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Spatial sampling for non-compact patterns

Linda Altieri and Daniela Cocchi

University of Bologna, Department of Statistical Sciences

via Belle Arti 41, 40126 Bologna, Italy

Abstract

The objective of spatial sampling is to collect subsets of individuals from a popula-

tion in the 2-dimensional space, in order to estimate some population characteristics.

Traditional sampling techniques are accordingly enriched to keep space into account.

We consider sequential techniques that use weights for introducing space in the update

of population units’ inclusion probabilities, and propose a new weighting system that

includes the spatial entropy of the study variable. Techniques only based on distances

between locations perform well in the case of a compact structure. Any non-compact

spatial scheme takes advantage of the involvement of spatial entropy in the sequential

modification of first order inclusion probabilities.

Keywords: Environmental sampling, well spread sample, spatially correlated

Poisson sampling, local pivotal method, product within distance,

spatial entropy

1 Introduction

The objective of spatial sampling is to collect samples, i.e. subsets of individuals from a pop-

ulation, in the 2-dimensional space. Spatial sampling is strongly linked, but not limited, to

environmental sampling: the data spatial location is fundamental, and sampling techniques
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for environmental data are mutuated from the theory of spatial sampling. Examples can be

found in biology, geography, landscape studies, forestry, and in the study of environmental

dangers such as wildfires, earthquakes, polluting agents (Stevens and Olsen, 2004; Zhang

and Zhang, 2012; Kermorvant et al., 2019). Other fields of application, like business surveys

(Dickson et al., 2014), have been recently proposed.

In finite population inference, the design-based context aims at estimating population

quantities, considered as unknown but fixed. In this case the only source of randomness comes

from the selection probability of each sample, which is related to the inclusion/extraction

probabilities of each population element. The equivalence of any population units for sam-

pling translates into the exchangeability assumption with respect to the values of the variable

under study, that supports simple random sampling. Information may be available for mov-

ing individual probabilities from the neutral statement of equality. Information related to

space may be organized in this respect.

The link between sampling and entropy has been extensively debated in statistics (Shewry

and Wynn, 1987; Lee, 2006). The search for sampling plans with high entropy is an impor-

tant task in survey sampling design-based theory. In this respect, sample selection follows

the idea of randomization: a sampling design should assign a non-null probability to as many

samples as possible. A widely accepted measure of randomness of a sampling design is its

entropy (Tillé and Haziza, 2010; Tillé and Wilhelm, 2017): a sampling design has high en-

tropy when there is a high amount of uncertainty or surprise regarding the sample that will

be selected. Poisson sampling has been identified as the maximum entropy sampling design
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with fixed first order-inclusion probabilities when the sample size is random, and conditional

Poisson sampling as the maximum entropy sampling design when the sample size is fixed

(Hajek, 1981; Tillé, 2006; Tillé and Wilhelm, 2017). Maximum entropy sampling has been

deepened in computer science, where it received important contributions (Ko et al., 1995).

The theory about the entropy of sampling designs does not involve spatial sampling. Graf-

ström (2010a) investigates the topic of entropy of sampling plans, stressing the importance

of properly estimating the probabilities that enter entropy computation. His main intuition

is that if good estimates of the probabilities can be found, then such entropy can be suitably

approximated. An important related point is raised by Grafström (2012): high entropy is

generally not a basic aim in spatial sampling, where, rather, samples that are spatially well

spread in the territory are searched.

Under a different perspective, entropy is a popular heterogeneity measure for any kind

of random variables. After being firstly introduced in information theory, it rapidly became

popular in many applied sciences to measure the degree of heterogeneity among observations.

In its original proposal, Shannon (1948) does not take space into account. A rather recent

research field aims at accounting for space in entropy measures: in this spirit, a sequel of

papers (Altieri et al., 2018a, 2019a,b) exploits the decomposition of bivariate distributions

linked to entropy in order to quantify the contribution of spatial association to the entropy

of a variable.

In what follows, we refer to the latter concept as “spatial entropy”, and to the entropy of

the sampling design as “sampling entropy”. The two entropies need to be distinguished, as
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they touch different aspects of the data. Spatial entropy refers to the spatial auto-correlation

of the study variable. Sampling entropy is associated to the randomness of the samples,

irrespective of the variable value.

In spatial sampling, a translation of the idea of neutrality, intended as exchangeability

between units, actually implies the strong assumption of no spatial auto-correlation, which

cannot be suitable in most situations. Thus, available spatial sampling methods suggest

samples that are chosen based on geographical distances between data locations, irrespective

of the spatial structure of the variable (Grafström, 2012; Tillé and Wilhelm, 2017). When

only geographical distances are taken into account, a positive spatial auto-correlation of the

values of the variable in population is implicitly assumed, which regularly decreases with

distance. This is known as Tobler’s Law (Tobler, 1970), that says that ”near things are more

related than distant things”. Even if the spatially balanced sampling techniques (Benedetti

et al., 2015) never explicitly consider the variable values, they produce the most efficient

results when Tobler’s Law holds. When data have a negative spatial auto-correlation, are

spatially independent or have a weak correlation with no regular decrease, such techniques

can produce inefficient samples.

Since a major challenge in spatial sampling concerns how to suitably consider data spatial

auto-correlation in population, the objective of the present work is to propose a technique

for spatial sampling with the ability to adapt the sample to some estimates of the spatial

configuration of the study variable. A genuinely general approach to spatial sampling has

no prior assumption about the spatial structure of the study variable. When the aim of
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a survey is to estimate a population quantity such as the total, a good sampling plan for

spatially correlated data should be able to produce similar estimates for different spatial

configurations of the variable under study, i.e. the estimate and its uncertainty should not

be affected by the underlying spatial structure. The spatial entropy measures proposed in

Altieri et al. (2018a, 2019a,b) are employed at this regard to improve the initial sampling

design by enhancing the sequential modification of the selection probabilities. This way, we

not only check that spatially balanced sampling is less fruitful when Tobler’s law does not

hold, but also that the technique we propose produces good estimates with a mean square

error that is approximately constant across spatial configurations, also for small samples.

