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Abstract: Unhealthy behaviours, including diet and physical activity, coupled with genetic predispo-
sition, drive type 2 diabetes (T2D) occurrence and severity; the present review aims to summarise the
most recent nutritional approaches in T2D, outlining unmet needs. Guidelines consistently suggest
reducing energy intake to counteract the obesity epidemic, frequently resulting in sarcopenic obesity,
a condition associated with poorer metabolic control and cardiovascular disease. Various dietary
approaches have been proposed with largely similar results, with a preference for the Mediterranean
diet and the best practice being the diet that patients feel confident of maintaining in the long term
based on individual preferences. Patient adherence is indeed the pivotal factor for weight loss and
long-term maintenance, requiring intensive lifestyle intervention. The consumption of nutritional
supplements continues to increase even if international societies do not support their systematic use.
Inositols and vitamin D supplementation, as well as micronutrients (zinc, chromium, magnesium)
and pre/probiotics, result in modest improvement in insulin sensitivity, but their use is not systemat-
ically suggested. To reach the desired goals, patients should be actively involved in the collaborative
development of a personalised meal plan associated with habitual physical activity, aiming at normal
body weight and metabolic control.

Keywords: behaviour; diet; lifestyle; nutrition supplements; sarcopenia; type 2 diabetes

1. Introduction

Diabetes mellitus, namely type 2 diabetes (T2D), constitutes a significant challenge
for health systems worldwide. According to the 2019 Diabetes Atlas of the International
Diabetes Federation [1], 463 million adults are currently living with diabetes (1 on 11
individuals worldwide, but 1 in 5 are aged over 65). The total number is expected to
increase further by 700 million in 2045. The economic impact is huge—driven by the direct
costs of treatment and complications, the indirect costs of disability and premature death,
and the intangible costs of poor quality of life.

Despite its characterizations as a disease of affluence, nutritional problems are frequent
in T2D. Unhealthy lifestyles expressed by overnutrition and/or scarce physical activity,
leading to overweight and obesity, add to genetic defects in the pathogenesis of the disease.
Dietary restrictions are prescribed to reduce the incidence of T2D as well as to improve
metabolic control [2], but weight loss is burdened by the loss of muscle mass [3] and
sarcopenia adds to age-dependent muscle wasting [4], increasing frailty [5]. These two
opposite needs make a correct nutritional approach mandatory to reduce disease burden,
improve metabolic control, limit pharmacologic treatment and reduce the risk of impending
cardiovascular disease.
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National and international guidelines for nutritional and lifestyle recommendations
are available [5–9], together with protocols to guide weight loss to produce long-term T2D
remission [10]. The proposed strategies (dietary prescription, lifestyle counselling, cogni-
tive behaviour therapy), although all-inclusive of nutritional components, are markedly
different in their approach and goals and should be known by clinicians approaching
patients with T2D (Table 1) [11]. The present review is intended to summarize the most
recent nutritional approaches in T2D, also outlining unmet needs.

Table 1. Comparison of strategies and goals of different dietary interventions.

Dietary Prescription Dietary Counseling Behaviour Therapy

1-4
Dietary program

• Based on rigid meal
prescription (food weight,
substitution schedule)

• Proposed food choices
with templates of daily meals

• Food choices proposed within
the frame of a healthy diet

Patient role • Passive adherence to the
prescriptive plans

• Acquires competence in
healthy diet strategies

• Meals and physical activity
planned according to personal
preferences

Role of therapist
• Active–gives the solution
• The planned calorie intake
is mandatory for patients

• Provides education on
healthy lifestyles
• Helps in identifying best
practices according to patients’
preferences and individual
status

• Communicates empathically
• Supports patients’ activities,
success and failures to stimulate
self-efficacy
• Helps in identifying obstacles
and presents possible solutions

Treatment goals • Strong focus on weight
loss or HbA1c targets

• Set realistic expectations
and acceptable body weight

• Behavioural changes are the
main targets, independent of the
amount of weight loss

Temporal terms • Usually limited to weeks,
with frequent changes

• Life-long adherence to
healthy lifestyles

• Life-long adherence to healthy
lifestyles

Additional components ————- • Integration of dietary and
physical activity counselling

• Generation of a mindset
favouring lifestyle targets

Psychological support ————-

• Support by family,
significant others, both on
food choices and in habitual
physical activity

• Implementation of a pro-active
problem solving
• Stimulus control aimed at
modifying the environment
• Strategies of cognitive
restructuring to address
dysfunctional thoughts

Note that enrolment into counselling and behaviour therapy may be facilitated by motivational interviewing. Treatment may be provided
either in individual or in group settings; group strategies are likely to enhance the coping skills of the participants, via relational and
interpersonal communication with people experiencing similar difficulties.

2. Methods and Areas of Research
2.1. Literature Search

The literature on T2D is immense. A PubMed search of June 2021, limited to the period
2016–2021 using the string “Type 2 diabetes” [MeSH Terms] AND “nutrition” [All Fields]
AND “human” [MeSH Terms], retrieved 4865 references, including 887 review articles
(234 systematic reviews), 255 meta-analyses and 760 clinical trials. The authors used the
search to enucleate the most relevant data and unmet treatment needs. The reference lists
of selected articles were used to retrieve older documents in order to provide a complete
overview of present problems.

2.2. Diabetes, Obesity and Sarcopenia

The association between T2D and obesity is so strict that the term “diabesity” was
originally used to indicate the dreadful association of the two conditions in a JAMA
editorial in 1980 [12]. The term was finally proposed by Astrup and Finer [13], as well
as by Zimmet et al. [14] and it is largely accepted inside the metabolic community. The
accumulation of body fat characterizes obesity, but it is measured by a formula (the body
mass index, i.e., weight (kg)/height2 (m)), not at all considering body fat. Muscle mass
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is frequently increased in obesity but might be relatively scarce in quantity and quality
compared to body fat.

Sarcopenia is particularly common in older patients, synergistically driven by age and
obesity; body fat increases until the seventh decade of life (the median age of patients with
diabetes attending diabetes centres) and decreases thereafter [15]. At the same time, seden-
tariness progressively reduces muscle mass, finally resulting in sarcopenic obesity [16],
frequently associated with cardiometabolic disorders [17].

