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Abstract
The robust optimization approach can be used to tackle uncertain vector problems by con-
sidering worst case scenarios. In this context, notions of robust efficient solutions which are
coherent with a set-valuedminimization process have been introduced in literature in order to
avoid unduly pessimistic attitudes (see e.g. Ehrgott et al. in Eur. J. Oper. Res. 239(1), 17–31,
2014). We address the question whether scalarization and robustification can be commuted
in a non componentwise framework. We prove that the commutation of the two approaches
is ensured under appropriate assumptions. To this purpose, we identify a class of scalariza-
tion processes that ensure necessary and sufficient robust optimality conditions through the
direct scalarization of the uncertain vector optimization problem, without explicitly passing
through the set-valued formulation of the problem.

Keywords Vector optimization · Robust optimization · Scalarization · Uncertainty

1 Introduction

Vector optimization problems, where objectives depend on uncertain parameters, can be
tackled by using the robust approach. Such a methodology aims at hedging the decision
maker against worst case scenarios that may occur as the uncertainties vary within their
domains. Moreover, it is suitable to face the situation where no probability distribution on
parameters is available. The robust approach, introduced by [28] (see also [3]) and widely
developed in [2] for scalar cases, can be extended to uncertain vector optimization programs.
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Fig. 1 Scalarization and robustification

The simplest way to introduce robustness in the parametric multiobjective optimization
problem is to consider the worst case scenario on each component of the multicriteria objec-
tive function. It is the so called componentwise approach introduced in [27] and considered,
for example, in [8, 10]. This approach is unduly restrictive when interdependence among the
uncertainties that affect distinct components of the objective function is present. Such a phe-
nomenon cannot be ruled out in many relevant applications. For instance, in robust portfolio
optimization the parameters influencing the revenue of a given portfolio also affect its risk. In
this context, when we consider worst case scenarios, the minimum revenue occurrence does
not usually coincide with the maximum risk situation. In this models the componentwise
robust approach is unduly pessimistic, since the worst case scenario considered there is often
unrealistic.

Several alternative notions of robust efficiency for uncertain vector problems have been
defined (see, for example, the surveys [30] and [17]). In this work we will consider the
approach introduced in [6] (see also [16]). Remarkably, the notions of robust efficiency in
[6] are related to the so called upper type quasi order set relation (see, e.g., [25]) and can be
considered in a deterministic set-valued optimization framework. Here the set minimization
aproach gives relevance to worst case scenarios at each decision variable, taking into account
possible interdependence among uncertainties. Necessary and sufficient robust optimality
conditions can be obtained through scalarization, provided that suitable scalarizing functions
� : 2Y → R ∪ {±∞} defined on a set-valued framework are given (key properties of
scalarizing maps have been discussed, e.g., in [13]). The above described process, where
scalarization is applied to the set-valued robust counterpart RC −V P of the uncertain vector
problem V P(U), yields the deterministic scalar problem S� − RC − V P (see Fig. 1).

Differently, when scalarization is applied directly to the original vector problem V P(U)

through a scalarizing function ϕ : Y → R∪{±∞}, the uncertain scalar program Sϕ −V P(U)

is obtained. Subsequently, the robust approach as introduced by [2] can be directly applied
to Sϕ − V P(U) in order to obtain the deterministic scalar problem RC − Sϕ − V P (see
Fig. 1). In this paper we investigate the relationship between S� − RC −V P and RC − Sϕ −
V P , where the scalarizing functions � and ϕ are chosen independently from one another:
under which conditions can scalarization and robustification processes be commuted? In
detail, we study under which conditions a scalarization of the (set-valued) robust counterpart
of the uncertain vector problem is equivalent to the robust counterpart of a scalarization
of the same problem. The equivalence should be intended in the sense that both the two
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alternative approaches allow us to characterize the same set of robust optimal solutions of
the original parametric problem V P(U) by necessary and sufficient optimality conditions.
In order to address this problem, on one hand, we note that general scalarization schemes to
formulate problem S� − RC − V P have been proposed in [13], where the authors identify
key properties of scalarizing functions defined on set-valued frameworks that allow them to
obtain necessary and sufficient robust optimality conditions through scalarization. On the
other hand, we focus on the scalarization process used to formulate the uncertain scalar
problem Sϕ − V P(U). To this purpose, we define a fairly general scalarization scheme
that can be applied to the uncertain vector problem V P(U). The classical robust approach
developed in [3] can be directly applied on the scalarized uncertain problem Sϕ − V P(U) in
order to obtain RC − Sϕ −V P . Under appropriate assumptions on function ϕ, we prove that
necessary and sufficient robust optimality conditions can be obtained. Therefore, problem
RC − Sϕ − V P can be used as an alternative way to obtain necessary and sufficient robust
optimality conditions. As a consequence, under this approach, all the known results on robust
scalar optimization (see e.g. [2, 3]) can be used in a consistent waywith the robustness notions
directly defined on the uncertain vector optimization problem. Hence, one can avoid the use
of set-valued analysis tools without loosing the coherence with respect to the definitions
of robustness notions defined in [6, 16]. We underline that the use of optimality conditions
obtained through scalarization on the set-valued robust counterpart S� − RC − V P are, in
a certain sense, less suitable for the use of practitioners. For instance, linear scalarizations,
even if widely used in applications, are not well defined in a set-valued framework.Moreover,
we remark that if linear scalarizations are directly applied on the uncertain vector program
to formulate RC − Sϕ − V P , robust optimality conditions that are not always coherent
with the direct use of the robust approach in vector optimization are obtained. In Sect. 5,
we analyze an example (see [4]) where there are robust efficient solutions of V P(U) which
cannot be obtained as solutions of the robust counterpart of the linearly scalarized problem
RC − Sϕ − V P . Nevertheless, all the robust efficient solutions of the same program can
be found by scalarizing the set-valued robust counterpart RC − V P with an appropriate
nonlinear technique.

Remarkably, a commutativity problem, similar to the one we address here, has been stud-
ied in [8] for uncertain multiobjective programs under the componentwise robust approach.
Furthermore, in [8], only the special setting of multiobjective optimization is considered with
two particular scalarization methods. In this work, we consider a vector optimization prob-
lem with a generic ordering cone K and a non componentwise approach to robustness (see
[6]). In order to obtain a general result on commutativity of robustification and scalarization,
we independently choose the scalarization processes � and ϕ used in S� − RC − V P and
RC − Sϕ − V P in an abstract scalarization framework. In this context, the recent contri-
bution presented in [11] deserves to be mentioned, where robustification and scalarization
approaches have been considered in a componentwise setting and applied to the min-max
regret approach.

The paper is organized as follows. In Sect. 2 we introduce notations and the properties that
ensure necessary and sufficient optimality conditions through scalarization, along the line
marked by [13]. In Sect. 3 we focus on two notions of robust efficiency and we highlight their
connections with a set optimization approach. Then, we formulate problem S� − RC − V P
and we provide necessary and sufficient robust optimality conditions through scalarization.
In Sect. 4, we formulate the robust counterpart of the uncertain scalarized vector program
RC − Sϕ − V P and the requirements on the scalarizing functions ϕ that ensure necessary
and sufficient robust optimality conditions. In Sect. 5, we highlight the relations between the
problems obtained following two alternative routes, where scalarization and robustification
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are switched (see Fig. 1). In Sect. 6, two applications using the Gerstewitz and the ori-
ented distance approach to scalarization are considered in our framework. Such functions are
widely used in scalarizations of vector optimization problems (see, e.g., [29] or [20] and the
references therein). Moreover, in the special case of multiobjective optimization, several well
known scalarization methods, such as Pascoletti-Serafini, ε-constraint or Chebyshev scalar-
ization, can be reduced to the use of the Gerstewitz scalarizing function (see e.g. Sect. 2.5 in
[7]).

2 Preliminary notions

When not differently specified, Y denotes a topological linear space and 2Y denotes the
collection of all subsets of Y . Given the set A ∈ 2Y , ∂A, clA and intA denote, respectively,
the boundary, the closure and the interior of A. The subset K ⊆ Y will denote a closed
and convex cone. The cone K is said to be pointed when K ∩ (−K ) = {0} and solid when
intK �= ∅. The partial order structure induced on Y by the cone K is:

y, y′ ∈ Y , y′ ≤ y ⇐⇒ y − y′ ∈ K

The set A− K denotes the algebraic difference between the sets A and K . The set A ⊆ Y is
said to be K -proper and K -closed when respectively A − K �= Y and ∂(A − K ) ⊆ A − K .
The following results will be used in the sequel.