The proposal is a suggestion for real studies, where, since the spatial auto-correlation of

the study variable is usually unknown, any assumptions, implicit or explicit, might lead to

erroneous conclusions.

A case study is presented, which takes up the location of Swedish pine saplings (Venables

and Ripley, 1997; Baddeley and Turner, 2000). The dataset, that is popular in environmental

and point process studies, is a representative case of a repulsive spatial configuration due

to the competition for natural resources such as soil, water, sunlight, which is frequent in

applied fields such as biology, botanic, environmental studies. It is an outstanding example

supporting our considerations about the available spatial sampling designs and our novel

proposal, which produces efficient samples for non-compact patterns.

The paper is organized as follows. Section 2 introduces the two different ideas of entropy.

Section 3 summarizes the state of the art in spatial sampling and highlights the limits of
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the most recent methods. Section 3.1 presents our improvement to these proposals, which

is assessed via a comparative study in Section 4. The real data application is in Section 5.

Some concluding remarks are at the end of the paper.

The simulation study and all computations are implemented via the R software, with the

help of the packages SpatEntropy (Altieri et al., 2018b) and BalancedSampling (Grafström

and Lisic, 2018).

2 Spatial entropy, sampling entropy and estimation in

surveys

In its simplest formulation (Cover and Thomas, 2006), the entropy of a random variable X

with I categories is the expectation, under a univariate discrete probability mass function

(pmf), of a random variable I(pX) known as information function:

H(X) = E[I(pX)] =
I∑

i=1

p(xi) log

(
1

p(xi)

)
. (1)

The number I of categories defines the support of (1), which may range from 0 to log(I);

high values of entropy denote diversity, or surprise. A strong motivation for the popularity of

H(X) in applied statistics is that only pX = (p(x1), . . . , p(xI))
′ enters the computation and

not the variable values x1, . . . , xI ; therefore, entropy is computable for any type of random

variable X, as long as its pmf can be computed or estimated.
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2.1 Spatial entropy

Expression (1) does not explicitely consider space; several proposals have been made for

spatial versions of entropy (O’Neill et al., 1988; Batty, 1974, 2010; Leibovici, 2009; Leibovici

et al., 2014; Altieri et al., 2018a). The simplest effort to include space in computing entropy

is based on considering a new categorical variable Z, with its pmf pZ , whose categories are

defined combining pairs of categories of X. This approach has been proposed in several

biological contexts, starting from O’Neill et al. (1988). In this case, the number of different

categories of Z, in other words the cardinality of the support of Z, is no longer the initial I,

but a function of it, say R, which depends on whether or not order is preserved within pairs,

and H(Z) is computed consequently from (1). A generalization is proposed by Leibovici

(2009), where “co-occurrences” are defined, consisting of couples, triples and further orders

of sets of population units occurring within a predefined distance and carrying categories

of the variable X. Variants of entropy measures, based on the definition of specific co-

occurrences for a given distance, can be computed following this idea. The simultaneous

consideration of all distances over the observation area, instead of a single predefined one,

has been proposed by Altieri et al. (2018a).

2.1.1 Partial spatial mutual information

According to the setting of Altieri et al. (2018a, 2019a), Z is defined as the variable cor-

responding to unordered pairs of realizations of X over the observation area: zr = {xi, x′i}

for i, i′ = 1, . . . I. The variable Z has R =
(
I+1
2

)
categories. A second variable W is de-
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fined, classifying the Euclidean distances within the observation window according to a set

of distance classes wm, with m = 1, . . . ,M . A set of distance breaks d0, . . . , dM is fixed,

where d0 = 0 and dM is the maximum possible distance inside the area; then, each class

is wm =]dm−1, dm]. A realization of Z, i.e. a pair, takes place at range wm if the distance

between the two units of the pair lies within the interval ]dm−1, dm]. The variable W has pmf

pW = (p(w1), . . . , p(wM))′, where p(wm) is the probability of any pair to fall within the mth

distance range. Such setting leads to M conditional pmfs pZ|wm = (p(z1|wm), . . . , p(zR|wm))′,

indicating the probability of each pair to fall within distance range wm.

The consideration of the two variables, Z and W , allows to exploit a well-known rela-

tionship of entropy theory (Cover and Thomas, 2006): the entropy of a variable may be split

into the symmetric information brought by its relationship with another variable and the

residual entropy due to other sources of heterogeneity

H(Z) = MI(Z,W ) +H(Z)W . (2)

Since Z and W are linked to spatial information, both global residual entropy H(Z)W and

mutual information MI(Z,W ) are spatially connotated. The first term can be renamed

Spatial Mutual Information SMI(Z,W ), and represents the component of the entropy of Z

due to its relationship with the spatial configuration. It is defined as

MI(Z,W ) = SMI(Z,W ) =
M∑

m=1

p(wm)SPI(Z|wm) (3)

where each mth component SPI(Z|wm) is called Spatial Partial Information, summarizing
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the behaviour of Z for each distance class wm:

SPI(Z|wm) =
R∑

r=1

p(zr|wm) log

(
p(zr|wm)

p(zr)

)
. (4)

Section 3.1 illustrates how the SPIs are useful tools in the proposal of a weighting system

for spatial sampling.

