

 
Thus, an incremental and unsupervised feature extraction 
method, able to extract the best feature when required,  is 
needed.  
In conclusion, in case of a set of signals directly correlated to 
the operating condition (we call them characteristic signals 
from now onward) is available and collected at high 
frequency, and in case of a streaming analysis performed in 
an edge-cloud infrastructure, the characteristics and 
requirements of the condition recognition problem can be 
summed up as follows: 
1. As the characteristic signals slightly oscillate around a 

certain mean value that correspond to the set point of that 
signal, a high frequency is not needed. Thus, the mean of 
each signal, directly in the time domain, can be 
computed over a certain time window, in order to reduce 
the amount of data to process and store. 

2. A set of relevant features has to be extracted from the 
sampled characteristic signals. As it operates in an 
unsupervised and dynamic environment, the algorithm 
for feature extraction has to be incremental. In particular, 
if the condition is known, the set of relevant features is 
known as well. Thus, the algorithm can directly extract 
them.  When the condition is unknown, the set of 
relevant features is unknown too. Thus, the algorithm 
should evaluate which features are relevant.  

3. Based on the extracted features, a novelty detection 
method has needed in order to detect if a change in the 
original characteristic signals has occurred. When the 
behavior of the system changes, the algorithm has to 
recognize whether the condition is known or unknown, 
and label the observations accordingly. In particular, in 
the first case, the current observation is assigned to an 
existing cluster (that is, to one of the existing operating 
condition). In the second case, a new cluster should be 
created, and all similar observations are assigned to the 
same unknown cluster. 

4. Finally, a validation is needed. It may be performed into 
the cloud each time a new cluster is created. In particular, 
when a new condition is detected, the corresponding 

sampled characteristic signals can be temporary stored 
into the edge and then sent to the cloud. Here, a batch 
analysis can be conducted in order to extract relevant 
features and initialize the corresponding cluster, so that 
the corresponding operating condition from that moment 
will be considered known.    

3. RELATED WORKS 

Although on-line, semi-supervised and incremental 
techniques in non-stationery or dynamic environments have 
attracted many researchers in last years, only a few works are 
related to predictive maintenance. These works are mainly 
based on the integration of novelty detection and diagnosis 
models in order to discover new scenarios, starting from data 
related to a healthy condition and some known fault 
conditions. In (Carino et al., 2018), an ensemble-based 
classifier for novelty detection and an evolving classifier for 
diagnosis are separately performed to a different set of 
features, and then integrated in a unique methodology, in 
order to discover new patterns in case only data related to a 
healthy condition are available. In particular, statistical 
features in the time domain are extracted from raw signals 
and dimensionality reduction techniques are applied only for 
the novelty detection part. In this work, a measurement 
considered unknown can represent an outlier, a new fault or 
a new operating condition. Thus, the intervention of a user is 
required to verify which of the above cases the novelty refers 
to. In (Cariño et al., 2020), an hybrid approach is presented 
for multi-modal signal analysis, novelty detection and 
diagnosis, whose aim is to detect and incrementally include 
new discovered scenarios, based on time-frequency features. 
Both papers operate in a Semi-Supervised Learning context, 
which basically uses limited labeled data to transfer their 
class information to unlabeled data. Instead, in (Dyer et al., 
2014), a new scenario is defined, named Initially Labeled 
Streaming Environment (ISLE), which is characterized by an 
infinite verification latency, i.e., no labeled data are ever 
received after initialization. In this context, they developed a 
new algorithm, named COMPOSE, which learns drifting 
concepts from a streaming non-stationary environment that 
provides only unlabeled data after initialization. COMPOSE 
has been applied to fault diagnostics in (Y. Hu, Baraldi, Di 
Maio, et al., 2017), in which a semi-supervised feature 
selection step is also presented. Based on the resulting 
framework, both gradual and abrupt changes can be detected; 
then, a classifier is updated in order to include a new class 
and a feature set is selected for the new class. However, this 
framework still requires a feature set extracted off-line and a 
classifier to be trained on labeled data. Thus, it is not 
appropriate in cases in which no labeled data is available.  
Here, an incremental PCA has been chosen for feature 
extraction. PCs are extracted each time a new data is available 
and PCs retaining the 90% of variance are selected each time 
a new condition is detected. Novelty detection is performed 
at each observation and a completely unsupervised and 

Figure 1. Example of a change in the signal trend 
corresponding to a change in the operating condition 
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incremental clustering algorithm is adopted for assigning 
data points to existing or new conditions.  
In next subsections,  the theoretical backgrounds of the 
adopted algorithms for incremental feature extraction, 
anomaly detection and incremental clustering is provided.  