By definition, sarcopenia implies a quantitatively reduced muscle mass, as measured
by dual-energy X-ray absorptiometry (DXA), the commonly accepted gold standard. Sev-
eral studies have validated the use of bioelectrical impedance analysis (BIA), an easy,
time-saving, and cost-effective bedside technique for assessing regional muscle mass and
body composition [18,19]. BIA-assessed sarcopenia is defined by the skeletal muscle mass
index (SMI), calculated as total appendicular skeletal mass (ASM, kg) divided by body
weight (kg) × 100. These measurements do not consider qualitative muscle mass, and
most recent guidelines suggest that functional measurements (e.g., low muscle strength by
handgrip) should be primarily used to characterize sarcopenia, with quantitative data as
supportive measures [20].

The prevalence of sarcopenia in diabetes has been extensively investigated. In a recent
narrative review, the prevalence of sarcopenia varied between 7% and 29% [21], according
to age and metabolic control, but higher figures are frequently reported. A systematic
review with meta-analysis including 15 studies confirmed a prevalence varying up to
50% [22], again driven by age and metabolic control. A study with BIA concluded that
patients with T2D have an enlarged ectopic fat at the expense of skeletal muscle, i.e., relative
sarcopenia [23], and lower muscle mass is coupled with decreased muscle strength [24],
also predicting diabetes in the general population [25]. The contribution of diabetes
duration remains controversial [21,22], but older patients with T2D, with an expected longer
duration of disease, show a larger decline in appendicular lean mass, muscle strength, and
functional capacity compared with normoglycemic controls [26]. Notably, when compared
with matched control populations, the risk of sarcopenia increased systematically in the
presence of T2D (odds ratio (OR) 1.55; 95% confidence interval (CI) 1.25–1.91; p < 0.001 [22]
and OR 1.63; 95% CI 1.20–2.22; p = 0.002 [27]). This indicates a need for preventive measures
to limit quantitative and qualitative muscle defects by effective nutritional treatments.

2.3. Metabolic Control

The primary defect in T2D is insulin resistance, a condition where normal insulin
levels are associated with lower metabolic effects or where higher than normal insulin
levels are needed to elicit a normal metabolic response. Insulin resistance accounts for
diffuse impairment in whole body, as well as in selective defects in different organs and
tissues (liver, muscle, adipose tissue).

Whole-body insulin resistance mainly reflects muscle insulin resistance [28], reducing
glucose and amino acid uptake in the postprandial phase, as well accelerating glycogen and
amino acid release in the post-absorptive state, also accelerated by glucagon release [29].
Glucagon constitutes the link between muscle and liver in substrate disposal; by stimulating
hepatic glucose production and ketogenesis, glucagon favours the utilization of substrates
released in the periphery, whereas high insulin concentrations favour hepatic fat deposition.
In both obese and nonobese subjects, higher plasma insulin levels have been associated
with a linear increase in the rates of hepatic de novo lipogenesis [30], as supported by the
hypoglycaemic effects of glucagon suppression of glucagon-receptor antagonists [31,32]. In the
hepatocytes, fatty acids may be derived from de novo lipogenesis, uptake of non-esterified
fatty acids and low-density lipoproteins, or lipolysis of intracellular triacylglycerol. Their
accumulation due to higher synthesis and decreased export in the presence of high insulin
concentrations in the portal vein is the likely cause of fatty liver disease, occurring in up to
73% of patients with T2D [33].
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The link between muscle tissue and the liver is exerted by amino acids (Figure 1) [34].
Branched-chain amino acids, bypassing the liver in the post-prandial state, serve as nitrogen
carriers to the periphery, whereas alanine and glutamine are used to carry nitrogen from
the periphery to the liver, intestine and kidney. In insulin-resistant states, including
obesity [35], the post-load uptake of branched-chain amino acids is impaired, possibly
leading to defective amino acid supply to the muscle tissue and sarcopenia. In summary,
the complex trafficking of glucose, lipid and amino acid in response to insulin resistance
should be considered in the treatment of diabetes.

Figure 1. Interorgan amino acid exchange in the postabsorptive state and after meals in diabetes. Note the importance of
BCAAs (valine, isoleucine and leucine) as nitrogen carriers to the muscle tissue (lean mass) in the post-prandial period (blue
arrows) and the reverse importance of alanine and glutamine as nitrogen carriers to central organs in the post-absorptive
state (liver, kidney, intestine) (green arrows). In this context, the regulatory role of the pancreas (altered secretion of insulin
and glucagon) and the adipose tissue (lipolysis, release of free fatty acids and inflammatory adipokines in the general
circulation, particularly in the post-absorptive state) is pivotal for the regulation of hepatic and whole-body homeostasis
(red arrows).

3. Medical Nutrition Therapy for Type 2 Diabetes

The foundation of medical nutrition therapy (MNT) of T2D is to achieve glucose, lipids,
and blood pressure within the target range to prevent, delay or manage microvascular and
macrovascular complications [36,37].

MNT plays a pivotal role in the overall management of diabetes, and patients with T2D
should be actively involved with their healthcare team for the collaborative development
of a personalized meal plan. If these patients are referred to a registered dietitian or
a nutritionist proficient in providing diabetes-specific treatment, an absolute reduction
of glycated A1C haemoglobin of up to 1.9% may be observed [8]. Continuous dietary
counselling integrated with mobile apps and wearable devices has also been advocated to
facilitate the real-time assessment of dietary intake, to strengthen adherence, and support
motivation and self-efficacy [38].
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3.1. Comparison between Different Guidelines

Table 2 summarizes the main nutritional recommendations for patients with T2D,
derived from guidelines, and the dietary patterns with a high degree of evidence [5–9].
All proposed interventions are designed to reduce energy intake and promote 5–10% loss
of initial body weight, leading to improved insulin sensitivity, blood glucose and blood
pressure control, and reduced lipid levels [39]. Regular mealtimes and a healthy diet should
be combined with increased physical activity [4].