2.2 Sampling entropy

The entropy of a sampling plan is a typical quantity of finite population inference computable

according to (1), that possesses features that differ from the mainstream of statistical infer-

ence.

Consider a population U composed of N units, i.e. U = {1, . . . , k, . . . , N}. A non-random

realization of X, xi, with i = 1, . . . , I is associated to each unit. The symbol xk identifies the

value of X carried by unit k, which belongs to one of the I categories. Labelling constitutes

in itself an ordering but, in the basic theory of survey sampling, labels are not related to the

value of the variable under study.

Define a random variable S identifying the sample obtained without replacement; its

possible realizations are s1, . . . , sJ . When the sample size n(s) is random, then J = 2N

(provided that p(∅) > 0 and p(U) > 0); when the sample size n is fixed, then J =
(
N
n

)
< 2N .

Each sample sj, with j = 1, . . . , J , can be drawn with probability p(sj). A sampling design

is the discrete probability distribution pS = (p(s1), . . . , p(sj), . . . , p(sJ))′, with p(sj) ≥ 0 for

all j and
∑J

j=1 p(sj) = 1.

Design-based sampling theory is based on the discrete distributions induced by the se-
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lection of probabilistic samples from the population U with N elements. Samples can be

selected with equal or unequal probabilities, according to the design pS. The entropy of a

sampling design pS is the entropy of the variable S, and can be written similarly to (1) as:

H(S) = E[I(pS)] =
J∑

j=1

p(sj) log

(
1

p(sj)

)
, (5)

where 0 log 0 = 0. Entropy H(S) ranges in [0, log J ], where J ≤ 2N according to the sampling

design. The maximum H(S) = log J is reached when all p(sj) are equal, i.e. p(sj) = 1/J .

High entropy is a desirable property for a sampling design: if it occurs, a great amount

of surprise is expected about the sample that can be extracted. A well-known example of

a plan with low entropy is systematic sampling, whilst many popular sampling plans like

simple random sampling and stratified sampling possess the desired property of maximum

entropy. The spatial sampling methods used in this work enjoy the property of maximum

entropy.

In sampling from finite populations, inclusion probabilities are an important feature

of sampling plans and currently enter the formulae of estimators. They are population

characteristics and manage the insertion of population elements in the sample. The first-

order inclusion probability πk is the probability of selecting unit k in the sample, and is the

sum of the probabilities of all samples including unit k: πk =
∑

j:k∈sj p(sj). The second-

order inclusion probability πkl is the probability that two different units k and l are selected

together in the sample: πkl =
∑

j:{k,l}⊂sj p(sj). Higher order inclusion probabilities are

defined accordingly. Note that second order inclusion probabilities are the probabilities that

second order co-occurrences, i.e. pairs, enter a sample.
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2.3 The Horvitz-Thompson estimator

Let us suppose that the aim is to estimate the population total t(X) of variable X, and, in

agreement with the tradition of finite population inference, choose the Horvitz-Thompson

(HT ) estimator, which uses the value of the variable for the sampled units in S, xk, and

their first order inclusion probabilities πk:

t̂(X) =
∑
k∈S

xk
πk

with variance

V [t̂(X)] = −1

2

N∑
k=1

N∑
l=1

(πkl − πkπl)
(
xk
πk
− xl
πl

)2

.

Since xk is unknown for k /∈ S, this variance can be estimated by

V̂ [t̂(X)] = −1

2

∑
k∈S

∑
l∈S

πkl − πkπl
πkl

(
xk
πk
− xl
πl

)2

.

The estimator is known to be unbiased if πk > 0 for all k = 1, . . . , N , i.e. the expected value

of the estimator for all possible samples under the sampling design p(·) equals the true total:

Ep(t̂(X)) = t(X). Consequently, the variance and the mean squared error

MSE[t̂(X)] =
1

H

H∑
h=1

(
t̂(X)(h) − t(X)

)2
,

with H being the number of available estimates and t̂(X)(h) being the hth estimated quantity,

are equal.

Provided that the first- and the second-order inclusion probabilities are positive, the vari-

ance estimator gives an unbiased estimation of the mean-squared error. Usually, a normal

distribution is assumed in order to quantify the uncertainty; in most sampling designs, such
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assumption is asymptotically valid, and the rate of convergence depends on the sampling

entropy (5). The higher the entropy, the higher the rate of convergence. Conversely, if en-

tropy is low, i.e. the support is too small to assume that the distribution of the estimated

quantity is normal. This is a reason for pursuing the maximization of the sampling entropy.

3 Entropy-based spatial sampling

In the field of balanced sampling plans with high entropy (5), most algorithms share the

idea to sequentially explore the elements of the whole population, according to some order.

They start by accompanying the population with a N -dimensional vector containing the first

order inclusion probabilities πk: in the first step of the algorithm, the selection probabilities

are equal to the inclusion probabilities. After each decision about including a population

element in the sample, the selection probabilites are sequentially modified. The vector is

progressively converted into a final vector of indicators that contains only 1 or 0 values, with

1 indicating selection of the population element in the sample. The expected sample size is

E[n(s)] = n =
∑

k πk.

When space is considered, the idea of balancing may turn towards the proposal of a well

spread sample. Intuitively, a sample is well spread if, for any partition of the observation

area, the number of selected units per sub-area is approximately proportional to the sub-

area size, i.e. if units are selected everywhere over the observation area (Stevens and Olsen,

2004; Tillé et al., 2018). We choose a number of spatially balanced sampling procedures, all
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illustrated in Benedetti et al. (2017), as competitors to the present work’s proposals.