3.1. Incremental PCA 

In (Lippi and Ceccarelli, 2019), an exact incremental 
implementation of PCA is presented. As the authors state, 
exacts means that it provides the same results, i.e., the same 
PCs as in the batch version. In addition, it also contains an 
online data normalization, which is fundamental when 
variables assume very different values. Basically, the 
difference between the batch PCA and its incremental version 
formulated in that paper lies in the covariance matrix 
computation, which is recursive. The steps of the algorithm 
are the following:  

1. The sample mean 𝑥̅𝑥𝑛𝑛(𝑗𝑗)and the standard deviation 𝜎𝜎�𝑛𝑛(𝑗𝑗)  
are computed for each variable 𝑗𝑗 (𝑗𝑗 = 1, … ,𝑚𝑚) over the 
first 𝑛𝑛 available observations, in order to compute the 
standardized matrix 𝑍𝑍𝑛𝑛 as follows 

 𝑍𝑍𝑛𝑛 = �
𝑥𝑥1 − 𝑥̅𝑥𝑛𝑛

…
𝑥𝑥𝑛𝑛 − 𝑥̅𝑥𝑛𝑛

� Σ𝑛𝑛−1 (1) 

Where Σ𝑛𝑛 ≡ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎𝑛𝑛) is an 𝑚𝑚 × 𝑚𝑚 matrix 
2. The covariance matrix 𝑄𝑄𝑛𝑛  of the data matrix 𝑋𝑋𝑛𝑛 is 

computed as follows   

 𝑄𝑄𝑛𝑛 =
1

𝑛𝑛 − 1
𝑍𝑍𝑛𝑛𝑇𝑇𝑍𝑍𝑛𝑛 (2) 

3. The standard diagonalization of 𝑄𝑄𝑛𝑛 is made by means of 
the eigenvector matrix 𝐶𝐶𝑛𝑛 as follows 

 𝑄𝑄𝑛𝑛 = 𝐶𝐶𝑛𝑛−1 �
𝜆𝜆1

…
𝜆𝜆𝑚𝑚
� 𝐶𝐶𝑛𝑛 (3) 

Where  the eigenvalues 𝜆𝜆𝑖𝑖  are put in descending order 
and express the variance associated with the ith Principal 
Component (PC), that is the ith eigenvector of 𝐶𝐶𝑛𝑛. 

4. Finally, the time evolution of PC values until the time 
stamp 𝑛𝑛 is computed as 

 𝑃𝑃𝑃𝑃𝑛𝑛 = 𝑍𝑍𝑛𝑛𝐶𝐶𝑛𝑛 (4) 

5. At the step 𝑛𝑛 + 1, the mean and the standard deviation 
are updated and the standardized matrix 𝑍𝑍𝑛𝑛+1  is 
computed as follows  

 𝑍𝑍𝑛𝑛+1 = �𝑍𝑍𝑛𝑛𝛴𝛴𝑛𝑛 + 𝛥𝛥
𝑦𝑦 �𝛴𝛴𝑛𝑛+1−1  (5) 

Where 𝑦𝑦 = 𝑥𝑥𝑛𝑛+1 − 𝑥̅𝑥𝑛𝑛+1 , Δ is a 𝑛𝑛 × 𝑚𝑚 matrix made of 
repeating 𝑛𝑛 times the vector 𝛿𝛿 = 𝑥̅𝑥𝑛𝑛 − 𝑥̅𝑥𝑛𝑛+1 

6. The covariance matrix 𝑛𝑛𝑛𝑛𝑛𝑛+1 is computed ad follows 
 𝑛𝑛𝑛𝑛𝑛𝑛+1 = 𝑍𝑍𝑛𝑛+1𝑇𝑇 𝑍𝑍𝑛𝑛+1 (6) 

Which only depends on the covariance matrix computed 
at the point 𝑛𝑛 and the new feature vector 𝒙𝒙𝑛𝑛+1. 

