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Abstract

Unsupervised Domain Adaptation (UDA) for point cloud

classification is an emerging research problem with relevant

practical motivations. Reliance on multi-task learning to

align features across domains has been the standard way to

tackle it. In this paper, we take a different path and propose

RefRec, the first approach to investigate pseudo-labels and

self-training in UDA for point clouds. We present two main

innovations to make self-training effective on 3D data: i) re-

finement of noisy pseudo-labels by matching shape descrip-

tors that are learned by the unsupervised task of shape re-

construction on both domains; ii) a novel self-training pro-

tocol that learns domain-specific decision boundaries and

reduces the negative impact of mislabelled target samples

and in-domain intra-class variability. RefRec sets the new

state of the art in both standard benchmarks used to test

UDA for point cloud classification, showcasing the effec-

tiveness of self-training for this important problem.

1. Introduction

Properly reasoning on 3D geometric data such as point

clouds or meshes is crucial for many 3D computer vision

tasks, which are key to enable emerging applications like

autonomous driving, robotic perception and augmented re-

ality. In particular, assigning the right semantic category

to a set of points that represent the surface of an object

is a required skill for an intelligent system in order to un-

derstand the 3D scene around it. Such problem, referred

to as shape classification, was initially addressed by hand-

crafted features [20, 4, 44], while, with the advances in

deep learning, recent proposals learn features directly from

3D point coordinates by means of deep neural networks

[37, 38, 28, 63, 62, 27, 18, 58, 49, 24]. Although data-

driven approaches can achieve impressive results, they re-

quire massive amounts of labeled data to be trained, which
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Figure 1. Feature space of a classifier (left) and a reconstruction

auto-encoder (right). A classifier trained on source shapes only

(blue) may not be effective on target shapes (orange) and assign

wrong pseudo-labels. An auto-encoder, instead, tends to cluster

similar shapes together in the learned embedding, such that its

features can be used as global shape descriptors to correct wrong

pseudo-labels.

are cumbersome and time-consuming to collect. Typically,

3D deep learning methods use synthetic datasets of CAD

models, e.g. ModelNet40 [60] or ShapeNet [6], to harvest

a large number of 3D examples. While synthetic datasets

enable 3D deep learning, they create a conundrum. On the

one hand, shape classifiers trained on ModelNet are very

effective on synthetic data, as witnessed by performance

saturation on standard benchmarks [54, 14]. On the other

hand, though, they are not able to transfer their perfor-

mance to real-world scenarios [54], where point cloud data

are usually captured by RGB-D or LiDAR sensors [10, 17].

This limitation severely restricts the deployment of 3D deep

learning methods in real-world applications.

Unsupervised Domain adaptation (UDA) aims at bridg-

ing this domain shift [50] by learning to transfer the knowl-

edge gained on a labeled dataset, i.e. source domain, to an

unlabeled target dataset, i.e. target domain.

UDA has its roots in 2D computer vision, where a mul-

titude of methods have been proposed [22]. Among them,

the most widespread approach pertains globally aligning the

feature distributions between the source and target domain.

This is the paradigm also leveraged by methods tackling
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UDA for 3D data, either explicitly, by designing losses and

models to align features [39], or implicitly, by solving a

self-supervised task on both the source and target domains

with a shared encoder [3, 1]. We argue that, when moving

from a synthetic CAD dataset to a real world one, feature

alignment can only lead to sub-optimal solutions due to the

large differences between the two domains. Indeed, acquir-

ing objects in cluttered scenes results oftentimes in partial

scans with missing parts due to occlusions. Moreover, reg-

istration errors arising when fusing multiple 2.5D scans [11]

to obtain a full 3D shape, alongside noise from the sensor,

result in less clean and geometrically coherent shapes than

CAD models (see Fig. 3). Therefore, the shape classifier

may need to ground its decision on new cues, different from

those learned on the source domain, where the clean full

shape is available, to correctly classify target samples.

To let the classifier learn such new cues, in this paper we

propose RefRec (Refinement via Reconstruction), a novel

framework to perform unsupervised domain adaptation for

point cloud classification. Key to our approach is reliance

on pseudo-labels [23], i.e. predictions on the target domain

obtained by running a model trained on the source domain,

which are then used as a noisy supervision to train a classi-

fier on the target domain and let it learn the domain-specific

cues. This process is usually referred to as self-training

[23, 66]. However, the pseudo-labels obtained from a model

trained on the source domain may be wrong due to the do-

main shift (as shown in Fig. 1-left) and a target domain clas-

sifier naively trained on them would underperform. There-

fore, our key contribution concern effective approaches to

refine pseudo-labels. We propose both an offline and an on-

line refinement, i.e. before training and while training on

pseudo-labels. Both refinements are based on the idea that

similar shapes should share similar labels. To find simi-

lar shapes, we match global shape descriptors, i.e. the em-

bedding computed by an encoder given the input shape.