The local pivotal method (LPM ) (Grafström et al., 2012) is the spatial version of the

pivotal method (Deville and Tillé, 1998).

The principle of LPM is to make similar units (in the sense of nearby units) compete

with each other for inclusion in the sample. In the generic step of LPM, the updating of

probabilities occurs between two close units k and l: unit k is chosen randomly (with equal

probabilities among the units with 0 < πk < 1) and then l is chosen as its nearest neighbor

(among the units with 0 < πl < 1).

Spatially Correlated Poisson sampling (SCPS) is the spatial version of correlated Poisson

sampling, introduced by Bondesson and Thorburn (2008) and further developed by Graf-

ström (2010b). The algorithm can be applied to any sampling design without replacement:

the difference among designs lies in the choice of the initial inclusion probabilities and of the

weights, that decide how sampling a specific unit is affected by the previously visited ones.

If the variable under study is positively correlated in space, positive weights are attributed

to units that are close in space in order to obtain the spatial spreading that is desirable for

sampling. The choice of weights is computationally intriguing and not trivial: Grafström

(2012) proposed a maximal weight strategy, that produces samples of fixed size and is very

efficient when close units carry similar values of the study variable.

A further approach is known as Product Within Distance (PWD) (Benedetti and Piersi-

moni, 2017). It is based on a summary index of the matrix of distances between population

units, i.e. the products of elements of the within-sample distance matrix; a tuning param-
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eter can be used to increase or decrease the spread of the sample over the study region.

Sampling starts with a SRS without replacement, then an MCMC iterative procedure re-

peatedly exchanges a unit included in the sample with a unit not included in the sample

with a probability depending on the PWD index.

All proposals rely on the distances between population units, therefore they produce the

best results when the variable is strongly spatially clustered, i.e. close units carry similar

values, as stated by the popular Tobler’s first law of geography.

3.1 Spatial entropy in SCPS

In a population of N elements, a sample of fixed size n is extracted for estimating a target

quantity, say the population total t(X). The same t(X) and the same (non-spatial) entropies

H(X) and H(Z) hold for any spatial configuration of the N elements of the population,

while different levels of auto-correlation result in different SPI values. At this regard, in

Altieri et al. (2018a, 2019a,b), four archetypical spatial configurations are identifyed, named

“compact”, “repulsive”, “multicluster” and “random”. A “good” estimator for a population

synthesis like t(X), “good” meaning “with a small MSE”, ought to be found for any spatial

configuration of the population.

We propose to enrich Spatially Correlated Poisson Sampling with weights that derive

from the Spatial Partial Information terms (4): such weighting system takes into account

the strength of auto-correlation. This new sampling procedure is fairly general, built in a

very flexible way and its efficiency is not influenced by the validity of Tobler’s Law. The
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spatial auto-correlation of the variable is taken into account via the partial terms SPI(Z|wm)

at different distance ranges, following (3) and (4). When the SPI terms are not available as

population quantities, they can be estimated as proposed in the next Section.

In order to build SPI-based SCPS, population units are visited by the sampler according

to some labelling in space. For instance, if spatial units are arranged over a grid, unit 1 can

be the top-left unit, unit 2 can be at its right, or below, and so on. The method holds for

any starting point and labelling criterion, as long as the distance between all pairs of units

is well defined. An indicator function Ik for each visited population unit takes value 1 if the

unit is sampled. When a decision is made about unit k, the remaining selection probabilities,

that are initially equal to the inclusion probabilities, are updated accordingly, following a

specific rule. The updating rule for SCPS is based on the elements of an upper-triangular

N×N matrix of weights b
(l)
k , which relate each unit k to all remaining units l = k+1, . . . , N .

For k = 1, a Bernoulli draw is performed with probability π1; after the draw, the indicator

function for that unit is I1 = 1 if it is sampled, and 0 otherwise. Then, for k = 2, . . . , N ,

the values for I1, . . . , Ik−1 are known and unit k is sampled with probability π
(k−1)
k , i.e. with

a probability that was updated at the previous step when unit k − 1 was examined. The

remaining probabilities l = k + 1, . . . , N are updated as:

π
(k)
l = π

(k−1)
l − (Ik − π(k−1)

k )b
(l)
k , (6)

and, at each step k, the probabilities of the visited units 1, . . . , k leave the room to the

corresponding indicator functions, until, at step N , the vector becomes π
(N)
1 , . . . , π

(N)
N =

I1, . . . , IN . The term “correlated” stresses the fact that the weights b
(l)
k witness a form
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of dependence among the inclusion probabilities. Weights should be chosen so that all

probabilities, when updated, are always between 0 and 1: the criterion to meet is

−min

(
1− π(k−1)

l

1− π(k−1)
k

,
π
(k−1)
l

π
(k−1)
k

)
≤ b

(l)
k ≤ min

(
π
(k−1)
l

1− π(k−1)
k

,
1− π(k−1)

l

π
(k−1)
k

)
. (7)

Negative weights favour the sampling of close units, since they increase the selection prob-

ability of population units that are visited after a sampled one. On the contrary, positive

weights decrease the probability of population units that follow a sampled one, therefore

fostering spread samples.

Each SPI(Z|wm) value is always positive, and tunes sampling neighbouring units with

a strength that depends on the spatial auto-correlation of the study variable at the chosen

distances. If units k and l are in the mth distance range, then the weights b
(l)
k in (6) are

b
(l)
k =

SPI(Z|wm)

C
for d(k, l) ∈ wm (8)

where d(k, l) is the Euclidean distance between unit k and unit l; C is a normalizing constant

so that each weight meets criterion (7) and
∑N

l=k+1 b
(l)
k = 1 for all k, i.e. the triangular weight

matrix is row-standardized in order to obtain a fixed sample size. The easiest proposal is

that the normalizing constant is the sum of the unnormalized weights: C =
∑N

l=k+1 b̃
(l)
k with

b̃
(l)
k = SPI(Z|wm) for d(k, l) ∈ wm. Since the weights only depend on the SPI terms, they

may take M different values. The special case of no auto-correlation translates into zero

SPI terms and in simple random sampling of spatial units.