7. Finally, the updated 𝑄𝑄𝑠𝑠  are used to compute the nth 
values for the evolving PCs by means of Eq. (4).  

3.2. Anomaly Detection  

In (Angelov et al., 2008), the concept of Recursive Density 
Estimation (RDE) was introduced for the first time in the 
context of detection and object tracking in video streams. 
Aiming to decide whether a pixel belongs to the background 
or the foreground in real-time, the introduced approach 
basically substitutes the traditional Gaussian kernel adopted 
for modelling the pixel probability density function (pdf) 
with the Cauchy function, which allows the recursive 
estimation of pixel pdf as a new image frame occurs. In 
(Costa et al., 2015b), concepts of RDE theory are adopted in 
the context of online fault detection, in order to discover 
anomalous behaviors. Basically, the parameters involved are 
the global density, the mean value and the scalar product, 
which can be recursively computed by Eq. (7), Eq. (8) and 
Eq. (9), respectively. 

 𝐷𝐷(𝒙𝒙𝑘𝑘) =
1

1 + ‖𝒙𝒙𝑘𝑘 − 𝝁𝝁𝑘𝑘‖2 + Σ𝑘𝑘 − ‖𝝁𝝁𝑘𝑘‖2
 (7) 

 𝝁𝝁𝑘𝑘 =
𝑘𝑘 − 1
𝑘𝑘

𝝁𝝁𝑘𝑘 +  
1
𝑘𝑘
𝒙𝒙𝑘𝑘  (8) 

 Σ𝑘𝑘 =
𝑘𝑘 − 1
𝑘𝑘

Σ𝑘𝑘 +  
1
𝑘𝑘
‖𝒙𝒙𝑘𝑘‖2 (9) 

where 𝒙𝒙𝑘𝑘 ∈ ℝ𝑛𝑛 is the feature vector at the time stamp 𝑘𝑘. 
At the first iteration (𝑘𝑘 = 1), the parameters are initialized as 
𝐷𝐷(𝒙𝒙1) = 1, 𝝁𝝁1 = 𝒙𝒙1, Σ1 = ‖𝒙𝒙1‖2. The, for each 𝑘𝑘 > 1, the 
parameters are updated and the condition in Eq. (10) is 
checked to decide whether the current point represents an 
anomaly or not 

 

𝐼𝐼𝐼𝐼 𝐷𝐷(𝒙𝒙𝑘𝑘) < 𝜇𝜇𝐷𝐷 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 = 𝑡𝑡1, … , 𝑘𝑘 − 1, 𝑘𝑘  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝒙𝒙𝑘𝑘  𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

 

(10) 

Where 

 𝜇𝜇𝐷𝐷 = �
𝑘𝑘𝑘𝑘 − 1
𝑘𝑘𝑘𝑘

𝜇𝜇𝐷𝐷 +  
1
𝑘𝑘𝑘𝑘
𝐷𝐷(𝒙𝒙𝑘𝑘)� (1

− Δ𝐷𝐷) + 𝐷𝐷(𝒙𝒙𝑘𝑘)Δ𝐷𝐷 
(11) 