Here we make another key observation, illustrated in Fig.

1: the space of features learned by a classifier is organized

to create linear boundaries among different classes, but it

is not guaranteed -nor meant- to posses a structure where

similar shapes lay close one to another, especially for tar-

get samples which are not seen at training time. Hence,

such features are not particularly effective if used as global

shape descriptors. In contrast, teaching a point cloud auto-

encoder to reconstruct 3D shapes is an effective technique

to obtain a compact and distinctive representation of the in-

put geometric structures, as proven by recent proposals for

local and global shape description [64, 15, 12, 45], which,

in our setting, can be trained also on the target domain since

it is learned in an unsupervised way. By leveraging on

such properties of the reconstruction latent space, in the of-

fline step we focus on reassigning the pseudo-labels of tar-

get samples where the source domain classifier exhibits low

confidence, while in the online step we compute prototypes

[36], i.e. the mean global descriptors on the target domain

for each class, and we weight target pseudo-labels accord-

ing to the similarity of the input shape to its prototype. Pe-

culiarly, by using reconstruction embeddings trained also on

the target domain to compute prototypes, we avoid the do-

main shift incurred when using the classifier trained on the

source domain as done by previous 2D methods [19]. In the

online refinement step, we also leverage the standard train-

ing protocol of 2D UDA methods based on mean teacher

[48] to improve the quality of pseudo-labels as training pro-

gresses.

We can summarize our contributions as follows:

1. we investigate on self-training to solve UDA for point

clouds, an approach that sharply differs from existing

proposals in literature based on multi-task learning. To

the best of our knowledge, this work is the first to study

this alternative path;

2. we show how global descriptors learned for shape re-

construction can be effectively used both offline and

online to refine pseudo-labels in UDA for point cloud

classification;

3. we show how effective techniques for 2D UDA, like

domain-specific classifiers and mean teacher supervi-

sion, can be successfully used on 3D data;

4. we achieve new state of the art performance on the

standard benchmarks used to assess progress in UDA

for point cloud classification.

2. Related Work

2.1. Unsupervised Domain Adaptation (UDA)

Unsupervised Domain Adaptation aims at reducing the

need of large amounts of annotated data. The key idea is

to learn distinctive and powerful features in the source do-

main and exploit such representation in the target domain.

A remarkable amount of work has been conducted for im-

age classification [13, 5, 30, 29, 47, 52, 53, 25], semantic

segmentation [26, 51, 7, 16, 59, 21] and object detection

[9, 56, 56, 57, 42]. The most common approach to tackle

UDA is to minimize the discrepancy between domains to

obtain domain-invariant features, so that the same classi-

fier can be deployed in both domains. Alignment in feature

space can be achieved by forcing features from both domain

to have similar statistics, as done in [30, 29]. Another inter-

esting line of research, instead, casts domain alignment as

a min-max problem, exploiting adversarial training to at-

tain such alignment. For example, Tzeng et al. [52] intro-

duced a domain confusion loss to obtain features indistin-

guishable across domains. Ganin et al. [13] try to learn
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Figure 2. RefRec comprises three steps. First, in the pseudo-labels warm up step, we train a reconstruction network Φrec on both source

and target domains. The weights of the encoder are used to initialize the backbone Φ
w

cls of a classifier, that is then trained on the source

domain. In the refinement step, we use the classifier to split target samples in the easy (E) and hard (H) sets according to their confidence

and refine them by performing nearest neighbor queries in the auto-encoder feature space. Finally, in the self-training step, we train a

target-specific classifier Ψt by refined pseudo-labels and online pseudo-labels obtained with the mean teacher architecture [48].

domain invariant representations in an adversarial way by

back-propagating the reverse gradients of the domain clas-

sifier. All these methods are meant to work with images

and do not explore any variations or extensions to exploit

3D data. In this work, instead, we turn our attention on 3D

data and focus on their peculiar properties to design an ef-

fective domain adaptation methodology.