Working with spatial mutual information is more sophisticated than simply relying on

spatial auto-correlation values. Auto-correlation is usually measured via Moran’s Index

16



(Anselin, 1995) and is a basic way of exploring the spatial configuration of the variable. If

a weighting system only based on auto-correlation values has to be constructed, it should

include Moran’s Index and be inversely proportional to the distance within pairs:

b
(l)
k =

IM
C · d(k, l)

(9)

where IM is the value of Moran’s Index for the whole dataset and C is again a normalizing

constant.

The present study shows that a weighting system based on Moran’s Index does not

perform as well as the SPI-based weights.

4 A comparative simulation study

We run a study to assess the performance of Spatially correlated Poisson sampling with

SPI -based weights, compared to the version with maximal weights, to the Local Pivotal

Method, to the Product Within Distance method and to simple random sampling without

replacement, this seen as a benchmark. The quantity of interest is the variable total, es-

timated with the HT estimator. The methods’ performance is evaluated via the empirical

distribution of the estimates and their Mean Square Error (MSE ).

A sequence of N = 2500 realizations is generated from a binary variable X with two

alternative proportions p for outcome x1: one is equal to 0.5, returning 1250 outcomes equal

to x1 and 1250 outcomes equal to x0; the second one is equal to 0.25, returning 625 outcomes

equal to x1 and 1875 outcomes equal to x0. We refer to X0.5 and X0.25 accordingly, the two
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proportions reflecting two typical situations. Data are arranged over a 50 × 50 grid, each

realization occurring over a square pixel of size 1. The alternative grid sizes 20 × 20 and

40 × 40 were tested, leading to analogous results. The arrangement of realizations over

the grid is made following the four aforementioned spatial configurations. In the Compact

pattern, x1 values are assigned to the pixels located at the left part of the grid and x0 values

to pixels located at the right part. The Random configuration is obtained by assigning x0 or

x1 values to pixels via simple random sampling without replacement. A Regular scheme is

obtained by assigning x0 values to pixels adjacent to x1-valued pixels, and produces a perfect

chessboard for X0.5. The Multicluster pattern is composed by clusters, whose centroids are

regularly distributed over the grid; here, the number of clusters is set equal to 16. Then,

x1 values are assigned to pixels surrounding the centroids and x0 values to the remaining

pixels. The four spatial configurations share the same H(Z0.5) = 1.04 for the first variable

generation, or H(Z0.25) = 0.86 for the second one. All scenarios are shown in Figure 1,

where x1 values are black pixels. The four configurations differ as regards the spatial auto-

correlation values, measured via Moran’s Index and reported in Table 1: the Compact pattern

follows Tobler’s Law with a strong positive correlation; the Random configuration presents

no spatial correlation; the Regular scheme is linked to a negative correlation; the Multicluster

pattern shows a weak positive correlation. The evaluation conducted by Moran’s Index will

be improved by the use of SPI terms.

A number of sampling options is considered: MW is the acronym for SCPS with maximal

weight strategy, LPM stands for the Local Pivotal sampling Method, PWD for Product
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Within Distance, SRS for simple random sampling without replacement, MI for SCPS

with correlation-based weights and SPI for SCPS with SPI -based weight strategy. Several

distance classifications have been tried, and SPI4 and SPI70 are here reported, where option

SPI4 has four distance classes, while option SPI70 has 70 classes. This way, we propose a

case with the maximum spatial detail, i.e. maximum number of classes (70 in this grid) and

an alternative with a low number of classes. The choice of SPI4 is more computationally

efficient compared to SPI70; moreover, it has proved to be suitable in many studies where

the spatial information is present at a small scale (O’Neill et al., 1988; Altieri et al., 2018a,

2019b). The first two distance ranges are the same for the two options: they provide detailed

spatial information at small distances. Class w1 = [0, 1] covers pairs of pixels whose centroids

are at distance lower or equal to 1. Since in the simulated grid the pixel size is 1, class w1 is

formed by adjacent pixels, i.e. pixels sharing a border. The second class w2 =]1, 2] regards

both pairs of pixels sharing a corner and pairs of pixels whose centroids are at distance 2,

i.e. adjacent to a common pixel. Then, the breaks of further classes are arbitrarily chosen in

both classifications. The last class is a residual one that covers all the farthest distances in

the observation area: the last break is dmax = 50×
√

2 = 70.71, i.e. the maximum distance

over the square data grid. For option SPI4 the further classes are w3 =]2, 5] (where 5 is an

exogenous choice) and w4 =]5, dmax]. Option SPI70 has the most detailed distance classes

for this example: all have range 1, i.e. wm =]m − 1,m] for m = 1, . . . ,M . The number of

classes is M = 70, which is the integer part of dmax.

The chosen sampling sizes are n1 = N/50 = 50, n2 = N/20 = 125, and n3 = N/10 = 250.
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The initial inclusion probabilities are constant: πj = nj/N for all units and for each sample

size nj with j = 1, 2, 3. A number of H = 10000 simulations is chosen.