Lemma 2.1 Let A ⊆ Y be K -proper. If y ∈ ∂(A − K ), then, for all a ∈ cl(A − K ), either
y � a or y − a ∈ ∂(−K ) holds.

Proof We will prove that, if an element a ∈ cl(A − K ) exists such that y ≤ a, then the
element k ∈ K for which y = a−k holds, is such that k ∈ ∂K . Clearly, whenever intK = ∅,
k ∈ ∂K . If intK �= ∅, let k ∈ intK . Then, there exists a neighborhood U of 0 such that
{k} + U ⊆ K . Since a ∈ A − K , then {a − k} + U ⊆ A − K . However, since y = a − k, it
follows {a − k} + U = {y} + U ⊆ A − K . Hence, y /∈ ∂(A − K ), a contradiction. ��
Lemma 2.2 Let A ⊆ Y be K -proper and K -closed. Then, A ∩ ∂(A − K ) �= ∅ holds.

Proof Since ∂(A− K ) ⊆ A− K , then, for all a′ ∈ ∂(A− K ), there exists a ∈ A and k ∈ K
such that

a′ = a − k (1)

We claim that a ∈ ∂(A − K ). Indeed, suppose by contradiction that a /∈ ∂(A − K ). This
implies a ∈ int(A−K ). Hence, a neighborhoodU of 0 exists such that {a}+U ⊆ A−K holds.
Moreover, since k ∈ K , it follows {a − k} + U ⊆ A− K , namely a′ = a − k ∈ int(A− K ),
a contradiction. ��

We consider the partial quasi order induced on 2Y by the ordering cone K through the so
called upper type relation (see [25] and [26]).

Definition 2.3 Let A, B ∈ 2Y . Then B � A ⇐⇒ B ⊆ A − K .

Given A, B ∈ 2Y , the relations ∼ and ≺ are defined as follows

B ∼ A ⇐⇒ A � B and B � A

B ≺ A ⇐⇒ B � A and A �/ B
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When sets are singletons, relation � reduces to ≤: for {y}, {y′} ∈ 2Y , the relation {y} � {y′}
is equivalent to y ≤ y′.

We retrieve here the notions of (strictly)�-preserving and (strictly)�-representing scalar-
izing functions (considered e.g. in [13] and more recently in [12]) and we refer them to the
quasi order relation �. We note that the order preserving properties of a function are closely
related to monotonicity, while the order representing properties compare level sets of the
function with the order structure of the underlying space. We remark that, when an opti-
mization problem is tackled through scalarization, the order preserving (resp. representing)
properties are essential to obtain sufficient (resp. necessary) optimality conditions through
scalarization.

Definition 2.4 LetA ⊆ 2Y be a collection of sets and A ∈ A. A function� : A → R∪{±∞}
is said to be:

a) �-preserving at A on A if

B ∈ A, B � A �⇒ �(B) ≤ �(A)

b) strictly �-preserving at A on A if

B ∈ A, B ≺ A �⇒ �(B) < �(A)

Definition 2.5 LetA ⊆ 2Y be a collection of sets and A ∈ A. A function� : A → R∪{±∞}
is said to be

a) �-representing at A on A when

B ∈ A, �(B) < �(A) �⇒ B ≺ A

b) strictly �-representing at A on A when

B ∈ A, �(B) ≤ �(A) �⇒ B � A

We refer the reader to [13, 14, 18, 19], among others, for contributionswhere several functions
defined on set-valued frameworks with the above mentioned order preserving and order
representing properties have been considered.

Remark 2.6 Wewill consider the restriction of property a) in Definition 2.4 to the vector case
where, when sets are singletons, the set relation � reduces to ≤. Given A ⊆ Y , a function
ψ : Y → R is said to be ≤-preserving at a ∈ A on A when

b ∈ A, b ≤ a �⇒ ψ(b) ≤ ψ(a)

In addition, we will consider the restriction of property b) in Definition 2.5 to the vector
case. Given A ⊆ Y , a function ψ : Y → R is said to be strictly ≤-representing at a ∈ A on
A when

b ∈ A, ψ(b) ≤ ψ(a) �⇒ b ≤ a

The following Example shows that monotone increasing linear functions are everywhere
≤-preserving and nowhere ≤-representing on R

2.

Example 2.7 Let R
2 be endowed with the partial quasi order induced by the cone K = R

2+
and let the linear function � : R

2 → R be such that �(x1, x2) = λx1 + (1 − λ)x2 with
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λ ∈ [0, 1]. The function � is ≤-preserving at any y on R
2. Indeed, given two elements

y, y′ ∈ R
2, the relation �(y′) ≤ �(y) is equivalent to

λ(y′
1 − y1) + (1 − λ)(y′

2 − y2) ≤ 0

which, in turn, is satisfied whenever y′
1 ≤ y1 and y′

2 ≤ y2, namely y′ ≤ y. Differently, the
function � is not ≤-representing at any y on R

2. Indeed, for any y, an element y′ can be
found such that the relation �(y′) ≤ �(y) does not imply y′ ≤ y. For example, if λ �= 0,
pick

y′ =
(
y1 − 1 − λ + ε

λ
, y2 + 1

)

and y′ = (y1 + ε, y2 − ε) if λ = 0, where ε > 0. Clearly, y′
� y always holds. However, in

both cases, it results �(y′) = �(y) − ε ≤ �(y).

Remark 2.8 In Sect. 6, we will consider two non linear functions on vector spaces (the so
called Gerstewitz and oriented distance functions) whose relevant properties in the context
of non linear separation and scalarization have been respectively deepened in [9] and [31].
Provided that appropriate parameters’ selections are performed, both such functions satisfy
the ≤-preserving and strictly ≤-preserving properties.

Let us denote by X the decision space and let f : X × U −→ Y be a vector valued
parameterized objective function, where U is the set of possible parameters’ realizations.
The family V P(U) of parametric vector optimization problems is

minimize f (x, ξ) subject to x ∈ X V P(U)

where X ⊆ X is the feasible set and ξ ∈ U .
We recall the notions of robust strict efficiency and robust efficiency in vector optimization

(see [6, 16]).

Definition 2.9 The element x0 ∈ X is said to be robust strictly efficient when there exists no
x ∈ X\{x0} such that

∀ξ ∈ U, ∃ ξ ′ ∈ U : f (x, ξ) ≤ f (x0, ξ
′)

The element x0 ∈ X is said to be robust efficient when there is no x ∈ X\{x0} such that

∀ξ ∈ U ∃ ξ ′ ∈ U : f (x, ξ) ≤ f (x0, ξ
′)

and

∃ξ̄ ∈ U s.t. f (x0, ξ̄ ) � f (x, ξ), ∀ξ ∈ U
Remark 2.10 The above notions of robust (strict) efficiency have been considered in [6] in the
multiobjective case, where Y = R

p and K = R
p
+, and extended in [16] to vector optimization

problems with general ordering cones. In a certainty setting, where the set of parameters U is
a singleton, the notion of robust efficiency reduces to the usual notion of efficiency in vector
optimization. Moreover, in vector optimization the robust strict efficiency definition reduces
to a strict efficiency notion that coincides with efficiency, whenever the vector objective
function f is injective at the solutions and the ordering cone K is pointed.

We will denote by F ⊆ 2Y the collection of sets

F :=
⎧⎨
⎩

⋃
ξ∈U

f (x, ξ) ⊆ Y : x ∈ X
⎫⎬
⎭
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3 Parametric vector optimization: scalarization of the robust
counterpart

In this Section we refer to the approach described on the left hand side of Fig. 1. First,
we introduce the set-valued robust counterpart of a parametric vector optimization problem.
Subsequently, we consider a suitable scalarization that yields the deterministic scalar problem
S� − RC −V P . Using some scalarization results in [13], we obtain necessary and sufficient
robust optimality conditions on the original uncertain vector problem.