2.2. Unsupervised 3D Domain Adaptation

Only few papers discuss Unsupervised Domain Adapta-

tion for point cloud classification. Among these, PointDAN

[39] is a seminal work that proposes to adapt a classical

2D domain adaptation approach to the 3D world. Specifi-

cally, they focus on the alignment of both local and global

features, building their framework upon the popular Maxi-

mum Classifier Discrepancy (MCD) [43] for global feature

alignment. Differently, [3, 1] leverage on Self-supervised

learning (SSL) to learn simultaneously distinctive features

for both the source and target domains. Similarly, [3] also

relays on SSL, and introduces a novel pretext task to learn

strong features for the target domain as well. In this work,

we take one step further and present an unsupervised do-

main adaptation method based on pseudo-labels that ex-

ploits a shape reconstruction task to refine them.

2.3. Deep Learning for Point Clouds Reconstruction

With the recent advances in deep learning several meth-

ods for point cloud reconstruction have been suggested. A

seminal work in this area [2] proposes a new auto-encoder

architecture for point clouds using the permutation invariant

operator introduced in [37]. AtlasNet [15] and FoldingNet

[64] propose a plane-folding decoder to learn to deform

points sampled from a plane in order to reconstruct the input

surface. TearingNet [33] takes inspiration from [64, 15] and

present a tearing module to cut regular 2D patch with holes,

or into several parts, to preserve the point cloud topology.

In [8], the authors reconstruct the point clouds by training

a generative adversarial network (GAN) on the latent space

of unpaired clean synthetic and occluded real point clouds.

We take inspiration from the finding of [2] and leverage the

expressive power of point cloud auto-encoders to pre-train

our shape classifier and learn a global shape descriptor de-

ployed for pseudo-labels refinement.

3. Method

In this work, we address UDA for point clouds classifi-

cation. Hence, we assume availability of a labeled source

domain S = {(xis ∈ Xs, y
i
s ∈ Ys)}

ns

i=1, and a target do-

main T = {x
j
t ∈ Xt}

nt

j=1, whose labels {yjt ∈ Yt}
nt

j=1

are, however, not available. As in standard UDA settings

[55], we assume to have the same one-hot encoded label

space Ys = Yt = Y = {0, 1}k and the same input space

Xs = Xt (i.e. point clouds with {x, y, z} coordinates) but

with different distributions Ps(x) 6= Pt(x), e.g. due to

source data being synthetic while target data being real or

due to the use of different sensors. The final classifier for

a point cloud x can be obtained as a composite function

Ω = Φ ◦ Ψ, with Φ : X → R
d representing the feature

extractor and Ψ : R
d → [0, 1]k the classification head,

which outputs softmax scores p̂ ∈ [0, 1]k. When one-hot

labels are needed, we further process softmax scores with



Λ : Rk → Y to obtain the label corresponding to the largest

softmax score, with such value

providing also the confidence associated with the label

prediction. Although the largest softmax is a rather naive

confidence measure, we found it to work satisfactorily in

our experiments. Our overall goal is to learn a strong clas-

sifier Ωt for the target domain even though annotations are

not available therein.

An overview of our method is depicted in Fig. 2. It en-

compasses three major steps: warm-up, pseudo-labels re-

finement, and self-training. The purpose of the first step,

described in Sec. 3.1, is to train a model effective on tar-

get data by using labelled source data and unlabelled target

data. Once trained, this model provides the initial pseudo-

labels. These are refined offline in the second step, de-

scribed in Sec. 3.2, in order to partially reduce the errors

in pseudo-labels due to the limited generalization of the

source classifier to the target domain. Finally, in the last

step, detailed in Sec. 3.3, we introduce an effective way of

exploiting pseudo-labels during self-training by combining

a domain-specific classifier with an online pseudo-labels

weighting strategy that exploits prototypes computed in the

target domain.

3.1. Pseudo­labels Warm­up

The first step of our pipeline seeks to produce good ini-

tial pseudo-labels, which, after refinement, can be used to

train the final classifier on the source domain and the tar-

get domain augmented with pseudo-labels. The warm-up

step is very important, as the effectiveness of self-training

is directly related to the quality of pseudo-labels. To ob-

tain good initial pseudo-labels, we focus on pretraining and

data augmentation, with the aim of reducing overfitting on

source data. Pre-training is largely adopted also in UDA for

image classification, where ImageNet pre-training is a stan-

dard procedure [19, 35, 30] that learns powerful features

able to generalize to multiple domains and alleviates the risk

of overfitting when training solely on data coming from the

source distribution. Differently from UDA in the 2D world,

however, here we focus on unsupervised pre-training. This

is particularly attractive for the UDA context, where no su-

pervision is available for the target domain. In fact, inspired

by recent advances on representation learning for 3D point

clouds, which have demonstrated the effectiveness of un-

supervised techniques for learning discriminative features

[64, 15, 12, 45], we propose to use point cloud reconstruc-

tion as unsupervised pre-training for our backbone. The key

advantage of such pre-training is the possibility to capture

discriminative features also for the target domain since un-

supervised pre-training can be conducted on both domains

simultaneously. Moreover, it learns a feature extractor Φrec

which can be deployed also to refine labels effectively, as

we do in the following steps of our pipeline.