Since the simulated data are arranged over the grid with one unit per cell, the selection

of samples follows the grid, i.e. a sample of cells is drawn and the variable value is observed

over each sampled cell. For MW , SRS and LPM we have 3 × 10000 samples, i.e. 10000

for each nj: samples do not depend on p nor on the spatial configuration. Conversely, for

MI, SPI4 and SPI70 the selection of the samples is different according to the proportion

of x1 and the spatial configuration of the variable. Thus, for the latter options we have

2× 4× 3× 10000 samples, for two proportions, four configurations and three sample sizes.

The spatial partial information values are rescaled so that they sum to 1 for each population

unit, and weights are built under constraint (7).

The non-standardized SPI(Z|wm) values are shown in Figures 2 and 3. The two figures

can be read according to both axes. Following the horizontal direction in Figure 2, we can

see how SPI terms decrease with distance, with both starting value and decay depending

on the strength of the spatial correlation induced by the configuration. The highest value

at w2 for the random configuration is due to the fact that, with the regular/chessboard

scheme, the most homogeneous pairs, producing a low SPI value, are found at distance 2.

Figure 3 exhibits U-shaped distributions for all distances; the shape is emphasized in the

compact pattern. This is due to the fact that at larger distances a certain type of pair, i.e.

{black,white}, is predominant. In both figures, the vertical axis highlights the difference

across spatial configurations, and particularly how a compact pattern, where Tobler’s Law
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holds, is different from the other ones as regards the role of space in determining the variable

outcomes. This should be accounted for in the choice of the sampled units. For more details

about how to interpret SPI values we refer to Altieri et al. (2018a, 2019b).

4.1 Results

All sampling designs produce good results in terms of the HT estimates: the empirical

distributions of 10000 values for each scenario is always concentrated around the true values

t(X0.5) = 1250 and t(X0.25) = 625. The empirical 95% confidence intervals contain the

true value in all cases. The HT estimator is unbiased, therefore a comparative performance

evaluation made via the MSE corresponds to compare variances.

The MSE is shown in Table 2 for all scenarios. In the Table, a vertical line separates the

results from methods available in the literature (left columns) from the ones proposed in this

work (right columns). For each population proportion, sample size and spatial configuration,

the best performing method is highlighted in bold.

With a focus on the existing methods (left columns), we first comment that MW , LPM

and PWD have similar performances: they are mostly efficient with a compact pattern and

less efficient with a multicluster configuration. For the compact pattern, MW and LPM

are always very close in terms of MSE and perform better with a large sample size, while

PWD is more precise with n = 50. In the multicluster configuration, where the spatial

correlation is positive but weak, the best performing method is PWD in all scenarios. All

balanced sampling methods produce the worst results in the case of negative or absent auto-
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correlation: the MSEs increase abruptly wrt the case of positive auto-correlation, and are

even worse than the ones deriving from SRS, not only in the random configuration but also

in the repulsive pattern, where spatial auto-correlation is present but negative.

In the comparisons with the novel methods proposed in this paper (right columns), the

spatially balanced methods are always the most efficient choice for the configurations with a

positively autocorrelated variable; the difference reduces substantially when switching from

a compact to a multicluster configuration, and in some cases (e.g. with p = 0.5 and n = 125)

our methods have a lower MSE than MW and LPM . The SPI-based methods are always

the most efficient in non-compact patterns: irrespective of the data proportion and sample

size, they are the first and second best, and also outperform SRS in random patterns. The

MI-based method, that is an alternative proposal for considering the spatial configuration of

the variable while sampling, has a worse performance in all scenarios, confirming that SPI

terms are more appropriate measures of the variable auto-correlation wrt Moran’s Index.

Moreover, our sampling approach outperforms SRS in all scenarios, which cannot be said of

the balanced sampling techniques. As shown in Table 2, in many scenarios the system with

4 distance classes is enough for obtaining the best results and is also more computationally

efficient than the one with 70 distance classes.

A measure of spatial balance (SBI ), following Stevens and Olsen (2004), is reported in

Table 3. Spatially balanced sampling techniques such as MW , LPM , PWD are built un-

der the idea of minimizing the SBI and produce the smallest values. In all scenarios, the

SPI-based methods return intermediate SBI values between spatially balanced sampling
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and SRS; moreover, the SBI for SPI-based weights is smaller than the one for MI-based

weights, once again supporting the use of spatial entropy as an auxiliary measure of auto-

correlation in sampling. The importance of SBI is conditional on the estimator ability

of producing good estimates. When examined together with the estimator efficiency, SBI

supports the idea that a spatially balanced samples is the best approach when the spatial

auto-correlation of the variable is strong and positive. Given the goodness of the HT esti-

mator, well spread samples are to be preferred; in this simulation, we show that well spread

samples are not always the best performing ones in terms of estimation error.

Based on the joint evaluation of the estimator efficiency and of the spatial balance index,

we conclude that balanced sampling is the best option under the feeling that the variable

is strongly positively correlated. In non-compact patterns, though, their MSE increases

abruptly and their performance may even be worse than SRS. The magnitude of MSE

values for SPI4 and SPI70 is more stable across configurations, given the data proportion p

and the sample size. Thus, when the study variable is known to have a non-compact config-

uration, or when its spatial structure is unknown and it might be risky to make assumption,

the methods proposed in this paper are a safer option, as they reduce the maximum possible

estimation error and are always better than SRS.

4.2 Estimation of SPI terms

In simulations, the population is known and its parameters are used to assess the validity

of the methods. At this regard, the procedure of SPI-based weights benefits from the
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population SPI values. In real situations, though, such values are unknown and must be

estimated.