is the mean value of the local density computed recursively,  
Δ𝐷𝐷 = |𝐷𝐷(𝒙𝒙𝑘𝑘) − 𝐷𝐷(𝒙𝒙𝑘𝑘−1)| is the absolute value of difference 
between the global density computed at two consecutive time 
stamps, and 𝑘𝑘𝑘𝑘 is the number of data samples from the last 
status change. Indeed, if the condition is satisfied, then the 
status of the system switches from normal to anomalous. and 
𝑘𝑘𝑘𝑘 is set to 0. The condition expressed in Eq. (10) basically 
means that if the global density is lower than the mean density 
for a certain number of time stamps (or seconds), then the 
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status becomes anomalous. Indeed, when a new data point 
arrives, if it is close to the previous point, then 𝝁𝝁𝑘𝑘 is close to 
the 𝒙𝒙𝑘𝑘, 𝐷𝐷(𝒙𝒙𝑘𝑘) stays close to 1 and 𝜇𝜇𝐷𝐷 stays close to the actual 
mean of the data points, as (1 − Δ𝐷𝐷) is very close to 1, which 
gives a more importance to the first term of Eq. (11). 
However, when the new point is far from the previous ones, 
𝐷𝐷(𝒙𝒙𝑘𝑘)  slightly decreases, while 𝜇𝜇𝐷𝐷  becomes closer to 
𝐷𝐷(𝒙𝒙𝑘𝑘), as the term Δ𝐷𝐷 gives more importance to the second 
term of Eq. (11). As new points are closer to the previous 
point, then 𝐷𝐷(𝒙𝒙𝑘𝑘) continue to decrease until the condition in 
the Eq. (10) is satisfied. Note that, when the status changes 
from normal to anomalous, 𝑘𝑘𝑘𝑘  is set to 0, leading 𝜇𝜇𝐷𝐷  to 
notably decrease. When the mean density is lower than the 
global density for a certain number of points, or seconds, then 
the status returns to be normal. Thus, the condition expressed 
by Eq. (12) applies:  

 

𝐼𝐼𝐼𝐼 𝐷𝐷(𝒙𝒙𝑘𝑘) > 𝜇𝜇𝐷𝐷 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 = 𝑡𝑡2, … , 𝑘𝑘 − 1, 𝑘𝑘  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝒙𝒙𝑘𝑘 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

(12) 

Note that, both 𝑡𝑡1 in Eq. (10) and 𝑡𝑡2 in Eq. (12) are set by the 
user and may represent either the data samples or seconds. 

3.3. Clustering 

Based on the concepts of RDE, a clustering algorithm has 
also been introduced in (Gu et al., 2018b), in both offline and 
online version. Here, the online version will be briefly 
described. At the first iteration (𝑘𝑘 = 1) the local parameters 
of each cluster are initialized as follows 

 𝐶𝐶𝑘𝑘 = 1; 𝝁𝝁𝑘𝑘1 = 𝒙𝒙1;  𝑆𝑆𝑘𝑘1 = 1 (13) 

Where, 𝐶𝐶𝐾𝐾  is the cluster at the time stamp 𝑘𝑘 = 1, 𝝁𝝁11 is the 
focal point of cluster 1 at the time stamp 𝑘𝑘 = 1, and 𝑆𝑆11 is the 
number of data points belonging to the cluster 1 at the time 
stamp 𝑘𝑘 = 1. In addition, the global parameters expressed by 
Eq. (8), Eq. (9) are also initialized. Then, for each 𝑘𝑘 > 1,  

1. The mean value 𝝁𝝁𝑘𝑘  and the scalar product Σ𝑘𝑘  are 
updated by means of Eq. (8) and (9), respectively.  

2. The condition expressed by Eq. (14) is checked to decide 
whether the current point has to be assigned to an 
existing cluster or should be a new focal point itself 

 

𝐼𝐼𝐼𝐼 𝐷𝐷(𝒙𝒙𝑘𝑘) > max
𝑖𝑖=1,…,𝐶𝐶𝑘𝑘

𝐷𝐷𝑘𝑘�𝝁𝝁𝑘𝑘𝑖𝑖 �  𝑂𝑂𝑂𝑂 𝐷𝐷(𝒙𝒙𝑘𝑘)

< min
𝑖𝑖=1,…,𝐶𝐶𝑘𝑘

𝐷𝐷𝑘𝑘�𝝁𝝁𝑘𝑘𝑖𝑖 � 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝒙𝒙𝑘𝑘  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

(14) 

The condition expressed in Eq. (14) means that if the 
global density is greater than, or lower than, the densities 
computed at each of the existing focal points (the density 
of each cluster), then the current point creates a new 
cluster.  

