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A support-design framework for cooperative robots systems in labor-intensive 1 

manufacturing processes 2 

 3 

Abstract 4 

Manufacturing processes and industrial systems gradually change their traditional layouts and configurations, 5 

preparing to introduce novel integrated human-robot technologies as collaborative robots and exoskeletons. 6 

Whether mass customization of lot size and the production mix discourages the adoption of capital-intensive 7 

automation, collaborative robots become affordable and effective and a hotspot of the debate on manufacturing 8 

systems. This paper provides a novel support-design framework for the cooperative robot system in labor-9 

intensive manufacturing processes to aid layout and task scheduling design. Through an iterative closed-loop 10 

methodology, this framework explores the impact of a cooperative robot in a labour-intensive manufacturing 11 

system like the production facility of a food service company. The framework leads the designer through the 12 

re-layout of the end-of-line, the economic and technical feasibility analyses, using simulation to estimate 13 

payback and ergonomics benefits for workers. Within the proposed layout, we state that adopting a cooperative 14 

cobot for the end-of-line is affordable and ergonomically convenient without representing a safety threat for 15 

workers. The testbed confirms the framework as an enabling tool for human-robot technologies integration in 16 

current manufacturing systems under budget and workers-driven constraints. 17 

Keywords: Collaborative Robot, Technology integration, Industry 4.0, Ergonomics, Human-robot 18 

cooperation, Manufacturing systems. 19 

 20 

1. Introduction and background 21 

 22 

The change of the production-demand patterns (Fetene Adane et al., 2019; Nunes et al., 2017), e.g., smaller 23 

lot size, order customization, along with the increasing attention paid to the worker's conditions (Haslam et al., 24 

2005; Manu et al., 2012) boost the technological transition of manufacturing and assembling systems toward 25 

more human-care solutions and configurations built upon recognized synergies between the role of the 26 

automation and the operators (Sartal & Vázquez, 2017; Morgan et al., 2021). Whether mass customization of 27 

orders and production mix discourage the adoption of capital-intensive automation (Jaime & Eoin, 2020; Skare 28 

& Riberio Soriano, 2021), the use of collaborative robots is becoming competitive and widely discussed among 29 

scholars and practitioners (Lakshmi & Bahli, 2020).  30 

Firstly, the hotspot of the debate is giving a straightforward but comprehensive definition of human-robot 31 

collaboration (HRC) solutions (Vicentini, 2020). L. Wang et al. (2019) provide an overview of symbiotic 32 

human-robot collaborative configurations with a taxonomy of relationships between the technology, the 33 

operator, and the manufacturing environment. They also summarize directions toward uncovered challenges 34 
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like modeling workers' tasks through digital twins and simulation. Correia Simões et al. (2020) overview the 1 

factors influencing managers' intention to adopt collaborative robots in manufacturing companies with a survey 2 

involving enterprises and managers. Literature states that design approaches are focused on four main domains: 3 

control, technology, interface, and system integration (Gopinath & Johansen, 2016). 4 

Four steps marked the evolution of manufacturing processes towards pursuing human-robot collaboration and 5 

system integration (Liu & Wang, 2017; Şahinel et al., 2021a; L. Wang et al., 2019a). One of the primary drivers 6 

of such evolution was moving the worker closer to automation technology and allowing contact between the 7 

human operators and the machinery. 8 

In the first step of the transition, workers and automation technology are fully separated using physical barriers, 9 

as metal cages and protections. Such barriers define the limits of two different work areas with no possibility 10 

for exchanges or interactions. The aim is to prevent the workers' contact with the moving parts of machinery 11 

for safety purposes. Then, the coexistence of workers and machinery in the same work area is possible. 12 

However, non-physical separators (e.g., laser barriers) aim to stop the system if the workers access the 13 

machinery work area. The contact of workers and machinery during manufacturing processes is possible at the 14 

next step, in which the aim is cooperation during the work activity. Finally, contact is necessary where humans 15 

and collaborative robots collaborate and share the same work area. 16 

So far, other drivers for the application of collaborative robots in manufacturing systems include reducing 17 

working costs (Dalle Mura & Dini, 2019), shrinking ergonomic impacts (Costa Mateus et al., 2019b), and 18 

aiding workers with deficits (Kildal et al., 2019; Mark et al., 2021). Despite such attempts, few compelling 19 

examples are still illustrated by the literature and industrial practice, demonstrating how meandering is the 20 

road toward such transition (Botti et al., 2015, 2017; Mark et al., 2021).  21 

Table 1 summarizes attempts to re-design manufacturing/assembling processes regarding the applications of 22 

collaborative robots. It reveals those traditional targets of minimizing labor costs pair with enhancing the 23 

performance of workers and the manufacturing throughput, subjected to human safety regulations and 24 

constraints. Overviewing several laws and normative (ISO 12100: 2010; ISO 11161:2006; ISO 10218–1: 2011; 25 