In order to formulate the (set-valued) robust counterpart of the uncertain vector optimiza-
tion problem V P(U) introduced in Sect. 2, let us introduce the map of achievable objective
values F : X → 2Y defined as

F(x) := { f (x, ξ) : ξ ∈ U} ∈ F, ∀x ∈ X (2)

We reformulate the definitions of robust efficiency on the set-valued objective map F by
means of the upper type quasi order “�” induced on 2Y by the ordering cone K (seeDefinition
2.3). It is easy to see that the element x0 ∈ X is robust strictly efficient if and only if

∀x ∈ X\{x0}, F(x) �/ F(x0)

Moreover, the element x0 ∈ X is robust efficient if and only if

x ∈ X , F(x) � F(x0) �⇒ F(x0) � F(x)

Hence, the notions of robust efficiency introduced in Definition 2.9 are consistent with a
set optimization framework. The minimization of the set-valued objective F : X → 2Y

with respect to the upper quasi order � yelds a deterministic set-valued program that can be
interpreted as the (set-valued) robust counterpart of the uncertain vector problem V P(U):

� −minimize F(x) subject to x ∈ X RC − V P

We provide some robust optimality conditions obtained by scalarizing the deterministic set-
valued optimization problem RC−V P . Let� : 2Y → R∪{±∞}.We consider the following
scalar problem, obtained from the set-valued robust counterpart RC − V P by scalarization
through �:

minimize �(F(x)) subject to x ∈ X S� − RC − V P

3.1 Robust optimality conditions through S9 − RC− VP

We consider the axiomatic approach to scalarization in set optimization introduced in
[13]. This approach provides necessary and sufficient optimality conditions whenever the
scalarizing function is characterized by (strictly) �-preserving and (strictly) �-representing
properties. Moreover, we show that such properties cannot be omitted in order to obtain
necessary and sufficient optimality conditions. Hence, all the scalarization methods in set
optimization that provide necessary and sufficient optimality conditions can be framedwithin
this scheme.

Robust strict efficiency

The following Proposition shows the relation between the �-preserving property of � and
sufficient robust strict optimality conditions through scalarization.
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Proposition 3.1 Let � be �-preserving at F(x0) on F . If x0 is the unique solution of S� −
RC − V P, then it is robust strictly efficient. Conversely, if x0 is robust strictly efficient
whenever it is the unique solution of S� − RC − V P, then � is �-preserving at F(x0) on
F .

Proof See Proposition 3.10 in [13] for the first implication. Conversely, we need to prove
that the implication

�(F(x)) > �(F(x0)), ∀ x ∈ X\{x0} �⇒ F(x) �/ F(x0), ∀ x ∈ X\{x0}
entails that � is �-preserving at F(x0) on F . By contradiction, suppose that there exists
x̄ ∈ X\{x0} such that F(x̄) � F(x0) and �(F(x̄)) > �(F(x0)). Hence, the occurrence
�(F(x)) > �(F(x0)), ∀x ∈ X\{x0}, does not imply F(x) �/ F(x0), for all x ∈ X\{x0}, a
contradiction. ��

The following Proposition shows the relation between the strict �-representing property
of � and necessary robust strict optimality conditions through scalarization.

Proposition 3.2 Let � be strictly �-representing at F(x0) on F . If the element x0 ∈ X is
robust strictly efficient, then it is the unique solution of problem S� − RC −V P. Conversely,
if x0 is the unique solution of S� − RC − V P whenever it is robust strictly efficient, then �

is strictly �-representing at F(x0) on F .

Proof See Proposition 3.6 in [13] for the first implication. Conversely, we need to prove that
the implication

F(x) �/ F(x0), ∀x ∈ X\{x0} �⇒ �(F(x)) > �(F(x0)), ∀x ∈ X\{x0}
entails that � is strictly �-representing at F(x0) on F . By contradiction, suppose that there
exists x̄ ∈ X\{x0} such that F(x̄) �/ F(x0) and�(F(x̄)) ≤ �(F(x0)).Hence, the occurrence
F(x) �/ F(x0) for all x ∈ X\{x0} does not imply�(F(x)) > �(F(x0)), for all x ∈ X\{x0},
a contradiction. ��

Robust efficiency

The following Proposition shows the relation between the strict �-preserving property of �

and sufficient robust optimality conditions through scalarization.

Proposition 3.3 Let � be strictly �-preserving at F(x0) on F . If x0 ∈ X is a solution of
problem S� − RC − V P, then it is robust efficient. Conversely, if x0 ∈ X is robust efficient
whenever it is a solution of problem S� − RC − V P, then � is strictly �-preserving at
F(x0) on F .

Proof See Proposition 3.9 in [13] for the first implication. Conversely, we need to prove that
the implication

�(F(x)) ≥ �(F(x0)), ∀x ∈ X �⇒ F(x) �/ F(x0) or F(x) ∼ F(x0), ∀x ∈ X
entails that � is strictly �-preserving at F(x0) on F . By contradiction, suppose that there
exists x̄ ∈ X\{x0} such that F(x̄) � F(x0), with F(x̄) � F(x0) and �(F(x̄)) ≥ �(F(x0)).
Hence, the occurrence �(F(x)) ≥ �(F(x0)), for all x ∈ X , does not imply either
F(x) �/ F(x0) or F(x) ∼ F(x0), for all x ∈ X , a contradiction. ��
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The following Proposition shows the relation between the �-representing property of �

and necessary robust optimality conditions through scalarization.

Proposition 3.4 Let � be �-representing at F(x0) on F . If x0 ∈ X is robust efficient then
it is a solution of problem S� − RC − V P. Conversely, if x0 ∈ X is a solution of problem
S� − RC − V P whenever it is robust efficient, then � is �-representing at F(x0) on F . ��
Proof See Proposition 3.5 in [13] for the first implication. Conversely, we need to prove that
the implication

F(x) �/ F(x0) or F(x) ∼ F(x0), ∀x ∈ X �⇒ �(F(x)) ≥ �(F(x0)), ∀x ∈ X
entails that � is �-representing at F(x0) ∈ F on F . By contradiction, suppose that there
exists x̄ ∈ X\{x0} such that �(F(x̄)) < �(F(x0)) and F(x̄) �/ F(x0) or F(x̄) ∼ F(x0).
Hence, F(x) �/ F(x0) or F(x) ∼ F(x0), for all x ∈ X , do not imply �(F(x)) ≥ �(F(x0))
for all x ∈ X , a contradiction. ��

3.2 Comparison between the set-valued robust and the componentwise robust
approaches

The robust approach as introduced by [2] for scalar uncertain programs, has been extended
to uncertain vector optimization problems in different ways (see, e.g., the surveys [30] and
[17]). The set-valued robust approach gives relevance to the worst possible realizations of
uncertain parameters at each decision variable through the upper quasi order “�”. Differently,
the so called componentwise robust approach, introduced in [27] and widely considered in
applications in the special case of uncertain multiobjective problems (see e.g. [10] or [8] and
the reference therein), considers the worst case at each decision variable to be a single point,
whose coordinates match the componentwise worst cases achieved by each component of
the uncertain objective. Let Y = R

p and K = R
p
+, the componentwise worst case is defined

as the multiobjective function μ : X → R
p

μ(x) =
⎛
⎜⎝
maxξ∈U f1(x, ξ)

...

maxξ∈U f p(x, ξ)

⎞
⎟⎠ , ∀x ∈ X

Note that, in case of conflicting objectives, the componentwise worst case μ(x) may not be
an element of F(x), the set of achievable objective values at x .

The componentwise robust counterpart of V P(U) is

minimize μ(x) subject to x ∈ X
Some interesting results on commutativity between robustification and scalarization were
proved in [8] (see Proposition 3.6) for linear scalarization and ε-constraint scalarization. We
underline that, with the componentwise approach, the robust counterpart is a vector-valued
function as in the original uncertain vector optimization problem. In the special case of
uncertainmultiobjective problems, whereY = R

p and K = R
p
+, if, for all x ∈ X , the relation

μ(x) ∈ F(x) holds, i.e. F(x)− K = {μ(x)}− K , the set-valued worst case scenario at each
decision variable is attained at a unique point. In this event, the robust solutions considered in
RC − V P coincide with the solutions of the componentwise robust counterpart. Whenever,
for some x ∈ X , there exists no element y ∈ F(x) such that F(x) − K = {y} − K , the
componentwise robust approach is unduly pessimistic. This typically happens, for instance, in
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mean-variance portfolio optimization problems (see e.g. the case of elliptic joint uncertainty
set considered in [8]). Moreover, the set-valued robust approach allows us to discard some
dominated situations that cannot be distinguished by using the componentwise approach. This
is shown in the following example, where an uncertain vector problem is tackled through
both the approaches.