3. If Eq. (14) is satisfied, then a new cluster is created, 
whose parameters are initialized by means of Eq. (15) 

 𝐶𝐶𝑘𝑘 = 𝐶𝐶𝑘𝑘+1;  𝝁𝝁𝑘𝑘
C𝑘𝑘 = 𝒙𝒙𝑘𝑘;  𝑆𝑆𝑘𝑘

C𝑘𝑘 = 1 (15) 

4. Otherwise, the distance between the current feature 
vector 𝒙𝒙𝑘𝑘 and the focal point of each existing cluster is 
computed, in order to decide whether the current point 
can be assigned to the closest cluster, by means of Eq. 
(16) 

𝐼𝐼𝐼𝐼 ‖𝒙𝒙𝑘𝑘 − 𝝁𝝁𝑘𝑘𝑛𝑛‖ < �Σ𝑘𝑘 − ‖𝝁𝝁𝑘𝑘‖2 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝒙𝒙𝑘𝑘 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝝁𝝁𝑘𝑘𝑛𝑛 
       (16) 

Condition expressed by Eq. (16) means that if the 
distance between the current point and the nearest focal 
point  𝝁𝝁𝑘𝑘𝑛𝑛  is lower than the distance among all points 
arrived until the current stamp, then the current point is 
assigned to the nearest cluster.  

5. If the condition expressed by Eq. (16), then the 
parameters of the closest cluster 𝐶𝐶𝑘𝑘n  are updated by 
means of Eq. (17) 

 𝝁𝝁𝑘𝑘n =
𝑆𝑆𝑘𝑘n − 1
𝑆𝑆𝑘𝑘n

𝝁𝝁𝑘𝑘n + 
1
𝑆𝑆𝑘𝑘n
𝒙𝒙𝑘𝑘;  𝑆𝑆𝑘𝑘n = 𝑆𝑆𝑘𝑘n + 1  (17) 

4. THE PROPOSED METHODOLOGY 

In this section, a methodology to perform streaming feature 
extraction and condition recognition is presented. It gathers 
in a unique algorithm the three models described in the 
previous section, which have been slightly modified in order 
to be applied to the problem stated in Section 2.  
The first decision to take regards the sampling frequency. It 
depends on how the signal evolves over time (for example, 
for rotating components, it may be equal to, or a multiple of, 
the production rate of machinery) and on how quickly the 
feedback is needed. Given the time window equal to 𝑡𝑡𝑠𝑠, the 
mean value of each signal 𝑥𝑥𝑗𝑗(𝑡𝑡), where ( 𝑗𝑗 = 1 … , 𝑝𝑝) is the 
number of the characteristic signals, is computed over 𝑡𝑡𝑠𝑠 . 
After 𝑛𝑛  iterations, the matrix 𝑿𝑿𝑛𝑛  containing the extracted 
mean values is obtained, where the generic element 𝒙𝒙�𝑖𝑖𝑖𝑖 , 
represent the mean value extracted from the original signal 
𝑗𝑗 (𝑗𝑗 = 1, … , 𝑝𝑝)  after 𝑡𝑡𝑠𝑠𝑖𝑖  time windows (𝑖𝑖 = 1, … ,𝑛𝑛) . The 
batch PCA is then applied to 𝑿𝑿𝑛𝑛 in order to obtain the initial 
covariance matrix and the first 𝑚𝑚 PCs that explain the 90% 
of the variance are selected. The extracted feature vector 
{𝒙𝒙𝑘𝑘}, (𝑘𝑘 = 𝑛𝑛,𝑛𝑛 + 1, … )  represents the input vector for the 
anomaly detection and clustering algorithms. For 𝑘𝑘 = 𝑛𝑛, the 
mean value, the scalar product and the global density are 
computed as in Eq. (8), Eq. (9) and Eq. (7), respectively, for 
𝑘𝑘 = 1. In addition, the assumption to be in a normal condition 
is made (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0). The first extracted feature vector {𝒙𝒙1} 
creates the first cluster, whose parameters are initialized 
based on Eq. (15). For each mean vector  {𝒙𝒙�𝑖𝑖}, (𝑖𝑖 > 𝑛𝑛), the 
incremental PCA is applied to the new matrix 𝑿𝑿𝑖𝑖+1, which 
contains the old matrix 𝑿𝑿𝑛𝑛 and the new mean vector {𝒙𝒙�𝑖𝑖}. If 
a new cluster has been created at the previous iteration, then 
the 𝑚𝑚 PCs explaining the 90% of the variance are selected. 
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Otherwise, the same number of PCs extracted at the previous 
step is selected. In both cases, the feature vector {𝒙𝒙𝑘𝑘}, 𝑘𝑘 > 𝑛𝑛, 
is obtained. Thus, the parameters of the anomaly detection 
algorithm are updated based on Eq. (8), Eq. (9), Eq. (7) and 
Eq. (11) and the condition expressed by Eq. (10) is checked 
to establish whether the current point is an anomaly or not. If 
it is an anomaly, then the distance between the point and the 
centers of all the 𝑁𝑁 existing clusters 𝐷𝐷𝑘𝑘�𝝁𝝁𝑘𝑘𝑙𝑙 �, (𝑙𝑙 = 1, … ,𝑁𝑁), 
is computed and the nearest cluster is identified. If the 
condition expressed in Eq. (16) is satisfied, than the point is 
assigned to the nearest cluster, whose parameters are updated 
by means of Eq. (17). Otherwise, a new cluster is created, 
whose parameters are initialized based on Eq. (15).  Instead, 
if condition (10) is not satisfied, that is the current point is not 
an anomaly, then the point is directly assigned to the current 
cluster, whose parameters are updated by means of Eq. (17). 
Similarly, once a point is detected anomalous, then the 
system enters in an anomalous status (status = 1). If condition 
expressed by Eq. (12) is satisfied, then the system returns to 
a normal status, which could correspond to an existing or to 
a new condition. Thus, the nearest cluster is found and if 
condition expressed by Eq. (16) is satisfied, then the point is 
assigned to it, whose parameters are updated by means of Eq. 
(17). Otherwise, a new cluster is created, whose parameters 
are initialized by means of Eq. (15). If the condition 
expressed in Eq. (12) is not satisfied, then the point is 
assigned to the current cluster. whose parameters are updated 
by means of Eq. (17).  
The pseudo-code of the proposed methodology is shown in 
Figure 2.  