ISO 15066:2016), Bi et al. (2021) underline the essential functional requirements of collaborative systems, 26 

like task's standardization and safety mechanisms. The standardization of the tasks and the management of 27 

safety entail interaction between man and robot (X. V. Wang et al., 2017) and strategies to exploit collaborative 28 

processes (Tlach et al., 2019).  29 

Albeit collaboration provides benefits to workers, such a process represents a potential safety threat (e.g., 30 

injuries), regardless of the robot's size (Gopinath et al., 2018). Therefore, as collaborative tasks compel 31 

compliance with regulations, the manufacturing process's overall performance (i.e., throughput) might be 32 

reduced. To avoid such drawbacks, collaboration might be limited by organizing the process into sequential 33 

tasks, assigning alternatively to the robot and operator, or keeping the working environment separate, 34 

discouraging collaboration to warn by risks (Hippertt et al., 2019a). Because of the constraints above, truly 35 

collaborative tasks are limited to pick and place applications and simple assembling operations, as proved by 36 

Casalino et al. (2018) and Quenehen et al. (2019).  37 
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Table 1 summarizes the main factors to be investigated in manufacturing processes automation organized into 1 

columns. These are Technology (e.g., Robot or Cobot), Objective, Target, Performance, Industrial 2 

Environment, Real Application (i.e., real case-study), and HR Relationships. Objective stands for the target-3 

designed technological aspects such as control or interface, whilst Target means the task performed by the 4 

Technology (e.g., Manipulation or Pick and Place). The HR Relationship describes the type of Human-Robot 5 

Interaction (HRI) (Baroroh et al., 2020; Oliff et al., 2020), which includes coexistence, interaction, 6 

cooperation, and collaboration between the technology and the operator (Vicentini, 2020; Villani et al., 2018; 7 

L. Wang et al., 2019c). Gao et al. (2020) underline the role of motion, computing, perception, and cognition 8 

to improve robotic applications. They present several intelligent robotic systems and enabling technologies 9 

like robotic networks, deeply learn robots, and human-robot friendly and natural interaction. Looking at Table 10 

1, it is glaring that some performance indicators like improving throughput and safety are broadly treated 11 

together. 12 

On the other hand, this table provides evidence of the lack of literature on cooperative robot systems' 13 

implementations for concurrent packing and load manipulation in a food production facility and other labor-14 

intensive manufacturing environments. For instance, Arrais et al. (2021) developed a cooperative robotic 15 

system for industrial coating cells to avoid placing errors, increasing coating processes' flexibility and 16 

efficiency. Notwithstanding the implementation of safe HRC by tracking the worker's position inside the cell, 17 

no mention is given on regulations or ergonomics improvements. 18 

Scholars and practitioners agree that the debate between automated and labor-intensive manufacturing is not 19 

solved by the advent of collaborative robots (Cohen et al., 2019). Indeed, labor continues providing added 20 

value to industrial operations through flexibility and adaptability (Antonelli & Stadnicka, 2019b) but requires 21 

considering workers' ergonomics (Weckenborg & Spengler, 2019), whilst automation increases the 22 

throughput. Ferreira et al. (2021) study the performance of some manufacturing lines by solving a task 23 

scheduling problem using robots and humans. They suggest that collaborative tasks improve the throughput, 24 

especially with many precedence constraints and low robot eligibility. 25 

However, the case-driven environment of the application still plays a pivotal role in determining the success 26 

rather than the failure of HRC (Peralta & Soltero, 2020; Şahinel et al., 2021b), and several issues remain 27 

unhandled by current design frameworks.  28 

The low capital cost of the technology advocates ever more exploring new industrial applications, case studies, 29 

and manufacturing processes, support-design frameworks able to incorporate safety and ergonomics as system 30 

design drivers (Bortolini et al., 2018; Maganha et al., 2018), and encouraging low-risk HRC are required 31 

(Bortolini et al., 2018; Maganha et al., 2018; Malik & Brem, 2021a). Lv et al. (2021) propose a new framework 32 

for HRC assembly based on digital twin. In order to investigate the optimal HRC strategy, they generate data 33 

from a digital human-robot motion twin and use an embedded optimization method to assess the resilience and 34 

efficiency of the overall manufacturing/assembly environment. Hence, the focus of ergonomics is the 35 

interactions among humans and other elements of a working system, including technology and machinery 36 

interfaces. The design of safe and sustainable systems includes ergonomics principles through the combination 37 
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of a systematic and iterative process, an ergonomic design-driven approach, and a focus on optimizing both 1 

process performances and well-being (Wilson, 2014). Huang et al. (2021) present a new experimental robotic 2 

disassembly cell made of two collaborative robots and human workers. They use HRC to perform disassembly 3 

tasks in a shared workspace. Control design aims to employ collaborative robots to achieve complex 4 

disassembly tasks and safe HRI with a focus on the ergonomics of the processes. 5 

The novel contribution of this work aims to present a systemic, multi-disciplinary and iterative approach 6 

encompassing human-robot cooperation aspects. To the purpose, we address the following research questions 7 

(RQs) in this paper: 8 

• RQ1: Which are the most common drivers for robotizing labor-intensive manufacturing processes? 9 