Example 3.5 Let Y = R
2, K = R

2+, X = [−1, 0] and U = [0, 1]. We consider the following
uncertain vector problem

minimize f (x, ξ) s.t. x ∈ [−1, 0] V PEx(3.5)(U)

where f : X × U → R
2 is defined by

f (x, ξ) =
(

ξ x
(1 − ξ)x

)
; x ∈ [−1, 0], ξ ∈ [0, 1]

The robustification of problem V PEx(3.5)(U) through the set-valued approach leads to the
formulation of the following set-valued program

� −minimize F(x) s.t. x ∈ [−1, 0]

where the set-valued map F : X → 2R
2
is

F(x) =
⋃

ξ∈[0,1]

(
ξ x

(1 − ξ)x

)
= conv

{(
x
0

)
,

(
0
x

)}
; x ∈ [−1, 0]

andwhere conv{a, b} is the convex hull of {a, b}. Clearly, according toDefinition 2.9, x = −1
is the unique robust efficient solution of V P(U). In Fig. 2, a representation of some set values
of map F is provided. However, the vector function μ : X → R

2 is

μ(x) =
(
maxξ∈[0,1] ξ x
maxξ∈[0,1] (1 − ξ)x

)
=

(
0
0

)
; x ∈ [−1, 0]

Since μ is constant, any x ∈ [−1, 0] is a componentwise robust solution of problem
V PEx(3.5)(U).

4 Parametric vector optimization: the robust counterpart of the
scalarized problem

In this Section, we refer to the approach RC − Sϕ − V P as described on the right hand side
of Fig. 1. With this approach, a scalarization of the uncertain vector optimization problem is
considered in Sϕ−V P(U).Under appropriate conditions,wewill show that its classical robust
counterpart RC − Sϕ − V P allows us to obtain necessary and sufficient robust optimality
conditions.

4.1 A general scalarization scheme

We introduce an axiomatic approach to scalarization which allows us to identify a class of
scalarizing functions that are suitable for our purpose.
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Fig. 2 Set values of map F at
x = −1, x = 0 and generic
x ∈ (−1, 0)

Let A ∈ 2Y be nonempty and let ϕ : Y → R ∪ {±∞}. Let us introduce a scalarizing
function ϕA−K : Y → R ∪ {±∞} as follows:

ϕA−K (y) : = inf
a∈A−K

ϕ(y − a), ∀y ∈ Y (3)

The family of uncertain scalar programs obtained from V P(U) by scalarization through
ϕA−K is

minimize ϕA−K ( f (x, ξ)) subject to x ∈ X Sϕ − V P(U)

The robust approach introduced in [3] can be directly applied to Sϕ − V P(U). The worst
case scenario at the decision variable x ∈ X is

sup
ξ∈U

ϕA−K ( f (x, ξ))

Let the map 
A−K : F → R ∪ {±∞} be defined by

A−K (C) : = sup

c∈C
ϕA−K (c), ∀C ∈ F

The worst case scenario at x ∈ X can be expressed in terms of 
A−K as follows

sup
ξ∈U

ϕA−K ( f (x, ξ)) = sup
y∈F(x)

ϕA−K (y) = 
A−K (F(x))

Then, the robust counterpart of the scalar uncertain problem Sϕ − V P(U) results

minimize 
A−K (F(x)) subject to x ∈ X RC − Sϕ − V P

We will show that necessary and sufficient robust optimality conditions can be obtained
through scalarization of V P(U) by means of the function ϕA−K , provided that suitable
conditions on ϕ are given.
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4.1.1 Properties of problem RC − S' − VP

In this subsection we prove that, under appropriate conditions, the function 
A−K that
represents the robust counterpart of the scalarization of the uncertain vector optimization
problem inherits some fundamental properties from the original scalarizing function ϕ.

To this purpose, we will provide sufficient conditions for some properties of the function
ϕA−K that will be useful in the sequel. Besides the ≤-preserving and strictly ≤-representing
properties of ϕ at 0 on Y , we will exploit the following property of ϕ:

y ∈ ∂(−K ) �⇒ ϕ(y) = ϕ(0) (P)

that relates the level set of ϕ at 0 with the order structure.

Remark 4.1 The restriction of property b) in Definition 2.4 to the vector case entails that a
function ϕ is strictly ≤-preserving at 0 on Y when

y ∈ Y , y ≤ 0 and y �= 0 �⇒ ϕ(y) < ϕ(0)

Here we remark that ϕ cannot be strictly≤-preserving at 0 on Y if property (P) holds. Indeed,
for any y ∈ ∂(−K ) such that y �= 0, property (P) implies ϕ(y) = ϕ(0).

Moreover, the following assumption on the nonempty set A ⊆ Y will be considered.

Assumption 4.2 The infimum

ϕA−K (y) = inf
a∈A−K

ϕ(y − a)

is attained for all y /∈ A − K .

Remark 4.3 Similar attainment assumptions, involving both the function ϕ and the set A−K ,
have been considered in the context of robust multiobjective optimization (see, e.g., [1]), in
robust vector optimization frameworks (see, e.g., [21]) and in order to provide characteriza-
tions of set relations via scalarization in [24] and [5].

Lemma 4.4 Let A ⊆ Y be nonempty.

1) If ϕ is ≤-preserving at 0 on Y , then

y ∈ A − K �⇒ ϕA−K (y) ≤ ϕ(0)

2) If ϕ is ≤-preserving and strictly ≤-representing at 0 on Y and (P) holds, then

y ∈ ∂(A − K ) �⇒ ϕA−K (y) = ϕ(0)

whenever A is K -proper and K -closed.
3) If ϕ is ≤-preserving and strictly ≤-representing at 0 on Y and (P) holds, then

ϕA−K (y) ≤ ϕ(0) �⇒ y ∈ A − K

whenever Assumption 4.2 is fulfilled for ϕ on A.

Proof 1) If y ∈ A − K , there exists a ∈ A such that y − a ≤ 0, which implies

ϕ(y − a) ≤ ϕ(0)
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since ϕ is ≤-preserving at 0. Hence,

ϕA−K (y) = inf
a′∈A−K

ϕ(y − a′) ≤ ϕ(y − a) ≤ ϕ(0)

and the implication is proved.
2) If y ∈ ∂(A − K ), then either y − a � 0 or y − a ∈ ∂(−K ) holds, for all a ∈ A − K
(see Lemma 2.1). If y − a � 0, then ϕ(y − a) > ϕ(0), since ϕ is strictly ≤-representing at
0 on Y . If y − a ∈ ∂(−K ), then ϕ(y − a) = ϕ(0), by (P). Hence, ϕ(y − a) ≥ ϕ(0), for all
a ∈ A − K . Therefore,

ϕA−K (y) ≥ ϕ(0)

Moreover, since A is K -closed, y ∈ A− K holds; by 1) it follows that ϕA−K (y) ≤ ϕ(0). To
conclude, ϕA−K (y) = ϕ(0).
3) By contradiction, suppose that ϕA−K (y) ≤ ϕ(0) and y /∈ A − K . Since y − a � 0 for all
a ∈ A − K , then

ϕ(y − a) > ϕ(0), ∀a ∈ A − K (4)

since ϕ is strictly ≤-representing at 0 on Y . Hence, infa∈A−K ϕ(y − a) = ϕA−K (y) ≥ ϕ(0).
Then

ϕA−K (y) = ϕ(0) (5)

Relations (4) and (5) imply that the infimum infa∈A−K ϕ(y − a) = ϕA−K (y) is not attained
in A − K . This leads to a contradiction, under Assumption 4.2. ��
Lemma 4.5 Let A ⊆ Y be nonempty. Then 
A−K (A) ≤ ϕ(0). Moreover, if A is K -proper
and K -closed, ϕ is ≤-preserving and strictly ≤-representing at 0 on Y and property (P)
holds, then 
A−K (A) = ϕ(0).