Table 2. Summary of nutritional recommendations for type 2 diabetes, as derived from international guidelines.

Nutrients Recommendations

1-2
Calorie intake

• Reduce energy intake in all individuals with overweight/obesity (calorie deficit of
250–500 kcal/day) to promote weight loss (0.5–1.0 kg/week) to a final body weight within
the normal range

1-2 Macronutrient distribution
• There is insufficient evidence to recommend specific macronutrient distribution, but a
moderate carbohydrate reduction might favour glucose control and promote a moderate
weight loss

1-2 Carbohydrates
• Prefer low glycaemic index foods (whole grains, fruits, legumes, green salad with olive
oil dressing and most vegetables). Limit refined carbohydrates (pasta, white bread, rice,
white potatoes, etc.)

1-2 Sugars

• Limit intake of sucrose-containing foods and sugary drinks
• Prefer non-nutritive sweeteners as substitutes of sugar
• Low calorie or unsweetened beverages should be preferred, but their consumption
limited

1-2 Fibers • 30–50 g/day of dietary fibres (at least one-third of soluble origin)

1-2 Proteins • As in the general population, 1.0–1.5 g/kg ideal body weight
• Reduce protein intake to 0.8 g kg/b.w. or lower in patients with chronic kidney disease

1-2 Fats

• As in the general population, 20–35% of total kcal/day
• Avoid trans-fatty acids and limit saturated fatty acids (SFAs) to 7–9%. Increase foods
enriched in long-chain omega-3 polyunsaturated fatty acids (PUFAs) and monounsaturated
fatty acids (MUFAs).

1-2 Micronutrients & Vitamins
• Correct micronutrient and vitamin deficiencies
• Consider vitamin supplementation (B-group vitamins or folic acid) in metformin-treated
patients

1-2 Sodium • Limited as in the general population; consider additional limitations in those with
hypertension

1-2 Alcohol • Limited as in the general population
1-2 Dietary pattern • Favour a dietary model based on Mediterranean-style

The optimal distribution of macronutrients as a percentage of total energy is highly
variable, from 45 to 60% for carbohydrates, from 15 to 20% for proteins and 20 to 35% for fats,
suggesting no ideal percentage of calories from macronutrients [7]. As to carbohydrates,
high-fibre sources (30–50 g/day of dietary fibre, ≥30% as soluble fibres) and minimally
processed, low-glycaemic index carbohydrates should be preferred to improve glycaemic
control, LDL-cholesterol and cardiovascular (CV) risk. Overall, reducing carbohydrate
intake for individuals with T2D has been shown to improve blood glucose [6]; a systematic
review and meta-analysis (9 studies with 734 patients) confirmed a beneficial effect of low-
carb diets vs. normal-or high-carb diets on HbA1c and on short-term weight loss, not on
long-term weight loss [40]. Food plans should emphasize the consumption of non-starchy
vegetables, with minimal added sugars, fruits, whole grains, and dairy products [41].
Using non-nutritive sweeteners as substitutes for added sugar (sucrose, high fructose corn
syrup, fructose, glucose) can reduce daily calories and total carbohydrates. For those who
regularly consume sugary drinks, consuming a low calorie or unsweetened drink can be
an alternative, but both should be consumed with caution.

Additionally, recommendations on protein intake do not differ from the general
population (1.0–1.2 g/kg body weight or corrected body weight for patients with over-
weight/obese); protein intake should be reduced to 0.8 g/kg body weight in subjects with



Nutrients 2021, 13, 2748 6 of 23

chronic diabetic nephropathy [36]. At present, there is some inconsistency across guidelines
from different countries as to protein sources (some do not limit animal proteins) and as to
allowed maximal amount of protein intake (1.2–1.5 g/kg/day) [42]. A recent meta-analysis
of 54 RCTs (4344 participants) showed a significant effect of moderate high-protein diets
(20–45% of total energy) vs. low-protein diets (10–23%) on weight loss and weight loss
maintenance, total fat mass reduction and cardiometabolic risk [43]. The authors suggest
that the effects might also be due to the blood-pressure-lowering effect of bioactive peptides
that inhibit the angiotensin-converting enzyme activity observed in protein isolates [44].

Among dietary fats, it is recommended to avoid trans-fatty acids as much as possible
and to consume less than 7–9% of the total daily energy from saturated fatty acids (SFAs).
SFAs should be replaced with polyunsaturated fatty acids (PUFAs), mainly mixed sources
of omega-3/omega-6, and with monounsaturated fatty acids (MUFAs) of vegetable origin
whole grains, nuts and seed (rich in alpha-linolenic fatty acid) [36,45].

The recommendations have largely focused on the quality of the diet and the impor-
tance of a healthy eating pattern that contains nutrient-rich foods, with less attention to
the percentage of specific nutrients, with a reduction in daily caloric intake (250–500 kcal)
for subjects with overweight and obesity [6]. Several dietary patterns have been studied
and proposed, but no single dietary pattern should be preferred [8]. Individual preferences
and treatment goals will determine the long-term use of these models; systematic reviews
and meta-analyses have shown that a Mediterranean-style dietary pattern significantly
improves hard outcomes such as glycaemic control, systolic blood pressure, total choles-
terol, HDL-cholesterol and triglycerides [46]. The Mediterranean diet is characterised by a
moderate-to-low carbohydrate intake, entirely covering the micronutrient needs [47]. Ad-
ditionally, a low fat diet, i.e., the DASH-diet, promoted in the prevention of cardiovascular
disease and the treatment of high blood pressure [48], has also reached consensus [49]. In a
review comparing low-carbohydrate and ketogenic diets, the vegan diet, and the Mediter-
ranean diet, all diets improved glycaemic control and weight loss, but patient adherence
and long-term manageability were pivotal factors for the efficacy of each diet [50].