We follow the same strategy proposed in [2], and use

a standard PointNet [37] backbone as Φrec to produce a

global d-dimensional descriptor of the input point cloud.

This latent representation is then passed to a simple decoder

made out of 3 fully connected layers that tries to reconstruct

the original shape. During training we minimize both the

Chamfer Discrepancy (CD) LCD and Earth Mover’s dis-

tance (EMD) LEMD [41] as loss functions [2]. Addition-

ally, as mentioned above, data augmentation is a key ingre-

dient to improve generalization, especially for the synthetic-

to-real adaptation case, since 3D real scans always exhibits

occlusions and non-uniform point density. For this reason,

when performing synthetic-to-real adaptation, we apply a

data augmentation procedure similar to that proposed in

[46] in order to simulate occlusions.

To conclude warm-up, we train a new classifier Ωw =
Φw

cls ◦ Ψw on the source dataset with a classical cross-

entropy loss. Importantly, Φw
cls and Φrec have the same

architecture and the weights θ of the backbone Φw
cls are ini-

tialized with those learned for Φrec. We then use Ωw to ob-

tain pseudo-labels {ŷjt = Λ(Ωw(xj
t )}

nt

j=1) alongside their

confidence scores.

We may, in principle, exploit these pseudo-labels to per-

form self-training in the target domain. However, even if we

rely on unsupervised pre-training and data augmentation to

boost performance on the target domain, they are still noisy.

Indeed, due to the domain gap, only a small portion of the

pseudo-labels can be considered reliable, while the major-

ity of the samples are assigned wrong labels that could lead

to poor performance when applying self-training. Hence, in

the next step, we refine the initial pseudo-labels obtained in

the warm-up step by leveraging on Φw
rec.

3.2. Pseudo­labels Refinement

To refine pseudo-labels, we exploit the confidence com-

puted by the classifier Ωw and split pseudo-labels in the

two disjoint sets of highly confident predictions, denoted

as E (i.e. easy split), and uncertain ones, denoted as H (i.e.

hard split). We first build E by selecting the g=10% most

confident predictions on the target samples for each class.

We perform this operation class-wisely to obtain a suffi-

cient number of examples for each class and to reproduce

the class frequencies in E . H is composed by all the re-

maining target samples.

One of the key idea behind RefRec is to utilize the em-

bedding of the reconstruction backbone Φrec, instead of

Φw
cls, to improve the labels of the samples in H. We con-

jecture that since Φw
cls has been trained only on the source

domain, its embeddings are not discriminative for the target

domain, and more importantly there are no guarantees that

objects belonging to the same class, yet coming from differ-

ent domains, would lay close in the feature space. Hence,

we assign new pseudo-labels to target samples according to



Figure 3. Samples from cabinet. First row: intra-class variability

between domains (ModelNet and ScanNet). Second row: intra-

class variability in ScanNet.

similarities in the feature space of Φrec.

We first seek to expand the set of easy examples E by

finding in the feature space of Φrec the nearest neighbor in

H for each sample of E and viceversa. To refine pseudo-

labels for samples in H, we adopt a well-know technique

employed for surface registration [12, 65, 45] and accept

only reciprocal nearest neighbor matches, i.e. pairs of sam-

ples that are mutually the closest one in the feature space:

if one sample h ∈ H is the nearest neighbour in H of a

sample e ∈ E and e is in turn the nearest neighbor of h in

E , we move h to the easy split and label it according to the

pseudo-label of e. At the end of this procedure we obtain a

refined set of easy examples Er.

We then try to refine the pseudo-labels for the samples

left in H exploiting Er. In particular, we select K-nearest

neighbors (K = 3 in our experiments) in the refined set

Er for each remaining sample h ∈ H, and assign the new

pseudo-label to h by majority voting. When there is no con-

sensus among the K neighbors, we assign the pseudo-label

of the closest one. This produces the refined set of hard ex-

amples Hr. It is important to note that the entire process

is applied offline before the self-training step, as illustrated

in Fig. 2, and the absence of hard thresholds in all the re-

finement steps facilitates the applicability of the proposed

method across datasets.