• RQ2: In a labor-intensive manufacturing process, how significant ergonomics benefits and cost 10 

reduction are and which drives the design most? 11 

• RQ3: While introducing a collaborative robot, which task requires re-allocation or re-design? 12 

This paper builds upon this statement and explores the underlined niche by designing and implementing a 13 

novel support-design framework for Cooperative Robot systems in labor-intensive manufacturing processes, 14 

shifting from technology-driven design to system-driven perspective. The framework lies on a closed-loop 15 

iterative methodology that integrates design tools and methods devoted to the different domains of the 16 

manufacturing system: layout, technology, interfaces, and control and interaction strategies. The design 17 

features and parameters are obtained after iterative refining and adjustment toward target performance. 18 

Concerning the literature, our framework considers ergonomics indicators and economic feasibility (i.e., 19 

payback period) of the HRC systems as key performance metrics. 20 

 21 

The remainder of the paper is organized as follows. Section 2 introduces the methodology and describes the 22 

design tools incorporated in the framework. Section 3 illustrates a proof-of-concept as an industrial case study 23 

of the food catering industry. The discussion about the framework is proposed in Section 4, while Section 5 24 

concludes the paper and lists hints for future research directions.25 
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Author, year Technology Objective Target Performance Industrial Environment Real Application HR Relationships 

 Cobot Robot CD TD ID SAD Ma De SM P&P T C WS Sa Erg A M Pkg FPF P I Coe Int Coo Col 

Gopinath et al. 

(2016) x  x  x x x   x x   x  x x   x   x   

Wang et al. (2017) x     x x        x x   x x    x  

Casalino et al. 

(2018) x  x   x x x  x    x  x x    x  x   

Gopinath et al. 

(2018) 
 x x x    x x  x   x  x x    x x    

Hippertt et al. 

(2019) x x x   x  x      x   x   x  x    

Kildal et al. (2019) x  x  x x  x      x  x    x     x 

Mateus  et al. 

(2019) x*     x x    x    x x    x     x 

Tlach et al. (2019) x  x   x x   x   x x  x    x     x 

Weckenborg et al. 

(2019) x     x x   x  x  x  x x    x  x   

Quenehen  et al. 

(2019) x     x    x    x  x    x     x 

Antonelli and 

Stadnicka (2019) x  x    x   x    x  x    x     x 

DalleMura and Dini 

(2019) x   x  x x   x  x x x  x    x     x 

Gao et al. (2020) x   x  x x    x x     x   x     x 

Arrais et al. (2021) x  x x  x  x    x  x   x   x    x  

Lv et al. (2021) x  x x x  x x x  x x    x     x   x  

Huang et al. (2021 x  x   x x x     x x x x    x     x 
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Table 1. Literature gap (Legend: CD: Control Design; TD: Technology Design; ID: Interface Design; SDA: System/Application Design; Ma: Manipulation; De: Detection; SM: Separation 

Monitoring; P&P: Pick and Place; T: Throughput; C: Cost; WS: Worker’s Skills; Sa: Safety; Erg: Ergonomics; A: Assembling;  M: Manufacturing; Pkg: Packaging; FPF: Food Production 

Facility; P: Prototyped; I: Implemented; Coe: Coexistence; Int: Interaction; Coo: Cooperation; Col: Collaboration). 

 

 

Ferreira et al. 

(2021)  x  x   x    x x     x   x    x  

This Paper x  x x x x x x x x  x x x x   x x  x   x  
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2. Methodology 1 

 2 

This section illustrates the architecture of the support-design framework of cooperative robot systems. While 3 

presenting the design steps in Figure 1, it describes the incorporated design tools and general working 4 

principles. 5 

Figure 1 presents the framework as an iterative closed-loop procedure intended for system design and shows 6 

the interdependencies connecting design targets and levers. This framework evokes the pattern of the feedback 7 

control loop with noise on the exit (Zhang et al., 2013). The procedure's input consists of the design targets 8 

and the collection of data features significant of the environment. Such data feeds the block of the assessment, 9 

namely Simulation and Assessing Methods (SAM). SAM encompasses a broad and generic set of methods that 10 

allow defining and computing the performance of the current design solution. It mightly includes kinematic 11 

tools (Tang et al., 2021; Yang et al., 2019), digital twins (Jones et al., 2020; Koulouris et al., 2021; Malik & 12 

Brem, 2021b), CFD and stress analysis (Silvestri, 2021; Xia & Sun, 2002) when focusing on technical 13 

performance, rather than numerical simulation or operations scheduling tools to investigate the economic 14 

feasibility of the solution (Accorsi, Garbellini, et al., 2019; Musavi & Bozorgi-Amiri, 2017), or human-15 

interaction tracking systems in case of safety and ergonomics evaluation (Amorim et al., 2021). Such 16 

performance is compared to the design target (i.e., KPI*) within the Comparison block. The gap between the 17 

target and the current t-th measure (i.e., ∆K[t]) feeds the Re-design Methods block assumed as the actuator of 18 

the feedback control loop. The corrections (feedback) trigger the configuration of a new solution and update 19 

input parameters to the SAM block. Thus, the framework iterates the procedure until the desired convergence 20 

is achieved. The remainder of this section provides examples and further details about the behavior and features 21 

that each block of the closed-loop method presents. 22 
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 1 