3.2. Intensive Lifestyle Intervention

Intensive lifestyle intervention (ILI) that supports behaviour changes, as initially
experienced in the Finnish Diabetes Prevention Study and the U.S. Diabetes Prevention
Program [51,52], represents the recommended approach to prevent and/or delay the onset
of T2D in prediabetic patients [5]. The ILI behaviour approach combines diet and physical
activity interventions with the goal to achieve and maintain a 7% loss of initial body weight
and to increase moderate-intensity physical activity to at least 150 min/week. The effect of
ILI has also been investigated in the treatment of T2D. The Look AHEAD study randomized
5145 individuals with T2D and associated overweight or obesity to either ILI or diabetes
support and education (as control group), having cardiovascular outcomes as primary goal.
Weight loss was achieved by reducing caloric intake to 1200–1800 kcal/day depending
on baseline weight using portion-controlled meal plans, calorie-counting techniques, and
meal replacements combined to moderate physical activity to ≥175 min/week. ILI was
delivered as individual and group sessions over the first year, with a median follow-up of
9.6 years. [53]. After one year, the average weight loss in the ILI group was 8.6%, compared
with 0.7% in the control group, with 55% of ILI participants having lost ≥7% of their initial
b.w. vs. 7% of controls. This led to remission of T2D in 11.2% of ILI participants vs. 2.0% in
controls. However, by the fifth year of follow-up, ILI participants had regained half of their
initial weight loss, and the study was closed at the end of the follow-up (10-years) after an
interim analysis had shown that the intervention had failed its primary outcome [54]. Thus,
the critical point becomes how to achieve long-term weight loss maintenance, a difficult
task in the general population [55], and a core problem in T2D treatment with approaches
based on lifestyle changes. Although more effective than behaviour change in inducing
and sustaining remission of T2D, bariatric surgery also suffers from reduced durability
over time [56].
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A novel approach was tested in the DIRECT trial, a primary care-led management
intervention in patients with T2D diagnosed by less than 6 years and not receiving insulin.
The ILI strategy was preceded by a commercial very-low-calorie diet followed by stepwise
food reintroduction. Primary outcomes were weight loss ≥15 kg and T2D remission. At
12 months, almost half of participants achieved T2D remission off all glucose-lowering
medications [57]; this percentage dropped to 36% at 24 months [58]. Notably, the main-
tenance of diabetes remission paralleled weight loss maintenance and particularly fat
removal from the liver and pancreas, suggesting recovered insulin secretion [59]. With the
limits of durability, all these data support the use of ILI, including dietary interventions, as
an effective adjuvant treatment to improve glycaemic control [60].

Another approach is the so-called intermittent fasting, which has gained increased
popularity for treating T2D based on very limited literature [61]. This term encompasses
various eating behaviours that avoid (or limit) nutrient and energy intake for a significant
amount of time (a full day or a time-restricted feeding between 6 to 8 h) on a regular
intermittent schedule. Intermittent fasting is claimed to improve glucose control, insulin
resistance and to induce weight loss by generating a ‘metabolic switch’, i.e., a sort of reju-
venation of the metabolic homeostasis, leading to increased health span and longevity [62],
but no advantage over conventional caloric restriction has been proven. Moreover, this
regimen could carry the risk of hypoglycaemia even when following a medication dose-
change protocol and should only be used under strict medical control and/or continuous
glucose monitoring [63].

Finally, the use of mobile apps and wearable devices has recently gained consensus
to facilitate weight loss. The use of these devices allows a direct analysis of daily calorie
intake and physical activity (daily steps), translated into calorie consumption [64]. This
provides immediate feedback and is likely to support long-term adherence to well-defined
goals [38]. Several commercial apps are available, and have been tested in the prevention
and treatment of diabetes in trials mimicking the U.S. Diabetes Prevention trial [52]. Toro-
Ramos et al. confirmed a modest efficacy of weight loss for app users after 6 and 12 months
of systematic use in subjects with prediabetes compared with usual care [65], and similar
studies are available with the most recent apps that also support by tailored messages
interactivity [66]. Although all these supports are expected to improve long-term weight
loss, and a few patients may really reach impressive results [67], their use is biased by
higher attrition rates [68]. Nonetheless, the possibility to reach a larger audience makes
this approach a useful opportunity.

4. Nutritional Supplements for Metabolic Control

International diabetes societies do not support the use of nutritional supplements in
diabetes, but their use continues to increase in several countries, despite lack of evidence
and uncertainty on safety [36]. A complete analysis of available products (combinations
may account for several hundreds) is outside the scope of this review, but a few of them
are of interest. Their putative mechanism(s) of action are summarized in Table 3 [69–89].
They are not expected to replace diet and glucose-lowering drugs but might be confidently
used, provided their safety is proven.
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Table 3. Putative mechanism(s) responsible for the beneficial effects of nutrition supplements and micronutrients on
diabetes risk and glycaemic control.

Product Mechanism of Action

1-2
Inositols [69–71]

Myo-inositol (MI) and D-chiro-inositol (DCI) act as insulin second messengers. MI takes part in cellular
glucose uptake and is high in the brain and heart, where high rates of glucose utilization occur
MI prevents the release of free fatty acids from adipose tissues; on the contrary, DCI is involved in
glycogen storage, being elevated in the liver, muscle, and fat tissue
DCI may be preferred to MI to restore insulin sensitivity and glycogen synthesis because it bypasses the
defective epimerization of MI to DCI in the presence of insulin resistance

1-2 Vitamin D [72–75]

Serum levels of 25(OH)D are significantly lower in patients with T2D compared with values measured in
healthy people, with a negative correlation with HOMA-IR and adipokines
Direct effect on insulin secretion, mediated by nuclear vitamin D receptors also present in pancreatic
β-cells, but the effects on insulin sensitivity have long been conflicting
Vitamin D deficiency is associated with vascular inflammatory responses by promoting the secretion of
inflammatory cytokines

1-2 Niacin [76]

This compound mediates hundreds of oxidation-reduction redox reactions, which are essential sources of
energy for a myriad of cellular functions, finally known to improve lipid profile and to reduce
cardiovascular risk
Restoration of C-peptide release, but unexplained negative results on glycaemic control

1-2 Resveratrol [77,78]

Activator of the sirtuin pathway, regulating several cellular functions related to metabolism, oxidation,
and aging
Anti-oxidant activity

1-2 Pre/probiotics
[79–83]