Proof For any given element a′ ∈ A, the relation

ϕA(a′) = inf
a∈A

ϕ(a′ − a) ≤ ϕ(0)

holds. Moreover, it follows

ϕA−K (a′) ≤ ϕA(a′) ≤ ϕ(0)

Hence

A−K (A) = sup

a′∈A
ϕA−K (a′) ≤ ϕ(0) (6)

Now, let A be K -proper and K -closed. For any element a′ ∈ A, it results

ϕA−K (a′) ≤ sup
a′∈A

ϕA−K (a′) = 
A−K (A)

Taking into account Lemma 2.2, an element ā ∈ A ∩ ∂(A − K ) can be chosen and the
previous relation together with implication 2) leads to

ϕ(0) = ϕA−K (ā) ≤ 
A−K (A) (7)

The thesis follows from (6) and (7). ��
The following Lemma provides some sufficient conditions for 
A−K to be �-preserving

at A on 2Y .
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Lemma 4.6 Let A ⊆ Y be nonempty, K -proper and K -closed. If ϕ is ≤-preserving and
strictly≤-representing at 0 on Y and property (P) holds, then the map
A−K is�-preserving
at A on 2Y .

Proof Let A1 ∈ 2Y be such that A1 � A. Then, for all a1 ∈ A1, it holds a1 ∈ A − K . By 1)
in Lemma 4.4, it implies

ϕA−K (a1) ≤ ϕ(0)

for all a1 ∈ A1. Hence, taking into account Lemma 4.5, it follows


A−K (A1) ≤ ϕ(0) = 
A−K (A)

which proves the thesis. ��
The following Lemma provides some sufficient conditions for 
A−K to be strictly �-

representing at A on 2Y .

Lemma 4.7 Let A ⊆ Y be nonempty and let Assumption 4.2 hold for ϕ on A. If ϕ is ≤-
preserving and strictly ≤ −representing at 0 on Y and (P) holds, then the map 
A−K is
strictly �-representing at A on 2Y .

Proof Let A1 ∈ 2Y and let


A−K (A1) ≤ 
A−K (A)

By Lemma 4.5), supa1∈A1
ϕA−K (a1) ≤ 
A−K (A) = ϕ(0). Hence, for all a1 ∈ A1, it holds

ϕA−K (a1) ≤ ϕ(0) (8)

By 3) in Lemma 4.4, it holds a1 ∈ A − K , for all a1 ∈ A1, namely A1 � A. The thesis is
proved. ��

4.1.2 Robust optimality conditions through RC − S' − VP

Here we prove that, if an appropriate scalarization technique is chosen, the solutions of
RC − Sϕ −V P coincide with the robust (strictly) efficient solutions of the original uncertain
problem V P(U). Hence, the proposed scalarization scheme provides necessary and sufficient
robust optimality conditions. Let F(x0) ∈ F be nonempty, K -proper and K -closed. Let us
consider problem Sϕ − V P(U), obtained through scalarization by means of the function
ϕF(x0)−K .

Robust strict efficiency

A correspondence between a robust strictly efficient element, whose image set is the unique
element in its equivalence class, and the unique solution of the robust counterpart of the
scalarization is established here.

Sufficient robust strict optimality conditions by means of the robust counterpart of the
scalarized uncertain vector problem are provided under appropriate assumptions on the func-
tion ϕ involved in the objective of problem Sϕ − V P(U).

Proposition 4.8 Let F(x0) ∈ F be nonempty, K -proper and K -closed and let A = F(x0) in
the formulation of RC − Sϕ −V P. Let ϕ be≤-preserving and strictly≤-representing at 0 on
Y and let property (P) hold. If the element x0 ∈ X is the unique solution of RC − Sϕ − V P,
then it is robust strictly efficient.
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Proof The thesis follows from Proposition 3.1, since 
F(x0)−K is �-preserving at F(x0) on
F by Lemma 4.6. ��

In the same vein, we can obtain necessary robust strict optimality conditions.

Proposition 4.9 Let F(x0) ∈ F be nonempty and let A = F(x0) in the formulation of
RC− Sϕ −V P. Let ϕ be≤-preserving and strictly≤-representing at 0 on Y and let property
(P) hold. If the element x0 ∈ X is robust strictly efficient and Assumption 4.2 is fulfilled at
F(x0), then x0 is the unique solution of problem RC − Sϕ − V P.

Proof The thesis follows from Proposition 3.2, since 
F(x0)−K is strictly �-representing at
F(x0) on F by Lemma 4.7. ��

Robust efficiency

A correspondence between a robust efficient element and a notion of optimal solution of
the robust counterpart of the scalarization is established here. Such an approach allows us to
consider problemswhere the equivalence class of the image of a given robust efficient element
may not be a singleton in 2Y . In this framework, the formulation of optimality conditions
through scalarization necessarily relies on the structure of the quotient set.

Sufficient robust optimality conditions formulated in the following Proposition by means
of the robust counterpart of the scalarized uncertain vector problem are provided under
appropriate assumptions on the function ϕ involved in the objective of problem Sϕ −V P(U).

Proposition 4.10 Let F(x0) ∈ F be nonempty, K -proper and K -closed and let A = F(x0)
in the formulation of RC − Sϕ − V P. Let ϕ be ≤-preserving and strictly ≤-representing at
0 on Y and let property (P) hold. If


F(x0)−K (F(x)) > 
F(x0)−K (F(x0)), ∀x ∈ X s.t. F(x) � F(x0)

then x0 is robust efficient.

Proof Let x ∈ X be such that F(x) � F(x0). The relation 
F(x0)−K (F(x)) >


F(x0)−K (F(x0)) implies F(x) �/ F(x0), since 
F(x0)−K is �-preserving at F(x0) (see
Lemma 4.6). Hence, for all x ∈ X , it holds F(x) �/ F(x0) or F(x) ∼ F(x0), namely x0 is
robust efficient. ��

In the same vein we can obtain necessary robust optimality conditions.

Proposition 4.11 Let F(x0) ∈ F be nonempty and let A = F(x0) in the formulation of
RC− Sϕ −V P. Let ϕ be≤-preserving and strictly≤-representing at 0 on Y and let property
(P) hold. If the element x0 ∈ X is robust efficient and Assumption 4.2 is fulfilled at F(x0),
then


F(x0)−K (F(x)) > 
F(x0)−K (F(x0)), ∀x ∈ X s.t. F(x) � F(x0)

Proof By contradiction, suppose that there exists x̄ ∈ X\{x0} such that F(x̄) � F(x0) and

F(x0)−K (F(x̄)) ≤ 
F(x0)−K (F(x0)). Since 
F(x0)−K is strictly �-representing at F(x0)
on F (see Lemma 4.7), the previous relation implies F(x̄) � F(x0), a contradiction since
F(x̄) � F(x0) and x0 is robust efficient. ��
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5 Equivalence between RC − S' − VP and S9 − RC − VP.

In this section, we emphasize a fundamental feature of the axiomatic scalarization techniques
that we illustrated in the former Sections. Under appropriate conditions, we ensure that
problems S� − RC − V P and RC − Sϕ − V P , introduced respectively in Sects. 3 and 4 as
two alternative ways to obtain robust optimality conditions in vector optimization through
scalarization, can be considered equivalent. On one hand, we obtain problem S� −RC−V P
from the set-valued robust counterpart RC − V P by scalarization through the function �.
On the other hand, problem RC − Sϕ − V P is obtained as the robust counterpart of the
scalarization based on the function ϕ of the original uncertain vector problem V P(U). The
crucial result that allows us to commute robustification and scalarization is the fact that both
S� − RC −V P and RC − Sϕ −V P can be used to formulate necessary and sufficient robust
optimality conditions. We underline that the two distinct scalarization processes � and ϕ

used respectively in S� − RC − V P and RC − Sϕ − V P are independently chosen within
an appropriate axiomatic approach.

Robust strict efficiency

The following Proposition shows that the element x0 ∈ X is robust strict efficient if and only
if it is the unique solution of both problems S� − RC − V P and RC − Sϕ − V P .