Figure 1. Iterative closed-loop methodology intended for system design. 2 

 3 

2.1. Input or data collection 4 

The definition of the input parameters is dependent on the type of processes observed. For instance, time and 5 

motion analysis provides the times spent by labor and machines throughout the operations organized in tasks 6 

and sub-tasks. Other information sources are the enterprise information systems and databases, available 7 

architectures of sensors of throughput and downtime, datasheets for the features and characteristics of the 8 

machines, and design parameters intended as targets coupling with normative, rules and standards (UNI EN 9 

ISO 10218-1:2012, UNI EN ISO 11228-3:2019). Despite the source, the broad set of data collected enables 10 

describing the as-is scenario and fueling the methods and tools of analysis embedded in the SAM block.  11 

2.2. SAM phase 12 

The simulation and assessing tools can vary depending on the driver adopted to reject an obtained solution. At 13 

this phase, the methods receive the variables from the input block. The results obtained with the application of 14 

these methods iteratively change. This procedure is iterated until the desired convergence is met.  15 

Input quantities are organized as shown in Figure 2 (e.g., SET, PARAM, VAR) to feed various simulation 16 

models. Referring to the case study of Section 3, SET contains resources such as operators and Cobot, task 17 

(e.g., operations performed by the resource), machine (i.e., belt and roll conveyor, labeling machine, fork-lift 18 

trucks), and other entities to which the parameters are associated. One or more parameters are associated with 19 

each set as features or properties. Three types of parameters exist: Feature, Performance, and Target. Feature 20 

encompasses all those parameters representing the constraint for design, whilst performance includes the 21 

entities required to calculate the objective functions. Target parameters are the set-points and allow quantifying 22 

the errors compared to the current solution. For instance, a parameter named time exists for each resource, 23 
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task, and machine set and belongs to the performance category. In a nutshell, the feature represents the input 1 

parameters of a solution (i.e., systems configuration), whilst the unknown performance for such configuration 2 

results from the simulation/virtualization conducted by SAM. As shown in Figure 1, SAM encompasses 3 

several methods that tally quantitative performance of the system. With regard to this research, we focus on 4 

economic, technical, and ergonomics aspects. Particularly, we use the Net Present Value (NPV) to benchmark 5 

the investment, OCRA and NIOSH indices to quantify ergonomics, motion control digital twin to prevent 6 

failures, and layout metrics to assess feasibility. Despite the implemented methods, SAM open to other tools. 7 

The following subsection draws two examples of simulation and assessment methods implemented for the 8 

proposed case study. 9 

2.2.1. Ergonomic analysis  10 

Manual operations performed in manufacturing systems involve physical efforts and significant stress mostly 11 

affecting the upper limbs, shoulders, and low back. Manual material handling (MMH) of loads, awkward 12 

postures, and high repetitive movements are major causes for occupational diseases, such as cumulative trauma 13 

and Work-related Musculoskeletal Disorders (WMSDs) in manufacturing (Bevan, 2015; Colombini et al., 14 

2001; EU OSHA, 2018; National Research Council, 2001; Padula et al., 2017). The International Standards 15 

Organization (ISO) provides information for designers, employers, and safety professionals involved in the 16 

design of work systems, tasks, and products, to design ergonomic workplaces and promoting the culture of 17 

safety at work. The ISO 11228 series of International Standards, the ISO 11226 (2000) and their application 18 

document, the ISO/TR 12295 (International Standard Organization, 2015), define a set of recommendations 19 

for performing safe manual handling operations. These standards also provide the risk assessment 20 

methodologies for hazard identification, risk estimation, and risk evaluation. Specifically, the ISO 11228 series 21 

addresses the ergonomic approach to manual handling activities like lifting and carrying (International 22 

Standard Organization, 2003; T. Waters, 1993), pushing and pulling (International Standard Organization, 23 

2007a; Snook & Ciriello, 1991), and manual handling of low loads at high frequency (International Standard 24 

Organization, 2007b; Occhipinti, Enrico; Colombini, 2004). The ISO 11226 is the International Standard for 25 

evaluating static working postures, which provides the limits for static working postures with body angles and 26 

duration, and the minimal external force exertions (International Standard Organization, 2000). Finally, the 27 