3.3. Self­training

When performing synthetic-to-real adaptation and vice-

versa, the gap among the two distributions could be large

and difficult to reduce even in case of perfect supervision.

As a matter of example, Fig. 3 shows how shapes, such as

cabinets, may look very different across domains (first row)

as well as within a domain (second row). A high intra-class

variability can be somehow dealt with in a supervised set-

ting, but it is harder to handle when noisy supervision in

the form of pseudo-labels must be used. Hence, in this set-

ting, it is difficult for a neural network to find common fea-

tures for shapes belonging to the same class across domains.

We address this issue by adopting domain-specific classifi-

cation heads together with online pseudo-labels refinement

while performing the self-training step that concludes our

Target domain class A

Source domain class A

Target domain class B

Source domain class B Source domain decision boundary
Target domain decision boundary

Single head decision boundary

AB

A

B

Figure 4. Single head vs domain-specific classification heads.

When a single head is deployed (left side), it may not be possi-

ble to find a linear decision boundary that correctly classifies both

classes for the source and target domain. When domain-specific

classification heads are deployed, the model can focus on each

domain separately and learn more effective decision boundaries

(right side).

pipeline.

Domain-specific classification heads. To tackle intra-

class variability across domains, we deploy a shared en-

coder Φcls, initialized using the weights from Φrec, and at-

tach two domain-specific classification heads, Ψs and Ψt,

for the source and target domain, respectively. The benefit

of having a target-specific head (right) versus a single head

trained on both domains (left) is highlighted in Fig. 4.

When using a single classification head, the model tries

to separate classes for both domains simultaneously, which

may lead to a non-optimal decision boundary. Indeed, due

to the high intra-class variability across the domains it is not

possible to find a single decision boundary to correctly sep-

arate all samples for both, leading to some wrongly classi-

fied samples. When employing two domain-specific heads,

instead, the model can learn two more effective boundaries.

Although domain-specific classification heads have been

already explored in UDA for image classification [40], in

RefRec we can apply them in a unique way, which makes

them more effective, as it will been shown in our ablation

studies. In particular, we train the first head Ψs on the

source domain mixed with Er, while we supervise the sec-

ond head using target data only, i.e. both Er and Hr. By do-

ing this, we force both heads to correctly classify the easy

split, which contains the most confident predictions, i.e. the

set of target samples already more aligned with the source

domain. Thereby, training with this strategy does not re-

duce performance on the source domain while it enforces a

partial feature alignment across domains. At the same time,

by only feeding target data to Ψt, we let the model define

target-specific boundaries, alleviating the negative impact

of the intra-class variability across domains.

Online pseudo-labels refinement. Even when using

domain-specific classification heads, the intra-class vari-

ability on the target domain can still affect the model perfor-

mance. To deal with this issue we adopt an online pseudo-

labels refinement and weighting strategy. The key intu-



ition behind online refinement is that, as training progresses,

our classifier better learns how to classify the target do-

main thanks to the pseudo-labels and thus we can progres-

sively improve the pseudo-labels by exploiting such freshly

learned knowledge. Purposely, we exploit the mean teacher

[48] of our model in order to obtain online pseudo-labels ỹt:

ỹt = Λ(Ψ̃s(Φ̃cls(xt)) + Ψ̃t(Φ̃cls(xt))) (1)

It is important to note that Φ̃cls, Ψ̃s, and Ψ̃t are never up-

dated trough gradient back-propagation, as they consists of

simple temporal exponential moving averages (EMA )of

their student counterparts [48]. At each training step, we

feed one batch of samples from {S, Er} and one batch

from {Er,Hr} to train Φcls ◦ Ψs and Φcls ◦ Ψt, respec-

tively. As for the source classifier, we train it by the stan-

dard cross-entropy loss with labels for the source domain

and the pseudo-labels ŷt obtained from the refinement step

for Er:

Ls = Lce(ps,ys) + Lce(pt, ŷt) (2)

We instead exploit both the refined (ŷt) and the on-line (ỹt)

pseudo-labels when training the target classifier:

Lt = (1− αit)ztLce(pt, ŷt) + αitztLce(pt, ỹt) (3)

where αit is a weighting factor that starts from 0 (use only

refined pseudo-labels) and increases at every iteration up to

1 (use only on-line pseudo-labels). Intuitively, when self-

training starts, we trust the previously refined pseudo-labels

and thus give more weight to the first term of Eq. (3) as

the mean teacher is not reliable yet. As training goes on,

we progressively trust more the output of the mean teacher,

i.e. ỹt, and so give more weight to the second term. zt is

instead a weighting factor that accounts for the plausibility

of the pseudo-label. zt is computed for each target sample

exploiting once again the embedding of Φrec. In particu-

lar, before the self-training step, we compute the class-wise

prototypes η(k) ∈ R
d as the class-wise average of the target

features in the easy split:

η(k) =

∑
xt∈Er Φrec(xt) ∗ ✶(ŷt,k == 1)

∑
xt∈Er ✶(ŷt,k == 1)

(4)

where ŷt,k is the k-entry in ŷt. We only consider Er as it

contains the most reliable pseudo-labels for the target do-

main. We then obtain the confidence score for each sample

by simply computing the softmax of the opposite of the dis-

tance between the current embedding of xt and the proto-

type of the class k assigned to it in its online pseudo-label,

k = argmaxk′ ỹt,k′ :

zt =
exp(−‖Φ̃cls(xt)− η(k)‖2)

∑
k′ exp(−‖Φ̃cls(xt)− η(k

′)‖2)
. (5)

Hence, zt forces the loss to ignore samples which are far

from the expected prototype. In fact, when a sample has

a very different representation from the expected class pro-

totype, either the pseduo-label is wrong or the input point

cloud is an outlier in the target distribution, and dynami-

cally weighting it less in the self-training process allows for

learning a better classifier.

4. Experiments

We evaluate our method on two standard datasets for

point cloud classification: PointDA-10 [39] and ScanOb-

jectNN [54].

PointDA-10. PointDA-10 is composed by subsets of

three widely adopted datasets for point cloud classifica-

tion: ShapeNet [6], ModelNet40 [61] and ScanNet [10].

The subsets share the same ten classes and can be used to

define six different pairs of source/target domains, which

belongs to three different adaptation scenarios: real-to-

synthetic, synthetic-to-synthetic and synthetic-to-real, with

the last one arguably the most relevant to practical applica-

tions. ModelNet-10 contains 4183 train samples and 856

tests samples of 3D synthetic CAD models. ShapeNet-10

is a synthetic dataset alike, but exhibits more intra-class

variability compared to ModelNet-10. It consists of 17,378

train samples and 2492 test samples. ScanNet-10 is the only

real datasets and contains 6110 train and 1769 test samples.

ScanNet-10 has been obtained from RGB-D scans of real-

world indoor scenes. Due to severe occlusions and noise in

the registration process, ScanNet-10 is hard to address even

by standard supervised learning, which renders the associ-

ated synthetic-to-real UDA setting very challenging. Fol-

lowing previous 3D DA work [39, 3, 1], we uniformly sam-

ple 1024 points from each 3D shape for training and testing.

ScanObjectNN. ScanObjectNN is a real-world dataset

composed by 2902 3D scans from 15 categories. Simi-

larly to ScanNet-10, it represents a challenging scenario due

to the high diversity with respect to synthetic datasets and

the presence of artifacts such as non-uniform point den-

sity, missing parts and occlusions. Several variants of the

ScanObjectNN dataset are provided. As in [3], we select the

OBJ ONLY version which contains only foreground ver-

tices, and test in the synthetic-to-real setting ModelNet40

to ScanObjectNN using the 11 overlapping classes.

4.1. Implementation details

As done in all previous 3D DA methods [39, 3, 1], we

use the well-known PointNet [37] architecture. In par-

ticular, we use the standard PointNet proposed for point

cloud classification for all our backbones Φw
cls, Φcls, and

Φrec. It produces a 1024 dimensional global feature rep-

resentation for each input point cloud. We train the re-

construction network for 1000 epochs in the unsupervised

pre-training step [2], while we train only for 25 epochs

when training classification networks in each step of our

pipeline. We set to 0.0001 both learning rate and weight



Method
ModelNet to ModelNet to ShapeNet to ShapeNet to ScanNet to ScanNet to

AvgShapeNet ScanNet ModelNet ScanNet ModelNet ShapeNet

No Adaptation 80.2 43.1 75.8 40.7 63.2 67.2 61.7

PointDAN [39] 80.2 45.3 71.2 46.9 59.8 66.2 61.6

DefRec [1] 80.0 46.0 68.5 41.7 63.0 68.2 61.2

DefRec+PCM [1] 81.1 50.3 54.3 52.8 54.0 69.0 60.3

3D Puzzle [3] 81.6 49.7 73.6 41.9 65.9 68.1 63.5

RefRec (Ours) 81.4 56.5 85.4 53.3 73.0 73.1 70.5

Oracle 93.2 64.2 95 64.2 95.0 93.2

Table 1. Shape classification accuracy (%) on the PointDA-10 dataset. For each method, we report the average results on three runs. Best

result on each column is in bold.