Proposition 5.1 Let F(x0) ∈ F be nonempty K -proper and K -closed and let A = F(x0)
in the formulation of RC − Sϕ − V P. Let � be �-preserving and strictly �-representing
at F(x0) on F . Moreover, let ϕ be ≤-preserving and strictly ≤-representing at 0 on Y , let
property (P) hold and let Assumption 4.2 be fulfilled for ϕ on F(x0). Then, the following
statements are equivalent:

(1) the element x0 ∈ X is robust strictly efficient;
(2) the element x0 ∈ X is the unique solution of S� − RC − V P;
(3) the element x0 ∈ X is the unique solution of RC − Sϕ − V P.

Robust efficiency

The following Proposition shows the existing connections between the solutions of problems
S� − RC − V P and RC − Sϕ − V P and the notion of robust efficiency. When we consider
the optimality conditions on RC − Sϕ −V P , the equivalence class of F(x0) should be taken
into account.

Proposition 5.2 Let F(x0) ∈ F be nonempty K -proper and K -closed and let A = F(x0)
in the formulation of RC − Sϕ − V P. Let � be strictly �-preserving and �-representing
at F(x0) on F . Moreover, let ϕ be ≤-preserving and strictly ≤-representing at 0 on Y , let
property (P) hold and let Assumption 4.2 hold for ϕ on F(x0). Then, the following statements
are equivalent

(1) the element x0 ∈ X is robust efficient;
(2) the element x0 ∈ X is a solution of S� − RC − V P;
(3) 
F(x0)−K (F(x)) > 
F(x0)−K (F(x0)), ∀x ∈ X s.t. F(x) � F(x0).

Remark 5.3 If, in Proposition 5.2, the map � is assumed to be �-preserving and strictly
�-representing at F(x0) on F , point (2) can be replaced by the following:
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(2’) �(F(x)) > �(F(x0)), ∀x ∈ X s.t. F(x) � F(x0).

We conclude this Sectionwith an example showing that the results presented in Proposition
5.1 do not hold without appropriate scalarization schemes. If we consider the notion of robust
strict efficiency in vector optimization introduced in Sect. 3, Example 5.4 (see also example
1 in [4]) shows that, on one hand, not all the robust strictly efficient solutions of an original
uncertain vector problem V P(U) can be found by solving problem RC − Sϕ − V P , when
a linear scalarizing function is chosen as ϕ. Hence, linear scalarizations, even if widely used
in applications, cannot be used in general to formulate problem Sϕ − V P(U) and to obtain
necessary robust optimality conditions through RC−Sϕ−V P . On the other hand, in Example
5.4 we formulate problem S� − RC−V P choosing as� a (nonlinear) function based on the
oriented distance,whichfits into the axiomatic approach presented in Sect. 3.With this choice,
the whole set of robust strictly efficient solutions of V P(U) can be characterized through
necessary and sufficient optimality conditions by solving S� −RC−V P . This shows that the
commutativity of robustness and scalarization does not hold without an appropriate choice
of � and ϕ.

Example 5.4 Let Y = R
2, K = R

2+, X = [0, 1] and U = {ξ1, ξ2, ξ3}. We consider the
following uncertain vector optimization problem

minimize f (x, ξ) s.t. x ∈ [0, 1] V PEx(5.4)(U)

where the objective f : [0, 1] × U → R
2 is defined in the three scenarios as follows

f (x, ξ1) = x(0 2)T + (1 − x)(1 4)T

f (x, ξ2) = x(2 2)T + (1 − x)(1 1)T

f (x, ξ3) = x(2 0)T + (1 − x)(4 1)T

Step 1. (robust strictly efficient solutions)
Let us show that any element in [0, 1] is robust strictly efficient, according to Definition

2.9. Indeed, fix x0 ∈ [0, 1]. If x ∈ (x0, 1], then the relation f (x, ξ2) � f (x0, ξi ) holds for
all i = 1, 2, 3. Similarly, if x ′′ ∈ [0, x), then the relation f (x ′′, ξ1) � f (x, ξi ) holds for all
i = 1, 2, 3. Hence, any x0 ∈ [0, 1] is robust strictly efficient.

Step 2. (Formulation of problem RC − Sϕ − V P)
Problem S� − V PEx(5.4)(U) is obtained from V PEx(5.4)(U) by linear scalarization with

the linear function � : R
2 → R, where �(x1, x2) = λx1 + (1 − λ)x2 and λ ∈ [0, 1]. Its

robust counterpart is

minimize max
ξ∈U �( f (x, ξ)) s.t. x ∈ [0, 1] RC − S� − V PEx(5.4)

Weshow that the robust counterpart RC−S�−V PEx(5.4) cannot be used to provide necessary
robust optimality conditions. Indeed, the explicit computation of maxξ∈U � ◦ f (0, ξ) and
maxξ∈U � ◦ f (1, ξ) yields

max
ξ∈U � ◦ f (0, ξ) ∈ [5/2, 4] and max

ξ∈U � ◦ f (1, ξ) = 2

Hence, x = 0 cannot be a solution of RC − S� − V P for any linear function �, even if
x = 0 is a robust strictly efficient element1.

1 It is easy to verify that argminx∈[0,1] maxξ∈U �( f (x, ξ)) ≥ 3/5 for all λ ∈ [0, 1]. Therefore, any x ∈
[0, 3/5) cannot be a solution of RC − S� − V P , for any linear function �, even if the points in [0, 3/5) are
in the set of robust strictly efficient elements
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Fig. 3 Set-valued images of map F at x = 0 (blue), x = 1 (black) and generic x ∈ (0, 1) (red)

Step 3. (Formulation of problem S� − RC − V P)
The set-valued robust counterpart of problem V PEx(5.4)(U) is

� −minimize F(x) s.t. x ∈ [0, 1] RC − V PEx(5.4)

where the set-valued map F : [0, 1] → 2R
2
is

F(x) =
3⋃

i=1

f (x, ξi ) =
{(

1 − x
4 − 2x

)
,

(
x + 1
x + 1

)
,

(
4 − 2x
1 − x

)}
, x ∈ [0, 1]

In Fig. 3 a representation of some set-valued images of map F is provided.
We choose as scalarizing function � the function �A : F → R defined as

�A(B) = sup
b∈B

d(b, A − K ) − inf
b∈B d(b, Y\(A − K )), B ∈ F (9)

where A ∈ F is nonempty and d(y, B ′) = inf{‖y − b′‖ : b′ ∈ B ′} is the distance of the
element y ∈ Y from a (nonempty) set B ′. We mention that this function is considered in
[13] and it is an extension of the oriented distance function considered in [31] to a set-valued
framework. With this choice of �, the scalar problem S� − RC − V PEx(5.4) is

minimize �A(F(x)) s.t. x ∈ [0, 1] S� − RC − V PEx(5.4)

Let us consider the element x0 ∈ [0, 1] and let A = F(x0). If x0 is robust strictly efficient, then
for each x ∈ [0, 1], with x �= x0, an element y ∈ F(x) exists such that y ∈ Y\(F(x0) − K ).
Hence, inf y′∈F(x) d(y′, Y\(F(x0) − K )) = 0 and

�F(x0)(F(x)) = sup
y′∈F(x)

d(y′, F(x0) − K ) ≥ d(y, F(x0) − K ) > 0
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Since �F(x0)(F(x0)) = 0 (see Proposition 6.6 in [13]), it follows that

�F(x0)(F(x)) > �F(x0)(F(x0))

holds, for all x ∈ [0, 1]with x �= x0. Hence, x0 is the unique solution of problem S� − RC−
V PEx(5.4). Conversely, suppose that x0 ∈ [0, 1] is the unique solution of problem S�−RC−
V PEx(5.4). By contradiction, suppose that x0 is not robust strictly efficient. Hence, an x ∈
[0, 1] with x �= x0 exists such that F(x) � F(x0). Then, supy′∈F(x) d(y′, F(x0) − K ) = 0
holds, which implies �F(x0)(F(x)) = − inf y′∈F(x) d(y′, Y\(F(x0) − K )) ≤ 0. It follows
that x0 is not the unique solution of problem S� −RC−V PEx(5.4) since�F(x0)(F(x0)) = 0,
a contradiction.