Effects on insulin sensitivity by modification of gut microbiota

1-2 Zinc [84,85]

Participation in insulin synthesis, storage, crystallization, and secretion in the pancreatic β-cell, as in well
as in insulin action and translocation inside the cells
Stimulation of insulin sensitivity through the activation of the phosphoinositol-3-kinase/protein kinase B
cascade.
Stimulation of glucose uptake in insulin-independent tissues (insulin-mimetic action)
Suppression of proinflammatory cytokines (interleukin-1β and nuclear factor kβ), thus avoiding β-cells
death and protecting insulin

1-2 Chromium [86,87]
Effects on insulin signalling
Insulin sensitising activity in experimental animals

1-2 Magnesium [88,89]

Possible effects of Mg2+ deficiency on the tricarboxylic acid cycle, increasing the risk of hyperinsulinemia
and insulin resistance
Modulation of insulin action and oxidative glucose metabolism
Alteration of lipid metabolism and the antioxidant system

Abbreviations: HOMA-IR, homeostasis model assessment of insulin resistance; IL, interleukin; TNF, tumor-necrosis factor.

4.1. Inositols

Several reviews and meta-analyses have been published on the treatment of gestational
diabetes with myo-inositol (MI) or D-chiro-inositol (DCI) [70,90–93]. A Cochrane review
was inconclusive [94]; MI supplementation did not reduce the need for insulin or produce
any significant effect on blood glucose. Conflicting data have also been reported using DCI
or the combination of MI and DCI, and the optimum dosage to achieve a significant effect
on glucose metabolism remains unsettled [91]. A position statement of the two largest
Italian diabetes societies concluded that MI (at the dose of 4 g/day) might be safely used
for the prevention and treatment of gestational diabetes [95], but the level of evidence



Nutrients 2021, 13, 2748 9 of 23

and the strength of recommendations are low. No data are available on the use of MI or
DCI to treat insulin resistance outside gestational diabetes. Studies are in progress on the
combined use of MI and myo-inositol hexa-phosphate (IP6), or phytic acid, showing more
effective anti-oxidant and glucose-lowering activity in experimental animals [96], but no
clinical data are available.

The use of inositol(s) in polycystic ovary syndrome is not considered in the present
review; in that setting, specific hormonal activity is likely to produce clinical effects [97].

4.2. Vitamin D

Vitamin D levels are frequently suboptimal in T2D, probably driven by overweight/
obesity, and specifically by visceral adiposity [98], and have been associated with chronic in-
flammation and insulin resistance, as well as impaired insulin release [99]. Epidemiological
studies support the existence of a relationship between low vitamin D levels and the pres-
ence of T2D, metabolic syndrome [100,101], nonalcoholic fatty liver disease (NAFLD) [102],
cardiovascular risk factors [103] and insulin resistance, also tested by glucose clamp [75].
However, a clear association between vitamin D levels, insulin and glucose metabolism
has not been systematically confirmed by intervention studies, and a causal association
has never been established [104]. In a subset of the RECORD trial, a placebo-controlled
trial of oral vitamin D3 and/or calcium supplementation for the secondary prevention
of osteoporotic fractures in older people, vitamin D3 at the daily dose of 800 IU with or
without 1000 mg of calcium did not prevent the development of T2D and did not reduce
the need for glucose-lowering drugs in T2D patients [105]. Although the effects on insulin
sensitivity have long been conflicting [73], a recent systematic review with metanalysis con-
firmed that vitamin D supplementation resulted in a significant improvement in HOMA-IR
(standardized mean difference = −0.57; 95% CI: −1.09 to −0.04), particularly when vitamin
D was administered in large doses and for a short period of time to nonobese, vitamin D
deficient patients, or to individuals with optimal glucose control at baseline [106]. Data
have been confirmed in another recent study in vitamin D-deficient adults randomized
to high dose vitamin D supplementation. The HOMA value of insulin resistance was
significantly reduced, and a lower rate of progression toward diabetes was observed vs.
the control group (3% vs. 22%; p = 0.002) [107].

Of note, vitamin D has been extensively used also to treat sarcopenia, considering the
role of insulin resistance extending from glucose metabolism to protein and amino acid
metabolism, as discussed below.

4.3. Niacin

Niacin is a water-soluble derivative of pyridine, present in several forms (namely as
nicotinic acid or nicotinamide), also named as vitamin B3. It is a derivative of vitamin
B, frequently associated with inositols as inositol hexanicotinate. The effects on insulin
release from islet β-cells have been extensively investigated in T2D with secondary failure
of sulfonylureas, where niacin at the daily dose of 1.5 g significantly restored C-peptide
release [108]. However, a meta-analysis of eight trials where niacin was used to treat hyper-
lipidemia in 2110 T2D patients showed no significant effects on plasma glucose (weighted
mean difference (WMD), 0.18 mmol/L; 95% CI, −0.14 to 0.50) and HbA1c levels (WMD,
0.39%; 95% CI, −0.15 to 0.94) [109]. Niacin appeared to cause a deterioration of glucose
control, in keeping with data observed in a meta-analysis of 11 trials in patients without
diabetes at entry, where niacin was used to treat dyslipidaemia and prevent cardiovascular
events [110] (relative risk of de novo T2D: 1.34 (95% CI 1.21–1.49)). Similar results were
provided by the large trial of combination treatment with niacin plus laropiprant [111],
where niacin treatment (2 g/day for a median of 3.9 years) was associated with an in-
creased incidence of de novo T2D (rate ratio, 1.32; 95% CI 1.16–1.51) and deterioration
in metabolic control in subjects with diabetes (1.55; 1.34–1.78) [112]. This deleterious ef-
fect is similar to the well-known, mild negative effect of statins on glucose metabolism.
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It adds to the well-known poor tolerability of niacin because of flushing, occurring at
pharmacologic doses.