5. CASE STUDY 

In this section, the proposed procedure is applied to a sub-
system of an automatic machinery, which has been operating 
in a real industrial context for many years. The system is 
made of two electric motors and an extruder, whose screw is 
subject to a very slow degradation, that becomes relevant 
after two or three years of functioning. The group is provided 
with 30 sensors, which measure the temperature and the 
percentage of usage of thermo-resistors in different zones, the 
power and the velocity of the motors, as well as the input and 
output pressures of a volumetric pump, placed at the end of 
the extruder. Based on the expertise of technicians, it has 
been found that the percentage of usage of one of the electric 
motors is a good Health Indicator (HI). As it is shown in 
Figure 3, its trend is characterized by sudden jumps, which 
occur when the machinery setting changes. In addition, the 
degradation rate varies according to the specific setting.  
The operating condition is determined by a set of temperature 
values, whose actual signals are collected during the 
machinery functioning. In order to establish the operating 
condition in which the machinery is working, the proposed 
procedure introduced in the previous paragraph will be 
applied. Results will be compared with the corresponding 
batch algorithms, i.e., the PCA and most adopted 

classification algorithms in the field of diagnostics, that are 
the Support Vector Machines (SVMs) and the K-Nearest 
Neighbor (K-NN). 

 

 
Figure 2. The Pseudo-Code of the Proposed Methodology 

 
Figure 3. The Health Indicator of the monitored component 
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5.1. Dataset Description 

Signals are acquired at a frequency of 1Hz. Each day, almost 
8 hours of data are recorded; then, files are directly 
downloaded by the PLC of machinery. In addition, a low-
frequency data source is also available: each day, after 30 
minutes of the machine functioning, four different statistics 
over a batch of 30 seconds for each collected signal are 
computed. In this data source, the 11 temperatures that 
determine the setting of machinery implemented in each day 
are recorded. The actual characteristic signals are collected in 
the high-frequency data source.  
The available dataset includes data related to two units. As 
summarized in the Table 1, the first unit was monitored for 
almost 11 months, while the second unit was monitored for 
almost 21 months. For each unit, two different settings were 
implemented. The information related to the setting change 
are summarized in Table 2. While for the first unit there is 
only a change from setting 1 to setting 2, in the second unit, 
there are two changes: from setting 3 to setting 4 and from 
setting 4 to setting 3.  
It worth to note that the data were not recorded each day. In 
addition, transients nor failures were recorded, and no 
maintenance intervention was realized during the considered 
period.    