Step 4. (Comparison of S� − RC − V P and RC − Sϕ − V P)
While with S� − RC −V PEx(5.4) we obtain the whole set [0, 1] of robust strictly efficient

solutions of V PEx(5.4)(U), with RC − S� − V PEx(5.4) the robust strictly efficient solutions
x0 ∈ [0, 3/5) cannot be found (see the footnote 1 in Step 2, where we omit details of the
calculations). In particular, we explicitly show that the robust strictly efficient element x0 = 0
is a solution of S� − RC − V PEx(5.4) and not a solution of RC − S� − V PEx(5.4).

6 Some special cases

In this Section we consider two examples of scalarization methods that are based respectively
on the Gerstewitz and the oriented distance functions. Similar approaches to scalarization are
widely used in vector optimization (see, e.g., [20] or [29]). Both the approaches are placed
within the theoretical framework outlined in Sect. 4, where the scalarizing functions are
characterized by the structure defined in (3). Here, the scalarization procedure is applied to an
uncertain vector problem V P(U), hence an uncertain scalar problem Sϕ−V P(U) is obtained.
Through the direct application of the robust approach introduced in [2], a deterministic scalar
robust counterpart RC − Sϕ − V P can be formulated, whose solutions are coherent with
the set-valued approach along the line marked by [6]. Such a process allows us to avoid the
explicit study of the set-valued robust counterpart RC −V P of the uncertain vector problem
V P(U) and its scalarization S� − RC − V P , whose formulation may remain implicit due
to the commutativity property outlined in Sect. 5.

6.1 The Gerstewitz approach

Let Y be a topological vector space. Provided that the ordering cone K ⊆ Y has nonempty
interior, the so called Gerstewitz function φe,a : Y → R is defined by

φe,a(y) = min{t ∈ R : y ∈ te + a − K }
where e ∈ intK is a fixed element anda ∈ Y (see e.g. [9]).We remark that in the special case of
multiobjective optimization, inwhichY = R

p and K = R
p
+, severalwell known scalarization

methods, such as Pascoletti-Serafini, ε-constraint, Chebyshev scalarization, among others,
can be reduced to the use of the Gerstewitz scalarizing function (see e.g. Sect. 2.5 in [7]).

Formulation of problem RC − S' − VP

We consider the robustification-scalarization approach outlined in the right hand side of
Fig. 1. When we chose ϕ as the Gerstewitz function φe,a within the axiomatic approach
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presented in Sect. 4, we obtain φe,A−K : Y → R as

φe,A−K (y) = inf
a∈A−K

φe,0(y − a), ∀y ∈ Y

where A ⊆ Y is nonempty.

Remark 6.1 It is easy to verify that φe,A−K (y) = φe,A(y)when A is K -proper and K -closed.
Indeed, by Proposition 3.2 in [14], it follows φe,A(y) = min{t ∈ R : y ∈ te+ A−K }. Since
K is convex, it results

φe,A−K (y) = min{t ∈ R : y ∈ te + A − K − K }
= min{t ∈ R : y ∈ te + A − K }
= φe,A(y)

The function φe,A has many applications in the context of nonlinear analysis and it was used
as a scalarizing function to obtain optimality conditions in vector optimization problems (see
[20] and [29] and the references therein). Scalarizations through the Gerstewitz function have
also been applied to consider robustness in set-valued frameworks (see e.g. [22] and [23]).

The scalarization of the uncertain vector problem V P(U) through φe,A−K : Y → R,
where A ∈ F , is

minimize φe,A−K ( f (x, ξ)) s.t. x ∈ X Sφ − V P(U)

The robust counterpart of Sφ − V P(U) in the sense of [3] is

minimize sup
ξ∈U

φe,A−K ( f (x, ξ)) s.t. x ∈ X RC − Sφ − V P

We note that the function φe,0 is ≤-preserving and strictly ≤-representing at 0 on Y and that
property (P) is fulfilled forφe,0 (see [9], Theorem2.1).Moreover, the followingLemma shows
that, when the nonempty set A is K -proper and K -closed, the infimum infa∈A−K φe,0(y −
a) = φe,A−K (y) is attained on ∂(A − K ), for all y ∈ Y .

Lemma 6.2 Let A ∈ F be K -proper and K -closed. Then, for all y ∈ Y there exists ā ∈
∂(A − K ) such that

φe,A−K (y) = inf
a′∈A−K

φe,a′(y) = φe,0(y − ā)

Proof For any t = φe,A−K (y) it holds y ∈ te+∂(A−K ) (see [9] or [14]). Then, there exists
ā ∈ ∂(A − K ) such that y = te + ā. Hence,

φe,0(y − ā) = φe,0(te) = t = φe,A−K (y) = inf
a′∈A−K

φe,a′(y) = inf
a′∈A−K

φe,0(y − a′)

and the thesis follows. ��
From the above mentioned facts, Propositions 4.8 and 4.9 can be reformulated to provide

necessary and suffcient robust strict optimality conditions.

Corollary 6.3 Let F(x0) ∈ F be K -proper and K -closed and let A = F(x0) in the formula-
tion of RC − Sφ − V P. The element x0 ∈ X is robust strictly efficient if and only if x0 is the
unique solution of problem RC − Sφ − V P.

Similarly, Propositions 4.10 and 4.11 can be reformulated to provide necessary and suffcient
robust optimality conditions.
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Corollary 6.4 Let F(x0) ∈ F be K -proper and K -closed and let A = F(x0) in the formula-
tion of RC − Sφ − V P. The element x0 ∈ X is robust efficient if and only if

sup
ξ∈U

φe,F(x0)( f (x, ξ)) > sup
ξ∈U

φe,F(x0)( f (x0, ξ)), ∀x ∈ X s.t. F(x) � F(x0)

Formulation of problem S9 − RC − VP

We consider the scalarization-robustification approach outlined in the left hand side of Fig. 1.
Let Ge,A : A → R be the extension of the Gerstewitz function to a set-valued framework
defined by

Ge,A(B) = inf {t ∈ R : B ⊆ te + A − K } , B ∈ A
where A is a collection of nonempty K -proper and K -closed sets, A ∈ A and e ∈ intK .
This extention of the Gerstewitz function is considered in [13] and here it is adapted to be
consistent with the upper type partial quasi order set relation “�”. Indeed, Proposition 4.11
in [13] can be adapted in this context, thus esuring that Ge,A is �-preserving and strictly
�-representing at A on A.

If we choose the scalarizing map 
 as Ge,A, the (set-valued) robust counterpart of the
uncertain vector problem V P(U) is

minimize Ge,A(F(x)) s.t. x ∈ X SG − RC − V P

where A ∈ F . Now, Propositions 3.1 and 3.2 can be reformulated to provide necessary and
suffcient robust strict optimality conditions based on Ge,A.

Corollary 6.5 Let the elements of collection F be K -proper and K -closed sets and let A =
F(x0) in the formulation of RC − SG − V P. The element x0 is robust strictly efficient if and
only if x0 is the unique solution of SG − RC − V P.

Moreover, we provide necessary and sufficient robust optimality conditions taking into
account Remark 5.3.

Corollary 6.6 Let the elements of collection F be K -proper and K -closed sets and let A =
F(x0) in the formulation of RC − SG − V P. The element x0 is robust efficient if and only if

Ge,F(x0)(F(x)) > Ge,F(x0)(F(x0)), ∀x ∈ X s.t. F(x) � F(x0)

To conclude, by Corollary 6.3 and 6.5 (resp. 6.4 and 6.6), the same set of robust strictly
efficient (resp. robust efficient) solutions of an uncertain vector optimization problem V P(U)

can be characterized by necessary and sufficient optimality conditions. These conditions are
(equivalently) obtained in this context through both the approaches described in Fig. 1,
according to which problems RC − Sφ − V P and SG − RC − V P are formulated.

6.2 The oriented distance approach

An alternative approach, where Y is a normed vector space and the ordering cone K is not
necessarily solid, is based on the oriented distance. The so called oriented distance function
�S : Y → R was introduced in [15], where S ⊆ Y is nonempty. The oriented distance takes
the following form:

�S(y) = dS(y) − d(Y\S)(y), ∀y ∈ Y
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where dS(y) = inf{‖s − y‖ : s ∈ S} is the distance of the element y ∈ Y from the nonempty
set S with respect to a given norm. The oriented distance has many applications in the context
of nonlinear analysis and it was used as a scalarizing function to obtain optimality conditions
in vector optimization problems. To this purpose, we refer the reader to [31], where important
properties of the oriented distance are proved. See also [20] and the references therein.