4.4. Nutraceuticals

Natural compounds derived from plant extracts, spices, herbs, and essential oils have
been tested for alleged benefits in managing patients with metabolic syndrome [77,113]. They
include Mediterranean diet components, olive oil and its anti-oxidant components, natural
legumes and cereals, as well as specific compounds, alone or in combination. Curcumin [114],
cinnamon [115,116], berberine [117,118], citrus flavonoids [119,120], quercetin [121,122], the bioac-
tive compounds of garlic [123,124], red yeast rice [125] and neem extracts [126] have
all demonstrated some activity on insulin sensitivity, but studies are usually of poor
quality and very few received extensive validation, although supported by systematic
reviews [119]. They may be included in dietary recommendations but should never replace
pharmacologic treatment.

Resveratrol, a polyphenol present in plants such as grapes and nuts and mainly in
derivatives (wine), merits a specific citation [127–129]. A recent Cochrane review identified
three RCTs with a total of 50 participants who received graded doses of daily oral resver-
atrol for 4–5 weeks vs. placebo. Studies had a low risk of bias, but the analysis did not
demonstrate any significant effect on glucose and HbA1c levels, with the limit of a short
observation period. The authors found eight more ongoing RCTs with approximately 800
participants, likely to contribute more solid results [128]. Clinical studies in patients with
insulin resistance and NAFLD have shown promising results [130], but even moderate
alcohol intake is questioned in these patients due to the negative effects of alcohol on
hepatic and extrahepatic cancers, which outweigh the possible beneficial effects on the
cardiovascular system, largely derived from retrospective studies [131]. Finally, alcohol
provides extra calories that should be considered in patients on dietary restriction, the
pivotal intervention to reduce body weight and NAFLD burden.

Probiotics and/or prebiotics could be a promising approach to improve insulin sen-
sitivity by modification of gut microbiota. Clinical data are specifically referred to ges-
tational diabetes [132,133]; in these women four high-quality RCTs (288 participants)
showed that treatment was associated with a significant reduction in insulin resistance
(HOMA-IR: −0.69%; 95% CI −1.24, −0.14, p = 0.01), not in fasting glucose (−0.13 mmol/L;
95% CI −0.32, 0.06, p = 0.18) or LDL-cholesterol (−0.16 mmol/L; 95% CI −0.45, 0.13,
p = 0.67) [133]. In the general diabetes population, the most recent review identified 38
studies totalling 2086 participants fitting pre-defined criteria to be included in a meta-
analysis [134]. Overall, the use of prebiotics, probiotics or synbiotics reduced fasting
glucose (−0.58 mmol/L; 95% CI −0.86, −0.30; p < 0.01), total cholesterol (−0.14 mmol/L;
95% CI −0.26, −0.02, p = 0.02) and triglyceride levels (−0.11 mmol/L; 95% CI −0.20, −0.02,
p = 0.01) and increased HDL-cholesterol (0.04 mmol/L; 95% CI 0.01, 0.07, p < 0.01), but
failed to reach the significance threshold in HbA1c (−2.17 mmol/mol; 95% CI, −4.37 to
0.03; p = 0.05) and had no effect on LDL-cholesterol [134].

Fructans are compounds acting as prebiotics, i.e., non-digestible food ingredients
neither metabolized nor absorbed while passing through the upper gastrointestinal tract
and fermented by bacteria in the colon. They include fructo-oligosaccharides, galacto-
oligosaccharides, lactulose and large polysaccharides (inulin, resistant starches, cellulose,
hemicellulose, pectin and gum) [135,136]. Diets rich in fructans might improve glucose
metabolism in T2D also via decreased intake and intestinal absorption of food, adding
to modifications of gut microbiota [137,138]. A systematic review with meta-analysis
of 25 studies did not provide evidence for a beneficial effect on BMI, but inulin-type
carbohydrate supplementation reduced fasting glucose (−16.4 mg/dL; 95% CI, −17.6
to −15.2), HbA1c (−0.58%; 95% CI, −0.78 to −0.39), and HOMA-IR (−0.99%; 95% CI,
−1.76 to −0.2). However, a large heterogeneity was demonstrated, raising doubts on data
validity [139].
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4.5. Other Micronutrients
4.5.1. Zinc

Zinc deficiency is common in T2D [140], likely as an effect of both hyperzincuria [141]
and reduced intestinal absorption [142], resulting in insulin resistance [143]. Its antioxidant
role further strengthens the importance of zinc levels for diabetes control and the prevention
of microvascular complications [144].

In the clinical setting, a systematic review with meta-analysis of 12 studies in T2D
patients showed that zinc supplementation resulted in a significant reduction of fasting
blood glucose (pooled mean difference, −18.1 mg/dL; 95% CI −33.8 to −2.41) and HbA1c
(−0.54 %; 95%CI, –0.86 to –0.21), accompanied by a systematic reduction of total and
LDL-cholesterol levels [145]. Among diabetes-related complications, zinc supplementation
was shown to reduce lipoperoxidation [146] and to decrease urinary albumin excretion,
independently of glucose control [147,148]. However, a few studies failed to demonstrate
any positive effect of zinc supplementation in the metabolic control of T2D patients [146],
also in the presence of long-term supplementation and low zinc levels at baseline [149]. Zinc
supplementation might prove useful only in specific settings. In zinc-deficient patients with
cirrhosis, independently of diabetes status, zinc treatment (zinc sulfate, 200 mg three times
per day) was associated with improved non-insulin-mediated glucose disposal (so-called
glucose effectiveness) [150], as well as improved alanine stimulated urea synthesis rate,
a measure of amino acid utilization in tissues [151], also resulting in decreased ammonia
levels and improved mental state. All these complementary effects might be important in
subjects with T2D progressed to NAFLD-cirrhosis [152].

No relevant side effects of zinc supplements have been reported in chronic dis-
eases [153].

4.5.2. Chromium

A possible role of deficient chromium levels as risk factor T2D has long been suggested
based on its insulin-sensitising activity, but the effects on human disease remain uncertain.
In a large case-control study involving 4443 Chinese individuals (nearly half with either
newly diagnosed T2D or newly diagnosed pre-diabetes), plasma chromium levels were
approximately 10% lower in the T2D and pre-diabetes groups vs. controls, and the risk
of T2D and pre-diabetes decreased across quartiles of chromium [154]. This evidence fits
with smaller studies reporting decreased chromium levels and/or increased chromium
excretion in T2D [141,155].