ISO/TR 12295 defines additional criteria and details for applying the risk assessment methods proposed in the 28 

original standards of the series(International Standard Organization, 2000, 2015). These standards aim to 29 

address the application of ergonomics principles to workplace design and re-design. When recommended 30 

limits are not satisfied, corrective measures and risk control measures should be taken to prevent the risky 31 

operation or modify the working conditions and provide auxiliary equipment for risk reduction. After analyzing 32 

the work process and the manual operations performed in the workplace, employers and safety professionals 33 

must adopt the proper risk assessment methodology and ensure that manual handling activities do not expose 34 

the workers to some risks for their health and safety. The introduction of one or more collaborative robots in a 35 

manufacturing system does not exclude the presence of potentially hazardous work conditions. The ultimate 36 

aim of the HRC is the creation of perfect complementary between humans and robots for reaching higher 37 
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features and performance that traditional manufacturing systems could not accomplish. In this context, the 1 

ergonomic analysis provides a quantitative measure of interaction quality between the workers and the robots, 2 

i.e., the HRC. The ergonomic risk assessment included in this study focused on the manual activities required 3 

to the workers before and after the introduction of collaborative robots in a manufacturing system. The aim 4 

was to verify the manufacturing system’s ergonomic conditions and assess the quality of the HRC from an 5 

ergonomics perspective. The operations investigated in the ergonomic risk assessment in this paper include 6 

manual lifting activities and repetitive movements performed with the upper part of the body. The context in 7 

which manual operations are performed was investigated, together with the characteristics of the tasks and 8 

other risk factors related to work organization. The results provide a quantitative measure of the ergonomic 9 

risk for manual operations and priorities for improving the work conditions. 10 

2.2.2. Monte Carlo analysis 11 

Due to the high unpredictability that characterizes the performance of most system configurations, a canonical 12 

probability distribution can not readily assume. For each output variable, direct observation, test, and 13 

monitoring campaign result into samples to be analyzed. Monte Carlo methods can be used to extrapolate a 14 

behavior from such samples and generalize it through a probabilistic simulation of random events. The 15 

probability of such an event lies in the observed behavior of the sample. The adoption of Monte Carlo methods 16 

permits the simulation of a system configuration's behavior and estimates output performance as the 17 

handling/picking time, the idle time of the machine or the resource, or the throughput or safety of a specific 18 

system layout. 19 

2.3. Comparison 20 

The comparison step lies in the performance parameters assessed at the SAM block. This performance is 21 

compared to the target parameters (i.e., set-points), defined per objective function. The gap between the current 22 

performance and the set-point represents the error ∆𝐾[𝑡] at iteration t. Such error expresses quantitatively how 23 

the proposed solution approaches the desired values and provides the direction toward the improvement. 24 

2.4. Re-design method and update 25 

This phase includes a generic approach to re-design the current solution according to the improvement 26 

direction. This task can be manual or aided by a software application. First, the designer must set a new 27 

configuration of the system handling the levers of the input parameters/features. This way leads to a new 28 

solution which ideally corresponds to activate the binary variable of that configuration (i.e., ytra = 1). The 29 

output configuration is designed via CAD and prototyping tools.  30 

The update task is devoted to setting the new configuration's input parameters required to feed the SAM block 31 

at the next iteration. 32 

3. Case study 33 

 34 

A centralized industrial kitchen of the foodservice industry provides the proper testbed for applying the 35 

proposed support design framework. The centralized kitchen is a food production facility that satisfies broad 36 
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customer requests regarding lost size and production mix (Penazzi et al., 2017). This production system is 1 

affected significantly by the technological cycles (i.e. recipes) and food processing/assembling tasks carried 2 

out. Hence, the optimal configurations of layout and equipment, tasks arrangement, and labor behavior are not 3 

generalizable and customized. The resulting complexity meets our support design framework. 4 

3.1. Data gathering 5 

The production system taken into account focuses on a single area of the industrial kitchen: the end-of-line 6 

intended for packing, labeling, and palletizing food portions. We gather data through direct (on-field) and 7 

indirect ways. Indirect ways encompass company databases, sketches and drawings, and previous monitoring 8 

campaigns. On-field records refer to the time and motion analysis, the hourly labor cost, the number of 9 

operators.  10 

Once the portion is packed and sealed in a modified atmosphere-filled tray, the conveyor moves the tray to the 11 

end-of-line buffer, where an operator picks and places it into a reusable plastic container. The stack of 12 

containers filled by homogeneous trays constitutes the production batch/lot. The lots are moved to the 13 

refrigerated storage area employing special roll-containers, known as dollies. 14 

Data collection refers to all the inputs or features defined within the System Features (SFs) and proceeds 15 

involving one set at once. Such features include the operations, the layout and the equipment, the costs.  16 

According to the nomenclature of Section 2, the entities of the set Characteristic Operations (CO) for the end-17 

of-line are listed in Table 2. The parameters/attributes Operation type, Number of workers, Time, and Weight 18 

describe and characterize each CO. The handling unit suggests the physical load moved at that task. Other 19 

attributes, like worker's skills or requirements, could be added case by case. Table 2 reports the value of these 20 

parameters brought out from the on-field times and motions analysis. 21 

CO n. CO description/name CO type N. of 

workers 

Handling 

Unit [u] 

Working 

Time [s/u] 

Weight [kg] 

1 Lot settings Manual 1 - 8 ÷ 13 - 

2 Picking an empty container Manual 1 Container 2 ÷ 4 1.8 

3 Waiting for the reference to 

arrive 

Automatic 1 - V.T. 