Formulation of problem RC − S' − VP

We consider the robustification-scalarization approach outlined in the right hand side of
Fig. 1. When we chose ϕ as the oriented distance �−K (obtained from �S by choosing
S = −K ) within the axiomatic approach presented in Sect. 4, we obtain δA−K : Y → R as

δA−K (y) = inf
a∈A−K

�−K (y − a), ∀y ∈ Y

The scalarization of the uncertain vector problem V P(U) through δA−K : Y → R, where
A ∈ F , reads as

minimize δA−K ( f (x, ξ)) s.t. x ∈ X Sδ − V P(U)

The robust counterpart of Sδ − V P(U) in the sense of [3] results

minimize sup
ξ∈U

δA−K ( f (x, ξ)) s.t. x ∈ X RC − Sδ − V P

We note that the oriented distance �−K is ≤-preserving at 0 on Y and property (P) holds
(see [31], Proposition 3.2 point (7) and (3) respectively).

Lemma 6.7 The function �−K is strictly ≤-representing at 0 on Y .

Proof Let y ∈ Y and let the relation �−K (y) ≤ �−K (0) hold. Since 0 ∈ ∂(−K ), then
�−K (0) = 0. Hence �−K (y) ≤ 0 holds, which implies y ∈ −K (see [31], Proposition 3.2
point (3)), namely y ≤ 0. ��

In the specific case where ϕA−K = δA−K , point 3) in Lemma 4.4 can be proved omitting
Assumption 4.2. To show this, the following relation between δA−K and �A−K will be used.

Lemma 6.8 Let A ⊆ Y be nonempty and K -proper and let y /∈ int(A−K ). Then δA−K (y) =
�A−K (y).

Proof Since y /∈ int(A−K ), then y−a /∈ int(−K ) for all a ∈ A−K . Hence dY\−K (y−a) =
0 for all a ∈ A − K . If follows

δA−K (y) = inf
a∈A−K

(
d−K (y − a) − dY\−K (y − a)

)
= inf

a∈A−K
d−K (y − a)

= inf
a∈A−K

inf
k∈−K

‖a + k − y‖
= inf

a∈A−K
inf

z∈{a}−K
‖z − y‖

= inf
z∈A−K

‖z − y‖
= �A−K (y)

��
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The next Lemma shows that implication 3) in Lemma 4.4 holds for δA−K when A is
nonempty, K -proper and K -closed, with no need of Assumption 4.2.

Lemma 6.9 Let A ⊆ Y be nonempty, K -proper and K -closed. Then

δA−K (y) ≤ 0 �⇒ y ∈ A − K

Proof By contradiction, suppose that δA−K (y) ≤ 0 and y /∈ A − K . Since y � a for all
a ∈ A − K , then �−K (y − a) > 0 for all a ∈ A − K , since �−K is strictly ≤-representing
at 0 on Y . Hence, δA−K (y) = infa∈A−K �−K (y − a) ≥ 0; therefore, δA−K (y) = 0 follows.
This equality, together with Lemma 6.8, leads to δA−K (y) = �A−K (y) = 0, which implies
y ∈ ∂(A − K ) (see [31], Proposition 3.2 point 3), a contradiction since A is K -closed. ��

From the above mentioned facts, Propositions 4.8 and 4.9 can be reformulated to provide
necessary and sufficient robust strict optimality conditions.

Corollary 6.10 Let F(x0) ∈ F be K -proper and K -closed and let A = F(x0) in the formu-
lation of RC − Sδ − V P. The element x0 ∈ X is robust strictly efficient if and only if x0 is
the unique solution of problem RC − Sδ − V P.

Similarly, Propositions 4.10 and 4.11 can be reformulated to provide necessary and sufficient
robust optimality conditions.

Corollary 6.11 Let F(x0) ∈ F be K -proper and K -closed and let A = F(x0) in the formu-
lation of RC − Sφ − V P. The element x0 ∈ X is robust efficient if and only if

sup
ξ∈U

δF(x0)( f (x, ξ)) > sup
ξ∈U

δF(x0)( f (x0, ξ)), ∀x ∈ X s.t. F(x) � F(x0)

Formulation of problem S9 − RC − VP

We consider the scalarization-robustification approach outlined in the left hand side of Fig. 1.
We choose � as an extension of the oriented distance function to a set-valued framework,
which is the map �A : A → R considered in Example 5.4 (see 9) defined by

�A(B) = sup
b∈B

d(b, A − K ) − inf
b∈B d(b, Y\(A − K )), B ∈ A

whereA is a collection of nonempty K -proper and K -closed sets and A ∈ A. This extention
of the oriented distance is considered in [13] (see also [18] or [19]) and here it is reframed
to be consistent with the upper type partial quasi order set relation “�”. Indeed, Proposition
6.6 in [13] can be adapted in this context, thus esuring that �A is �-preserving and strictly
�-representing at A on A.

The scalarization through function �A of the (set-valued) robust counterpart in the sense
of [6] of the uncertain vector problem V P(U) is

minimize �A(F(x)) s.t. x ∈ X S� − RC − V P

where A ∈ F . From the above mentioned facts, Propositions 3.1 and 3.2 can be reformulated
to provide necessary and suffcient robust strict optimality conditions.

Corollary 6.12 Let the elements of collection F be K -proper and K -closed sets and let
A = F(x0) in the formulation of RC − S� − V P. The element x0 is robust strictly efficient
if and only if x0 is the unique solution of S� − RC − V P.
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Moreover, we provide necessary and sufficient robust optimality conditions taking into
account Remark 5.3.

Corollary 6.13 Let the elements of collection F be K -proper and K -closed sets and let
A = F(x0) in the formulation of RC − S� − V P. The element x0 is robust efficient if and
only if

�F(x0)(F(x)) > �F(x0)(F(x0)), ∀x ∈ X s.t. F(x) � F(x0)

To conclude, by Corollary 6.10 and 6.12 (resp. 6.11 and 6.13), the same set of robust strictly
efficient (resp. robust efficient) solutions of an uncertain vector optimization problem V P(U)

can be characterised by necessary and sufficient optimality conditions. These conditions are
(equivalently) obtained in this context through both the approaches described in Fig. 1,
according to which problems RC − Sδ − V P and S� − RC − V P are formulated.

7 Conclusions

In this work, we consider the non componentwise concepts of robust efficiency related to
uncertain vector optimization problems, as introduced in [6] for multiobjective programs and
extendedby [16] for general spaces. Such robustness concepts can be reinterpretedwithin a set
optimization framework. Indeed, a deterministic set-valued optimization problem RC −V P
can be formulated and interpreted as the robust counterpart of the original uncertain vector
program V P(U), where suitable solution concepts are coherent with notions of robust effi-
ciency.When the deterministic set-valued robust counterpart is tackled through scalarization,
we obtain the formulation of problem S� − RC − V P , where we identify the properties of
the scalarizing functions � that are necessary and sufficient to fully characterize the robust
optimal solutions. We show that necessary and sufficient robust optimality conditions can
equivalently be provided by considering the robust counterpart RC − Sϕ − V P (in the sense
of [2]) of the uncertain scalar problem Sϕ − V P(U), obtained through scalarization of the
original uncertain vector program V P(U). Since, under appropriate assumptions, both the
approaches S� − RC − V P and RC − Sϕ − V P provide necessary and sufficient robust
optimality conditions, we claim that robustification and scalarization of an uncertain vector
optimization problem V P(U) can be swapped, with an independent choice of suitable maps
� and ϕ. It follows that the transition to the set-valued robust counterpart RC − V P may
remain implicit, even if we a void the unduly pessimistic componentwise robustness notion in
vector optimization. In fact, the application of the robust approach to the scalarized uncertain
vector problem is proved to be fully coherent with the approach proposed by [6] and [16].
The use of a suitable scalarization of the parametric vector optimization problem directly
provides robust optimality conditions, avoiding the explicit reference to a set optimization
framework. Further research should study extensions of other notions of robustness to vector
optimization (such as, for example, the concepts considered in [11, 16, 22, 23]) and their
behaviour with respect to the proposed scalarization scheme (see Fig. 1).
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