The effects of chromium supplementation have been tested in multiple review articles
with pooled analysis or metanalysis [156–159]. Based on 25 RCTs of chromium supplemen-
tation, Suksomboon et al., concluded for positive effects of chromium supplementation
on glucose control in patients with diabetes, with no increased risks of adverse events
compared with placebo [156]. On the contrary, Yin et al., in a meta-analysis of 14 trials (875
participants, mean age range: 30 to 83 years old, 8 to 24 weeks of follow-up) did not demon-
strate any significant effect of chromium, either as Cr chloride, or Cr picolinate, or Cr yeast)
on HbA1c levels [157]. In a review limited to patients with T2D, very few studies reached
clinically meaningful goals, defined as fasting plasma glucose (FPG) ≤7.2 mmol/dL, a
decline in HbA1c to values ≤7%, or a decrease of ≥0.5% in baseline levels [158]. Finally, in
the most recent and largest analysis in T2D (28 studies, 1295 participants, heterogeneous
chromium supplements with daily intake ranging up to 3000 µg for 6–24 weeks), the
authors concluded for a positive effect of Cr supplements on glucose metabolism [159] and
include chromium supplements into the treatment of T2D [159], despite uncertainty about
long-term use. Treatment reduced fasting glucose (WMD, −0.99 mmol/L; 95% CI, −1.72
to −0.25), HbA1c (WMD, −0.54 %; 95% CI, −0.82 to −0.25), triglycerides and increased
HDL-cholesterol. The effects were mainly reported using both chloride and picolinate
formulations and were independent of treatment duration.
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4.5.3. Magnesium

Insulin modulates the shift of magnesium from extracellular to intracellular space;
in turn, intracellular Mg2+ concentration modulates insulin action, as well as blood pres-
sure [160]; thus, low magnesium induces insulin resistance, and insulin resistance further
decreases magnesium levels [161]. In the past 20 years, several epidemiological and clinical
studies have demonstrated the protective role of magnesium on the risk of diabetes. In
U.S. women aged ≥45 years (Women’s Health Study) with no previous history of T2D, an
inverse association was found between dietary magnesium and incident T2D, which was
significant among women with increasing grades of overweight/obesity (P for trend, 0.02).
It was associated with a progressive decline of insulin levels (P for trend, 0.03) [162]. Data
were confirmed in 1122 individuals (20–65 years of age) enrolled between 1996 and 1997
and re-examined about 10 years later. The relative risk of new-onset prediabetes and T2D
were increased in the presence of low magnesium levels at baseline [163].

Oral magnesium supplementation in subjects with T2D and low magnesium levels
have been reported to improve insulin sensitivity and metabolic control [164–166]. In a
meta-analysis of 40 prospective cohort studies enrolling more than 1 million participants
and follow-up periods ranging from 4 to 30 years, dietary magnesium intake was associated
with a 19% reduction in the relative risk of T2D (RR 0.81; 95% CI, 0.77–0.86 per 100 mg/day
increment) [167]. In a different analysis of 28 studies involving 1694 subjects (834 in the
treatment arm and 860 in the placebo arm), magnesium supplementation was demonstrated
to produce favourable effects on blood glucose (WMD, −4.64 mg dL, 95% CI −7.60 to
−1.68), as well as on HDL- and LDL-cholesterol, triglycerides and systolic blood pressure,
also reducing cardiovascular risk [168].

Additionally, for magnesium supplements, no safety concerns have been raised; Verma
and coll. argue that large trials should be performed to validate the use of magnesium
supplements to prevent and treat T2D [168], but no consensus exists in the community [169].

5. Prevention and Treatment of Diabetes-Related Sarcopenia

Optimal energy intake, healthy food choices and sufficient protein intake, coupled
with habitual physical activity, especially resistance training, are the cornerstones for
metabolic control and the prevention of frailty in T2D. Despite the mounting evidence of
the negative impact of sarcopenia on the natural history [170] and quality of life of T2D
patients [171], there is a surprising dearth of intervention studies addressing T2D-related
sarcopenia. Therefore, we must rely on findings from general intervention studies on
sarcopenia and/or sarcopenic obesity.

Resistance training represents the most effective intervention for prevention and
treatment and can be safely carried out even in fragile patients [172]. High protein
(1.2–1.4 g/kg) hypocaloric diets—either exclusively food-based or including protein sup-
plements, both as an adjunct to resistance training—have proven effective for preventing
muscle mass loss during weight-reduction diets in women with obesity [173]. To reach
the anabolic threshold, the protein supplement should be provided at meals rather than
between meals in the elderly. The optimal protein dose (including food protein and proteins
from supplements) should be 30–45 g of proteins per serving in the elderly [174]. However,
high protein load cannot be recommended to T2D patients with chronic kidney disease
(CKD) [175].

Whey proteins, rich in the anabolic amino acid leucine, represent the most frequently
used protein supplements. Additionally, BCAA supplement or the leucine metabolite
β-hydroxy-β-methyl butyrate have been proposed. These supplements are generally
ineffective as sole treatment in patients without diabetes [173,176,177] and must be added
to resistance training to improve already-established sarcopenia (associated or not to
obesity). Leucine has strong insulinotropic properties, and leucine-rich supplements may
increase the availability of amino acids for protein synthesis and reduce protein breakdown
in the muscle, at the same time enhancing glucose disposal and glycaemic control, but
solid data are lacking [178]. A noteworthy issue is that BCAA treatment has proven
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effective both in preventing and in improving sarcopenia in patients with liver cirrhosis,
also independently of physical exercise/resistance training [179,180].

Finally, vitamin D was also proposed as a nutritional supplement to control sar-
copenia. The activation of the vitamin D receptor present in muscle cells promotes their
differentiation, proliferation and hypertrophy. Vitamin D deficiency is associated with
reduced muscle mass and strength in the elderly [181], and vitamin D supplementation
increased muscle strength, particularly in vitamin D-deficient cases and in the elderly [181].
Data were not confirmed by a Cochrane review in patients with liver disease; no data are
available in T2D [182] and trials are eagerly warranted.