[3÷158] 

- 

4 Labeling of reference Automatic 0 Tray 1 ÷ 2 - 

5 Picking of reference Manual 1 Tray 1 ÷ 2 V.W. 

[0.1÷0.35] 

6 Filling a case with reference Manual 1 Tray V.T. 

[33÷375] 

- 

7 Labeling of a full case Manual 1 Container 2 ÷ 3 - 

8 Drop an entire case on the roll 

container 

Manual 1 Container V.T.  

[4÷30] 

V.W. 

[4.2÷10.2] 
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9 Moving the full roll container to 

the storage area 

Manual 1 Dolly V.T. 

[60÷240] 

V.W. 

[43.6÷91.6] 

Table 2. Characteristic operations (Legend: V.T.: Variable Time; V.W.: Variable Weight). 1 

The parameters time and weight in Table 2 can be either deterministic or stochastic depending on the 2 

randomness of the specific task. Due to the high uncertainty that characterizes such operations, the on-field 3 

monitoring generates samples distributions instead of averages. We use the Monte Carlo method to extrapolate 4 

the stochastic behavior of each task in terms of operations time and ergonomic load, and occurrence analyses 5 

are carried out to the purpose. Figure 2 illustrates how the occurrence analyses feed SAM through the 6 

numerical simulation block. Upon the PDF (one per each task of the COs set), SAM runs a numerical 7 

simulation that generates a sensitivity analysis attempted to assess the performance of the current system 8 

configuration. For the case study, the economic and ergonomic performance are calculated through 9 

quantitative metrics and robot trajectories via a tailored motion digital twin. 10 

 11 

Figure 2. On-field monitoring, Occurrences analysis, and SAM feeding. (Legend: CO: Characteristic operation; OMP: Observed 12 
manufacturing processes; OPA: Other PDF analyses; MS: Methodology steps, related to Figure 1) 13 

The parameters regarding the equipment, the layout, and the physical entities' flows are included within the 14 

System Feature named Layout. For instance, Tufano et al. (2018) provide the physical flows for the observed 15 

production system. These variables are essential to lead to new equipment selection. The as-is scenario shown 16 

in Figure 3 encompasses the existing equipment inside the layout, listed for reference in the Figure's caption.  17 
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 1 

 2 

Figure 3. AS-IS layout. List of equipment: F1: Worktable; F20: Counter; I5: Labelling machine; I6: Load-cell; I7: CPU Terminal; I8: 3 
Labelling machine for full container; N1: Belt conveyor [quotes in centimeters]. 4 

The parameters costs, e.g., resulting from the labor and power associated with each CO, depending on the 5 

personnel's company policy and the energy mix that powers the production system. SAM uses these costs to 6 

assess the economic feasibility/performance of each system configuration.  7 

 8 

At the first iteration of the method, SAM calculates the performance corresponding to the current (as-is) 9 

configuration of the COs. In the case study, the economic and ergonomic performance are tallied. Regarding 10 

the financial side, no investments into new solutions correspond to a payback period of 0. Conversely, an 11 

accurate ergonomic risk assessment of the workplace is necessary, particularly for the manual handling 12 

operations performed during the manufacturing processes. 13 

The ergonomic assessment paves the way for achieving ergonomic benefits by re-designing the current 14 

production system configuration. In this study, the COs that require manual handling operations are lifting and 15 

lowering tasks, e.g., trays picking and full-container handling into the dolly, and handling low loads at high 16 

frequency, e.g., picking and placing the empty containers. The methodologies adopted for the ergonomic risk 17 

assessment are in the ISO 11228-1 (International Standard Organization, 2003) and in the ISO 11228-3 18 

(International Standard Organization, 2007b). Specifically, the ISO 11228-1 introduces the risk assessment 19 

methodology for lifting and carrying operations, with the Revised NIOSH Lifting Equation (International 20 

Standard Organization, 2003; T. R. Waters et al., 1994). The goal is to assess the risk arising from manual 21 

lifting/lowering actions by identifying the Recommended Weight Limit (RWL) and obtaining a risk index, i.e. 22 

the NIOSH Lifting Index. The weight raised by the operator should hopefully be lower than the RWL, which 23 

considers the context in which the lifting activity is carried out, such as gender and age of the individual, 24 

geometry, and weight of the object, frequency of lifting/lowering actions, and other parameters (T. Waters et 25 

al., 2016b). Similarly, the Variable Lifting Index (VLI) allows safety analysts to assess the risk of variable 26 

manual lifting activities when the task characteristics, e.g. weight and height of the products, vary during the 27 

work-shift (T. Waters et al., 2016a). 28 

The second ergonomic assessment methodology adopted in this study is the OCcupational Risk Assessment 29 