Method
ModelNet to

ScanObjectNN

No Adaptation 49.6

PointDAN [39] 56.4

3D Puzzle [3] 58.5

RefRec (Ours) 61.3

Table 2. Shape classification accuracy (%) on the ScanObjectNN

dataset. For each method, we report the average results on three

runs. Best result is in bold.

decay. We train with batch size 16 using AdamW [32]

with cosine annealing [31] as optimizer. The framework

is implemented in PyTorch [34], and is available at https:

//github.com/CVLAB-Unibo/RefRec. At test time, we

use the target classifier Φcls ◦Ψt ◦ Λ in the target domain.

4.2. Results

We report and discuss here the results of RefRec, and

compare its performance against previous work as well as

the baseline method trained on the source domain and tested

on the target domain (referred to as No Adaptation). For

each experiment, we provide the mean accuracy obtained on

three different seeds. Since in UDA target annotations are

not available, we never use target labels to perform model

selection and we always select the model that gives the best

result on the validation set of the source dataset.

PointDA-10. We summarize results for each bench-

mark in Tab. 1. Overall, our proposal improves by a

large margin the previous state-of-the-art methods. In-

deed, on average we obtain 70.5% against the 63.5% ob-

tained by 3D puzzle [3], which is an improvement of 7%

in terms of accuracy. From Tab. 1, it is also possible to ob-

serve how our method is consistently better than previous

works in the synthetic-to-real adaptation scenario, which

we consider the most important for practical applications.

Compared to DefRec+PCM [1], which obtains 50.3 in the

ModelNet→ScanNet setting, we improve by 6.2%. As re-

gards ShapeNet→ScanNet, we obtain 53.3, surpassing by

0.5% DefRec+PCM again. Moreover, we highlight how

RefRec seems to be the only framework able to general-

ize well to all adaptation scenarios. In fact, when compar-

ing our proposal to DefRec+PCM which was the strongest

method for the synthetic-to-real case, we also improve

by a large margin in cases such as ShapeNet→ModelNet

and ScanNet→ModelNet, where DefRec+PCM seems to

fail. Finally, the ability of RefRec to handle large dis-

tributions gaps is also confirmed by the large improve-

ments in the real-to-synthetic cases. Indeed, we observe

a +7.1% improvement for ScanNet→ModelNet and +4.1%

for ScanNet→ShapeNet.

ScanObjectNN. In Tab. 2 We report the results for the

challenging ModelNet−→ScanObjectNN adapation task. On

this challenging benchmark, we achieve 61.3%, which is

2.8% better that the previous state-of-the-art result.

4.3. Ablation studies

To validate the importance of our design choices, we

conduct some ablation studies on both the pseudo-labels re-

finement process and the self-training strategy.

Pseudo labels refinement. In Tab. 3, we show the effect

of our refinement process. When performing self-training

with the initial, unrefined pseudo-labels produced by the

classifier Ψs after the warm-up step (first row), we obtain an

overall accuracy of 65.4%. Conversely, when we apply our

descriptor matching approach aimed at pseudo-labels re-

finement (third row), the accuracy increases to 68.7%. This

confirms our intuition that using the reconstruction network

allows to capture similarities among shapes in feature space

and consequently to improve the pseudo-labels. Moreover,

we compare self-training using the most-confident pseudo-

labels only (second row) against self-training with the re-

fined pseudo-labels (third row). The improvement given

by the refinement approach (+3.8%) suggests that only us-

ing the most confident pseudo-labels is not enough to reach

good performance.