In order to deepen this aspect, we built a side simulation study for SPI estimation. For

each distance range wm, the total number of pairs, say Pm, is known based on the exogenous

grid size and amplitude of wm. We proposed a stratified sampling technique using the

distance ranges as strata: for each wm, we sampled a number Cm of pairs by simple random

sampling, where Cm was chosen with systematical sampling within each stratum (one out

of 100), provided that each stratum contains at least 100 elements. Then, the estimates for

the SPI terms were computed following (4), where probabilities are substituted by relative

frequencies of the sampled pairs’ categories. After marginalizing out the variable W , data

can be used for estimation of probabilities for entropy H(Z) (and also of H(X)).

Repeating this for a number of times allows to have a distribution of SPI values for

each distance range. Its average values are chosen as estimators, and they are very accurate

even for just 100 replicates: the difference wrt the population values is < 0.001. Such

estimation procedure takes only a few minutes, therefore it does not negatively affect the

computational time needed for results. In real situations, based on the available time and

funding, one can choose different options for both the number of sampled pairs Cm and the

number of replicates.

Computation of the HT estimator’s MSE s for all scenarios leads to analogous conclusions

to the ones presented in Table 2, and are not reported here.
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5 The Swedish pines dataset

In this well-known example, the location of 71 Swedish pine saplings (Figure 4) is available

over an area of 10 × 10 metres (Venables and Ripley, 1997; Baddeley and Turner, 2000).

We discretize the area into a fine grid of 40 × 40 cells (N = 1600) so that each cell contains

either 0 or 1 trees. The dataset looks regularly distributed as occurs in competition for

resources. Moran’s Index is IM = −0.003, which suggests a nearly random configuration

without being able to capture the repulsive behaviour of trees, well-known in the literature.

Despite being the most common measure of autocorrelation, the index may induce misleading

conclusions, avoidable when using entropy-based measures instead. Entropy does not reveal

the type of auto-correlation, which is already known to be negative thanks to previous

studies, nevertheless, when used in the sampling procedures, it is able to return samples

that adapt to the data spatial structure. The global entropy values are low: H(X) = 0.18

and H(Z) = 0.3.

We choose two sample sizes: n = 160 and n = 40, and again compare several sampling

designs: simple random sampling without replacement SRS, SCPS with maximal weights

MW , local pivotal method LPM , product within distance PWD, SCPS with correlation-

based weights MI, and one option for SPI, i.e. SCPS with SPI-based weights. For SPI,

14 distance classes are chosen, each class with range of 1 metre expressing the maximum

detail; estimation of SPI terms proceeds as in Section 4.2.

Results are reported in Table 4. Confidence intervals require estimates of the HT esti-

mator variances. Since estimation of the variance is usually impractical in spatial sampling
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(Grafström, 2012) and may lead to overestimation, we empirically estimate such variance

over 1000 samples for each approach, which only takes a few minutes. As can be seen, the

weighting system proposed in this work performs far better than the available alternatives

in this situation, where Tobler’s Law does not hold. For a sample size equal to 160 the best

results are given by SPI and SRS, which outperform by far the spatial sampling methods

proposed in the literature; the good performance of SRS is due to the apparent similarity of

the tree pattern to a random configuration, as witnessed by Moran’s Index. Our SPI-based

approach, though, has a smaller standard error and is therefore more precise; moreover,

results for SRS are substantially worse with a different sample size. For sample size 40, the

best competitor of SPI is LPM, that however produces a larger confidence interval. Our

SPI-based method is the only one that is reliable on a dataset with repulsive behaviour and

across different sample sizes.

As for the measure of spatial balance (SBI in Table 4), the best result is achieved by

PWD sampling with n = 160 and by LPM with n = 40; our SPI-based proposal gives a

greater value for the index than the spatially balanced methods, but performs better than

SRS and MI-based SCPS. The real data example supports the conclusion that a low SBI

value, though desirable in general, is not necessarily to pursue, especially when the spatial

configuration is non-compact. Our approach in this case leads to a less spatially balanced

sample, which is nevertheless more efficient in estimating the number of trees over the area.
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6 Concluding remarks

In this paper, we propose how to enhance the adaptive modification of initial first order

inclusion probabilities in a spatial sampling method that enjoys the property of maximum

sampling entropy. Current spatial sampling techniques (Grafström, 2010a, 2012) aim at

producing spatially balanced samples, irrespective of the values of the study variable. Our

conclusion is that such techniques produce the most efficient results with a positively auto-

correlated study variable, but when such correlation takes a different form, or is unknown,

the performance of these methods may decay fast. Our proposal, on the contrary, is able

to adapt the choice of the sampled elements to the data spatial pattern, thus avoiding any

risky implicit assumption.

Thanks to the simulation study, we can say that spatially balanced sampling is the most

efficient in a compact pattern; by construction, it also returns a very small value for the

Spatial Balance Index. The performance is still good, though decaying, for a weakly spatially

correlated dataset. In non-compact patterns, such as a random or repulsive configuration,

though, the efficiency of balanced sampling methods becomes much worse and they may

be outperformed even by the non-spatial Simple Random Sampling. On the contrary, the

SPI-based weighting system has a better performance in the latter configurations, and it

also proves to perform better than an alternative weighting systems based on a standard

synthesis of spatial auto-correlation such as Moran’s Index. Our conclusion is that when

the phenomenon under study has a non-compact configuration, or when its spatial pattern

is unknown and any prior statement may lead to erroneous results, a sampling approach
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which minimizes the Spatial Balance Index is not always desirable: the SPI-based sampling

method may be a safer option, as it reduces the maximum possible estimation error and

always performs better than non-spatial techniques such as SRS.

The real data application presented in Section 5 supports our proposed method by show-

ing that, in a situation where a positive spatial auto-correlation cannot be assumed, an SPI-

based weighting system produces a better and more precise estimate of population quantities.