(OCRA) described in the ISO 11228-3 (International Standard Organization, 2007b). Such methodology 30 
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provides a quantitative measure for assessing the ergonomic risk due to handling low loads at high frequency, 1 

i.e. the OCRA index. Specifically, the OCRA index compares the actual number of technical actions (ATA) 2 

performed by the worker during the repetitive task, and the number of reference technical actions (RTA), for 3 

each upper limb, allowed in the work shift. The overall number of ATA is determined from the observation of 4 

the technical actions performed during the repetitive task. The number of RTA allowed in the same time slot 5 

is based on the analysis of the context in which the repetitive task occurs, including force exertions, awkward 6 

postures, and movements of the upper limbs, work organization, and a set of environmental factors such as, 7 

for example, the use of personal protective equipment that may interfere with handling ability, the requirement 8 

for accuracy, and the use of vibrating tools. This risk assessment methodology is commonly used in industrial 9 

research and in the field of Occupational Medicine.  10 

Figure 4 shows the results of the ergonomic assessment for the as-is scenario. Using numerical simulation, 11 

SAM quantifies the ergonomic load along two years of production. Figure 4 plots the VLI index, which reveals 12 

the high risk for the workers involved and suggests timely re-design of tasks and workplace.  13 

Against the business-as-usual, the proposed iterative methodology supports automatizing these tasks 14 

incorporating a collaborative robot into the production end-of-line. 15 

 16 

 17 

Figure 4. Ergonomic assessment. 18 

The KPIs, namely Design Targets (as part of the System Feature), are claimed by the company or suggested 19 

by the state-of-art. For instance, Correia Simões et al. (2020) state that a crucial factor influencing automation 20 

is the acceptance i.e., concerns and expectations of the workers. The intention to automate a labor-intensive 21 

process line is interpreted as a pretext to narrow down personnel costs. In the case study, acceptance is 22 

encouraged by excluding workers' firing and ensuring to re-allocate them to different tasks to improve the 23 

acceptance. Some design targets are sum up in Table 3. 24 

KPI Value 
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Budget 35,000 [€] 

Payback Period < 24 [month] 

Operators' skills \ 

Regulation compliance 
UNI EN ISO 10218-1:2012 

UNI EN ISO 11228-3:2019 

Table 3. Design target parameters. 1 

 2 

3.2. Iterating the framework 3 

Different systems solutions/configurations are designed whilst iterating the support-design framework. For 4 

each configuration, the features of the systems (SFs) are calculated or extrapolated. 5 

For the case study, a first solution is explored in Accorsi et al. (2019). This section builds from then, and 6 

iterates the method to generate and compare new solutions. Table 4 samples some values of the gap parameter 7 

∆K which measures, for each KPI and iteration, the distance between the current value and the set-point.  8 

Iteration Budget 
Cost 

[k€] 

Saving 

wrt 

Budget 

[%] 

Payback 

Risk 

Size 

[sqm] 

Risk 

analysis 

Ergonomic 

Index 
Operators’skills 

1 1 25 28.6 70% 4.80 0 Minor  Basic 

… … … … … … … … … 

t-th 0 45 -28.6 75% 5.34 1 Major  Basic 

… … … … … … … … … 

T 1 32 8.6 85% 3.82 1 Major  Basic 

Table 4. Summary of ∆K values. (Legend: wrt: with respect to; 1: constraint achieved; 0: constraint unmet) 9 

The integration of a collaborative robot into a consolidated labor-intensive process does not improve the 10 

operator's working conditions, either not supported by a layout revision (Rega et al., 2020). However, at the 11 

first iteration, some alternatives are overviewed. The comparison step (see Fig. 1) rejects the solutions which 12 

do not comply with the regulations and standards. The equipment considered for the following iterations 13 

consists of a collaborative robot (UR 10 – Universal Robots™) with ten kilograms of payload, a gripper with 14 

Venturi's effect working principle (KVG20060FR5 – Piab), and a customized movable aluminum table. This 15 

table is used as a support for the Cobot, the power unit, and the PLC.  16 

After a certain number of iterations (at the generic t-th iteration), the output provides a first reliable layout. 17 

This configuration represents a technically feasible solution, although the budget constraints is not respected. 18 

Moreover, the risk analysis was not necessary because the solution breached one of the feature parameters. 19 

The solution shown in Figure 5 uses the main belt-conveyor coupled with an L-deviation to head trays to the 20 

Cobot. The buffer of empty boxes was a motorized roll-conveyor. This buffer communicates with the Cobot's 21 

PLC. Two rails connected to the rotating platform allow the ejection of the full dolly. The two rails allow 22 
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separating the workplace where the dolly is empty or full, while the rotating platform allows orientating the 1 

dolly along the filling process. The rails-platform-based system is shown in the upper-left corner, whilst the 2 

plastic boxes buffer is in the lower right corner. 3 

 4 

Figure 5. Solution of the t-th iteration. 5 

 6 

The CAD layout allows an overview of all equipment and is used to develop the control logic. Indeed, the 7 

operating logic defines the functional components, e.g., sensors and actuators, rather than specific items. Table 8 

5 represents a list of sensors and actuators with the reference of the task they are applied to. 9 