Self-training strategy. In Tab. 4, we show the effec-

tiveness of our strategy to perform self-training and ablate

our design choices comparing with other reasonable alter-

natives. When deploying the domain-specific classification

heads, and training Ψs solely with source data (first row),

results are worse then when we train Ψs with both source

and Er (second row). This is more evident for the synthetic-

to-real adaptation and vice versa, where partial alignment in

feature space is more difficult to attain. Indeed in all four

https://github.com/CVLAB-Unibo/RefRec
https://github.com/CVLAB-Unibo/RefRec


Experiment ModelNet to ModelNet to ShapeNet to ShapeNet to ScanNet to ScanNet to
AvgTraining data Offline ref. ShapeNet ScanNet ModelNet ScanNet ModelNet ShapeNet

S, E ,H 82.2 51.7 80.4 43.4 64.7 70.0 65.4

S, E 82.8 49.6 79.0 43.8 64.1 69.8 64.9

S, Er,Hr X 79.1 57.3 85.6 50.7 70.1 69.1 68.7

Table 3. Ablation study on the effect of offline refinement. We report the average shape classification accuracy (%) on three runs.

Experiment ModelNet to ModelNet to ShapeNet to ShapeNet to ScanNet to ScanNet to
AvgΨs Ψt EMA Online ref. ShapeNet ScanNet ModelNet ScanNet ModelNet ShapeNet

S Er,Hr 79.5 55.3 84.7 49.3 72.0 68.5 68.2

S, Er Er,Hr 79.3 56.9 84.7 51.6 71.7 69.0 68.9

S, Er Er,Hr X 80.3 54.2 83.2 52.7 72.8 71.6 69.1

S, Er Er,Hr X X 81.4 56.5 85.4 53.3 73.0 73.1 70.5

Table 4. Ablation study on the effect of the self-training strategy and online refinement. We report the average shape classification accuracy

(%) on three runs.

Method
ModelNet to ModelNet to ShapeNet to ShapeNet to ScanNet to ScanNet to

AvgShapeNet ScanNet ModelNet ScanNet ModelNet ShapeNet

No Adaptation 80.2 43.1 75.8 40.7 63.2 67.2 61.7

Warm-up 81.3 51.4 78.9 43.8 59.7 67.5 63.7

Multi-task 80.6 45.4 78.9 46.0 63.9 67.4 63.7

Self-train multi-task 81.2 46.9 76.3 47.7 66.0 66.5 64.1

RefRec (Ours) 81.4 56.5 85.4 53.3 73.0 73.1 70.5

Table 5. Ablation study on the effect of pre-training. We report the average shape classification accuracy (%) on three runs.

cases, forcing Ψs to correctly classify the target easy split is

beneficial. On the other hand, for the synthetic-to-synthetic

case, performances remain stable. This is an expected be-

haviours since the decision boundaries in these easy adapta-

tion scenarios should not vary significantly across domains.

Finally, in the last two rows, we ablate the effect of the mean

teacher and the online refinement, respectively. The mean

teacher only gives a marginal contribution (+0.2%), while

its combination with our online refinement accounts for a

1.4% improvement.

Warm-up vs SSL. Finally, we aim to shed some light on

the importance of unsupervised pre-training, i.e. warm-up,

compared to SSL, which is so far the most studied approach

to UDA for point cloud classification. In Tab. 5, we com-

pare our warm-up step (second row), which exploits unsu-

pervised pre-training, with a multi-task approach as done in

[3, 1] (multi-task, third row), where the SSL task of shape

reconstruction is solved by an auxiliary head. For fair com-

parison, we adopt in both cases our data augmentation in

the synthetic-to-real setting, and train the multi-task archi-

tecture for 150 epochs, as done in [3] and [1], since no pre-

training is applied. Although a simple comparison between

such baselines does not establish a clear winner (63.7 on

average in both cases), we observe a remarkable difference

after the self-training stage. Indeed, when comparing the

classifier self-trained with pseudo-labels obtained with the

multi-task approach (fourth row) against the classifier self-

trained with refined pseudo-labels (last row), and applying

the mean teacher in both cases, we observe a remarkable

gap (+7%).

5. Conclusion

In this work, we improved the state of the art in UDA

for point cloud classifications. We showed how solving 3D

UDA by means of self-training with supervision from ro-

bust pseudo-labels is a superior paradigm with respect to the

established way of tackling it by multi-task learning. Key

contributions we make are effective ways to refine pseudo-

labels, offline and online, by leveraging shape descriptors

learned to solve shape reconstruction on both domains, as

well as a carefully designed self-training protocol based on

domain-specific classification heads and improved supervi-

sion by an evolving mean teacher. We hope our results will

call for more explorations around the use of pseudo-labels

and self-training in this emerging area of research. In future

for future work, we plan to investigate novel methods to per-

form the warm-up step using metric learning to construct a

more discriminative feature space.
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