6. Management of Other Comorbidity in Patients with T2D
6.1. Cirrhosis

Nutrition therapy in cirrhosis has already been discussed in this Special Issue of
Nutrients. Nonetheless, its association with T2D deserves a special focus considering the
high prevalence—up to two-thirds of patients with cirrhosis listed for liver transplantation
have T2D [183]—and its importance as a risk factor for the development of complications
(ascites, hepatic encephalopathy, bacterial infections, renal insufficiency, hepatocellular
carcinoma) [184]. Nutrition treatment becomes extremely challenging since additional
determinants of malnutrition may be present, including reduced food intake and/or
defective absorption of nutrients and impaired albumin synthesis. Sarcopenia—accelerated
by upregulation of myostatin due to hyperammonaemia—becomes a predictor of morbidity
and mortality, aggravated by obesity (sarcopenic obesity) [185,186], and is difficult to treat.
Bariatric surgery is frequently contraindicated [187]; also pharmacologic treatment with
GLP-1 agonists favouring weight loss [188], such as liraglutide, may be contraindicated
by the presence of varices at risk of bleeding [189], and dietary treatment remains the
sole possibility.

Unfortunately, there are no specific guidelines for the nutritional treatment of T2D as-
sociated with cirrhosis, and individualized, structured nutritional programs are suggested
to accomplish the need for restriction of sodium and fluids [190]. Due to the accelerated
depletion of glycogen stores, it is important to provide frequent (3 to 5) meals contain-
ing carbohydrates, plus a late evening carbohydrate snack to prevent muscle protein
catabolism [191,192].

Protein restriction is not systematically advocated, as these patients usually tolerate a
normal protein intake. Besides hypoalbuminemia, potentially requiring a higher protein
intake, albumin glycation is present in T2D [193]. The structurally damaged albumin
molecule is also dysfunctional, and albumin administration may be required to reduce
ascites. Although the specific indications for use are clearly defined by international
guidelines [194], albumin is frequently administered outside evidence-based indications,
including nutritional support [195]. At present, no studies showed a direct link between
albumin administration and nutritional correction in decompensated cirrhosis; it can only
be hypothesized that the clinical improvement seen with long-term albumin treatment
could indirectly improve the nutritional status through different mechanisms, which
include the control/resolution of ascites and whole body edema, or the reduction of
systemic inflammation [196].

6.2. Renal Failure

In T2D patients with CKD, protein restriction may be advised; low protein diets (daily
protein intake reduced to 0.8 g/kg b.w.) showed a beneficial impact on the trajectory of
renal function leading to an attenuation in the progression of CKD and delayed initiation
of dialysis treatment, an important goal for patients [197–199]. However, protein restriction
may worsen sarcopenia and should be limited as long as possible. According to the
National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF-KDOQI)
Guidelines, protein intake must actually be increased up to 1.2 g/kg body in patients
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undergoing maintenance dialysis due to important additional amino acid losses occurring
in dialysate [200,201].

Different sources of dietary protein may have a different impact on CKD-related
complications; meat intake increases the production of nitrogenous end products, worsens
uraemia and may increase the risk of constipation with consequent hyperkalaemia associ-
ated with the low fibre intake [199]. A predominantly plant-based diet, fibre-rich and low
in protein content (0.6–0.8 g/kg/day), can produce favourable changes in the intestinal
microbiome, thus modulating the generation of uremic toxins and slowing down the pro-
gression of CKD, finally reducing cardiovascular risk [202]. Carbohydrates from sugars
should be limited to less than 10% of the energy intake [203], and saturated fatty acids,
trans fats, and cholesterol should be replaced by polyunsaturated and monounsaturated
fats, associated with more favourable outcomes [204]. Dietary sodium restriction should
be considered, but a deficient sodium intake (to less than 1.5–2.0 g/day) carries the risk of
hyponatremia, leading to reduced insulin sensitivity and prediabetes [205]. T2D patients
with advanced CKD progressing to end-stage renal disease may be prone to the “burnt-
out diabetes” phenomenon (i.e., spontaneous resolution of hyperglycaemia and frequent
hypoglycaemic episodes); further studies in this frail population in chronic hemodialysis
treatment are particularly needed to determine the safety and the effectiveness of dietary
manipulations [206].

7. Conclusions

T2D is the paradigm of conditions where genetic, behavioural and individual factors
drive disease occurrence and severity. Despite decades of epidemiological studies and
randomized trials, several unmet needs remain (Table 4). The goal of optimal nutritional
approach is to maintain or regain a body weight within the normal range, providing ade-
quate intake of macronutrients and micronutrients to reduce the risk of sarcopenia. Various
dietary approaches have been proposed to improve outcome, with the Mediterranean diet
supported by solid evidence. However, as long-term adherence is the main goal to be
achieved, the dietary plan and the calorie restriction that patients feel confident to maintain
life-long should always be preferred. At present, supplementation with inositols, vitamin
D and micronutrients (zinc, chromium, magnesium) is not systematically suggested, but
might be considered in individual patients.

Table 4. Principal unmet needs for optimal nutritional treatment of patients with type 2 diabetes.

Target Unmet Needs

1-2
Weight control

Define the best dietary plan to support weight loss and weight loss maintenance
Define the role of psychological support in individual, difficult cases
Define the role of e-health technology and individual apps to improve long-term
adherence to dietary recommendations

Prevention and treatment of sarcopenia

Define the optimal protein intake to prevent sarcopenia
How to integrate physical activity in the daily life of frail patients
Assess the relative role of resistance vs. aerobic exercise

Vitamins and nutritional supplements

Are they really needed (if, when, to whom)?
Who should be screened for micronutrient deficit
Define the role of nutritional supplements in the prevention of sarcopenia
Define the possible interaction of vitamins and nutrients with drug treatment

Although advances in nutrigenomics and metabolomics offer the rationale for tailored
precision medicine, a personalized meal plan, supported by continuous dietary counselling
by registered dietitians remains at present the key strategy for long-term success in weight
and glycaemic control [37], particularly in individual high-risk cases [38].
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