 

5.2. The proposed methodology 

For feature extraction, only 11 variables have been 
considered. As shown in the Figure 4, where both set value 
and actual value are depicted, the actual values of the setting 
points oscillate around the set value.  
First, a pre-processing step has been conducted before 
extracting relevant features. The mean value of each variable 
is computed over a batch 1800 samples, that correspond to a 
30 minutes of data. This value has been arbitrarily chosen. 
However, it demonstrated to effectively smooth the signal 
with no loss of information.  

 
Figure 4. Setting: set value vs. actual value 

 
Therefore, the Incremental PCA is applied to the 11 sampled 
signals. Figure 5 shows the results of the Incremental PCA, 
compared with those obtained from a batch PCA, for unit 1 
and unit 2, respectively.  

 
Figure 5. Performance of Incremental PCA vs. batch PCA 

for unit 1 (left) and unit 2 (right) 
 
As shown in Table 3, the first four PCs extracted from the 
data related to the first unit are able to retain the 90% of the 
variance during all the analysis. The same variance is retained 
by the first five PCs for the second unit. The trend of these 
PCs are shown in Figure 6 (unit 1) and Figure 7 (unit 2).  
Therefore, instead of considering the eleven variables, only 
four (unit 1) and five (unit 2) PCs are necessary for condition 
recognition. Indeed, based on the extracted PCs, the proposed 
algorithm is able to correctly recognize the change of the 
operating condition, as shown in Figure 8 and Figure 9, where 
the black dots correspond to the first setting, the grey dots to 
the second setting and the red crosses represent the moment 
in which a changing behavior is detected.  As summarized in 
Table 4, in both cases, the algorithm recognizes the switch 
from setting 1 to setting 2 and from setting 3 and setting 4 
after 9 data samples. In addition, for unit 2, the algorithm also 
recognizes the switch from setting 4 to setting 3, as data 
points are assigned to the existing cluster corresponding to 
the first operating condition. 
Note that, in both cases, there are several data points 
considered anomalous. However, none of them creates a new 

Table 1. Dataset Description. 
 

Unit Period of collection  Settings 
1 From 2017-10-20 to 2018-09-17 2 
2 From 2017-01-12 to 2018-09-06 2 

 
 Table 2. Setting changes. 
 

Unit Period  Setting 
1 From 2017-10-20 to 2017-11-03 1 
 From 2017-12-04 to 2018-09-17 2 
2 From 2017-01-12 to 2017-06-12 3 
 From 2017-06-12 to 2017-06-26 4 
 From 2017-06-26 to 2018-09-06 3 
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cluster. These points correspond to true anomalies in the data, 
like measurement errors or anomalous peaks, which are 
evident in the raw signals. 
 

 

 
Figure 6. Relevant PCs (unit 1) 

 
Figure 7. Relevant PCs (unit 2) 

 

 
Figure 8. Online Anomaly Detection and Clustering (unit 1) 

 
Figure 9. Online Anomaly Detection and Clustering (unit 2) 

 

5.3. Supervised approach 

To validate the proposed methodology, a supervised analysis 
has been conducted. In particular, the batch PCA has been 
applied to the matrix 𝑿𝑿 , where the generic element 𝑥𝑥𝑖𝑖𝑖𝑖  
corresponds to the mean value computed over 1800 data 
points at time 𝑖𝑖 for the characteristic signal 𝑗𝑗 (𝑗𝑗 = 1, … ,11). 
The PCs retaining the 90% of the variance have been 
extracted. As expected, for unit 1, 4 PCs have been extracted, 
while for unit 2, the number of the extracted PCs is equal to 
5. Then, two classification models, Support Vector Machine 
(SVM) and K-Nearest Neighbor (K-NN) have been applied 
to both the original matrix 𝑿𝑿 and the matrix of extracted PCs. 
Results for both the units are shown in Table 5. Both models, 
in both cases, without and with PCA, provide the 100% of 
accuracy in classifying the different operating conditions. 

5.4. Results and discussions 

The proposed methodology, that includes feature extraction, 
anomaly detection and clustering, is able to recognize a 
change in the operating condition. In addition, it is able to 
group data that are related to the same operating condition 
into the same cluster. No prior information about belonging 
class is provided and no data distribution is assumed.  