It also reinforces that spatial entropy may be more reliable than standard auto-correlation

measures such as Moran’s Index in capturing a departure from the random configuration.

The present work involves estimation of a few quantities. Estimation of the HT estimator

variance is still a well-known open issue (Benedetti et al., 2015), as in spatial sampling

many second order inclusion probabilities might be zero. Some proposals in the literature

(Grafström, 2012) use a technique that overestimates the variance; instead, we choose to

estimate it by a large number of simulations. In situations where SPI values are not available

or cannot be computed, they can be estimated at a small computational cost, as proposed

in Section 4.2.

The proposed methodology works for both discrete and continuous space, as shown by

the application on point process data. It requires a categorical/discrete study variable, since

entropy for continuous data is still unexplored, even though theoretically defined (Rényi,

1961). When continuous variables are on the fore, they may be discretized and the approach

holds for any number of classes.

The application of the present work regards spatially continuous data; other spatial
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datasets may be discrete, mapped over polygons or pixels. In many area-based surveys,

single objects such as trees are not sampled directly: the sampling unit is a plot, which may

contain several objects. As the size of the plot increases, the resulting dataset may over-

represent positive spatial-correlation. For this reason, we recommend to use the finest data

resolution available; in addition, since the underlying spatial structure of the variable is un-

known, the use of our proposed SPI-based method may capture a potentially non-compact

spatial scheme and result in better estimates of the population quantities.
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Table 1: Moran’s Index for all scenarios.

Proportion Spatial configuration

Compact Random Regular Multicluster

p = 0.5 0.364 0 -0.011 0.038

p = 0.25 0.308 0 -0.009 0.040
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Table 2: Estimated MSE of the total t(X) for all scenarios and sample sizes.

p = 0.5

n = 50

SRS MW LPM PWD MI SPI4 SPI70

Compact 30963 2003 1948 1944 16819 10035 17619

Multicluster 31792 21394 21694 18390 30565 25615 28050

Regular 29924 31354 32589 31112 31161 29585 26939

Random 30040 30786 31355 31016 25261 24363 24425

n = 125

SRS MW LPM PWD MI SPI4 SPI70

Compact 12026 448 453 467 6242 3446 11332

Multicluster 11745 5709 5646 4734 12026 4832 7812

Regular 11756 12165 12042 12164 14616 7723 8855

Random 12196 11657 12172 11780 11999 9550 10069

n = 250

SRS MW LPM PWD MI SPI4 SPI70

Compact 5659 145 139 152 2545 1135 7502

Multicluster 5609 1957 1990 1623 5966 2992 4867

Regular 5657 5437 5439 6270 4963 3020 2830

Random 5762 5592 5610 5618 4889 4463 4758

p = 0.25

n = 50

SRS MW LPM PWD MI SPI4 SPI70

Compact 22969 1997 2022 1985 8966 7413 8075

Multicluster 23459 15752 15461 12228 22169 18119 20761

Regular 22312 24101 23621 23657 21325 19935 20801

Random 23028 22847 23477 21939 20001 18883 19939

n = 125

SRS MW LPM PWD MI SPI4 SPI70

Compact 8864 443 444 471 4407 2521 3416

Multicluster 8670 3734 3714 3079 8214 5317 6903

Regular 8693 9209 9222 9200 8700 7234 7829

Random 9087 9000 8800 8796 9375 8159 8131

n = 250

SRS MW LPM PWD MI SPI4 SPI70

Compact 4288 147 149 159 1750 1008 2277

Multicluster 4117 1276 1304 1083 4071 1354 2806

Regular 4332 4829 5017 4468 4711 4007 4263

Random 4035 4234 4307 4080 4153 3415 3361
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Table 3: Spatial balance index - mean and standard deviation over 10000 replicates.

n = 50

SRS MW LPM PWD MI SPI4 SPI70

Mean 0.32 0.05 0.05 0.04 0.21-0.22 0.15-0.24 0.19-0.30

StDev 0.10 0.01 0.01 0.01 0.05-0.06 0.07-0.10 0.05-0.10

n = 125

SRS MW LPM PWD MI SPI4 SPI70

Mean 0.31 0.05 0.05 0.03 0.22-0.23 0.13-0.19 0.18-0.28

StDev 0.06 0.01 0.01 0.01 0.04 0.03-0.07 0.04-0.08

n = 250

SRS MW LPM PWD MI SPI4 SPI70

Mean 0.30 0.06 0.06 0.04 0.24-0.25 0.13-0.18 0.16-0.29

StDev 0.04 0.01 0.01 0.01 0.03 0.02-0.05 0.03-0.07

Approaches SRS, MW , LPM and PWD have one distribution of the SBI for each sample size

over 10000 replicates. In MI- and SPI-based sampling approaches, where the sample is different

based on the study variable, the SBI has a distribution for each data configuration and p: the Table

reports, for each sample size, the range of results across proportions and spatial configurations.

Table 4: Swedish pines data: number of trees estimate (HT ), 95% Confidence Interval (L -

lower and U - upper limit) and spatial balance (SBI ).

n = 160 n = 40

HT 95%CI-L 95%CI-U SBI HT 95%CI-L 95%CI-U SBI

SRS 70 63.04 76.96 0.29 40 -25.76 105.76 0.33

MW 80 62.36 97.64 0.06 120 23.96 216.04 0.06

LPM 90 50.76 129.24 0.06 80 60.36 99.64 0.04

PWD 90 52.76 127.24 0.04 40 -20.76 100.76 0.05

MI 90 52.76 127.24 0.23 200 -52.84 452.84 0.21

SPI 70 68.04 71.96 0.14 80 62.36 97.64 0.15
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