Table 3. Dataset Description. 
 

Unit PC  Variance Cumulative Variance 
1 1 66,45% 66,45% 
 2 11,88% 78,33% 
 3 7,81% 86,14% 
 4 4,77% 90,91% 
2 1 46,61% 46,61% 
 2 14,49% 61,1% 
 3 12,46% 73,56 
 4 10,16% 83,72% 
 5 7,55% 91,27% 

 
 

Table 4. Clustering Results. 
 

Unit Setting change 
(Detected)  

Setting change 
(Real) 

1 114 105 
2 4257 4248 
 5674 4904 
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An important step in the methodology is represented by the 
incremental feature extraction. As shown in Table 5, the 
supervised approach provides a 100% of prediction accuracy 
in both cases, without and with PCA. This result justifies the 
implementation of incremental PCA into the streaming 
methodology, as it allows to reduce the quantity of data to 
store (4 or 5 variables against the 11 original variable), while 
keeping the accuracy of prediction at the same value. This is 
also possible as incremental PCA is performed every 30 
minutes, and thus time for computation is no strict. Besides 
feature extraction, the proposed methodology also provides 
promising results in terms of novelty detection and 
clustering. As shown in Table 4, the latency of the algorithm 
in recognizing the change of setting is equal to 9 data points 
in two cases out of three. In the last case, which corresponds 
to the recognition of an existing condition, i.e., the 
assignment to an existing cluster, the latency is much higher. 
This, because of two main reasons: the first one is that there 
are few data samples belonging to the setting 2 of unit 2. 
Thus, the algorithm has not enough time to let the parameters 
be stable. Second, a lot of anomalous peaks in the original 
signals occurred for unknown reasons. Thus, both the global 
density and the mean density trends are so fluctuating to 
make condition expressed in Eq. (10) never satisfied.  

6. CONCLUSIONS 

In this paper, a methodology for condition recognition is 
presented. The rationale is that, very often, the degradation of 
a certain component/system may be affected by the operating 
condition in which the machinery is functioning. Thus, if the 
operating condition is known, the corresponding degradation 
model can be applied in order to compute the RUL. However, 
operating conditions are not known a priori: they may change 
because of machine users, the processed material, the realized 
product as well as environmental conditions. In addition, the 
development of technologies as IoT, Cloud Computing and 
Edge Computing make possible the implementation of 
Predictive Maintenance directly at the edge of the network, 
where some tasks can be carried out in order to get a real-time 
feedback of the health status of machinery. Thus, the 

proposed methodology aims to perform a streaming and 
unsupervised analysis, that can be performed at the edge, and 
includes an incremental PCA for feature extraction, and a 
novelty detection and clustering algorithm based on RDE 
concept. 
First, the problem of condition recognition is stated. It 
requires to identify the signals that reflect the implemented 
operating condition, to extract the relevant features for each 
condition, to recognize when a change of the operating 
condition occurs and finally to group the data related to the 
same operating condition into the same cluster. Second, 
related works are investigated and the mathematical 
background of the adopted algorithms for incremental feature 
extraction, anomaly detection and clustering, is provided. 
Then, the proposed methodology is described, which is 
completely unsupervised and can be applied “from scratch”. 
The only assumption is related to the first data samples, 
which are assumed to be normal. Thus, the anomaly detection 
algorithm is able to recognize if a change in the behavior is 
occurring, while the clustering algorithm is needed to decide 
whether the anomaly corresponds to an existing cluster, to a 
new cluster or just to a measurement error. Finally, a case of 
an automatic machinery operating in a real industrial context, 
whose monitored subsystem is subject to very slow 
degradation that depends on the implemented machinery 
setting, is presented. The case study shows that the proposed 
methodology is able to recognize when the operating 
condition changes and to assign the data sample to the 
corresponding operating condition.  
Further research will be dedicate to (1) the integration of a 
classification model that, for each cluster, creates a class, so 
that it can be applied in the streaming procedure for assigning 
the data to existing operating condition, (2) the integration in 
the streaming methodology of RUL prediction based on 
degradation models trained on data related to the known 
operating conditions. 
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