Sensors Code Task 

Light barrier photocell S1 Check saturation of loaded dollies buffer 

Light barrier photocell S2 Check the presence of an empty dolly in the loading area 

Distance measuring device S3 Check presence and determine the size of empty boxes pile 

Mechanical switch S4 Check the presence of reference in the end-line 

Actuators Code Task 

Stopper cylinder A1 Lock/unlock empty dollies 

Stopper cylinder A2 Lock/unlock empty boxes pile 

Pneumatic cylinder A3 Rotation of moving platform 

Stopper cylinder A2 Lock/unlock dolly in the loading area 

Electric valve A5 Allows compressed air inflow to the gripper 

Table 5. Sensors and actuators list. 10 



18 

 

Table 4 provides the parameter ∆K for the "t-th" iteration. The discarded solution talks the decision-maker into 1 

considering an additional system feature parameter. This constraint refers to the compactness of the layout. 2 

The rotating platform is avoided by relocating the empty dolly below the empty cases buffer. This re-design 3 

sharply reduces the budget needed by the new solution together with the size of the end-of-line. Furthermore, 4 

cutting off the platform moves the buffer of containers closer to the conveyor belt. 5 

Figure 6 draws the final solution (T-th iteration). In such a configuration, the buffer of the dollies and of 6 

reusable containers are overlapping. A slightly slanted tailored platform permits dollies to head to the filling 7 

place by gravity. The front end is horizontal, and the ground level is devoted to a buffer for the loaded dollies 8 

ready to be transferred to the refrigerated storage. A Plexiglas and aluminum structure surrounds this area to 9 

avoid potentially dangerous interferences with the operators. A sensorized door that alerts the system when 10 

operators enter the area is located at the end of the platform. 11 

The buffer of empty plastic containers is designed as a motorized roll-conveyor at the t-th iteration and 12 

maintained till the end. This device is coupled with a tailored vertical support for distance measuring. Being 13 

able to measure the height of the batteries of empty cases allows a more robust pick operation.   14 

 15 

Figure 6. TO-BE layout 16 

A small roll-conveyor with lateral barriers is placed at the end of the belt conveyor system. This equipment is 17 

implemented to drive and orient the incoming trays to a fixed picking position. The sensor for the nominal 18 

operation of the designed output end-of-line is shown in Table 6, whilst the acronyms refer to figure Figure 7. 19 
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 1 

Figure 7. Layout of sensors and actuators. 2 

Sensor Code Task 

Suppressing background photocell S.g.1 Check gripped object 

Light barrier photocell S.p.1 Check the presence of empty dollies 

Light barrier photocell S.p.2 Check presence dolly in the loading area 

Light barrier photocell S.p.3 Check space in filled dollies buffer 

Light barrier photocell S.e.1 Check the presence of references in the picking area 

Light barrier photocell S.e.2 Check the presence of references in the picking area 

Light barrier photocell S.r.2 Check presence empty boxes in picking position 

Light barrier photocell S.r.3 Check the presence of a spare empty plastic case pile  

Distance measuring device S.r.1 Measures height of boxes pile 

Actuators Code Task 

Stopper cylinder A.p.1 Let flow a dolly in the loading area 

Stopper cylinder A.p.2 Let flow the filled dolly in the buffer 

Electric valve A.g.1 Activate/deactivate the grippers 

Table 6. Sensors and actuators list and involved tasks. 3 

The cobot PLC forbids communication via field bus. It uses instead a sensor that generates an output signal 4 

acquired from the command console. The sensors architecture includes some light barrier photocells 5 

(BALLUFF – 5K-NU-LX10-02), a distance measuring device (BALLUF – BOD 63M-LA02-S115), and a 6 

suppressing background photocell (BALLUF – BOS 12M-PA-RF10-S4). The cobot PLC generates digital 7 

output with 24[V] to control all the actuators propelled with compressed air. The final ∆K parameters are 8 

reported in Table 4. 9 

3.3. Safety protocol 10 

To implement a security protocol, we integrate hardware and software solutions. The Cobot PLC provides 11 

intrinsic standard safety and human-care functionalities. We develop further functionalities from scratch with 12 



20 

 

the aid of dedicated sensors. Any signal received from a sensor links to an error code used to regulate the speed 1 

and acceleration of the robot's trajectories. We distinguish two main error categories. The first, namely 1-xxx, 2 

triggers a robot's stop using the emergency brakes. The cell returns to the nominal working conditions only 3 

when an operator fixes the error and pushes the resuming pop-up on the control GUI. The second (2-xxx) 4 

triggers the reduced mode, which decreases the Cobot's speed and acceleration. The working cell returns to 5 

the nominal working conditions when an operator removes the error warning. 6 

The support-design framework performs a risk analysis foreseeing different HRIs (Kopp et al., 2020) to make 7 

the cooperation between Cobot and man feasible. By highlighting the workspace and tasks shared between the 8 

Cobot and the worker, the designer avoids potential dangerous HRIs. In the case study, no collaborative 9 

operations (HRCs) are identified by the risk analysis. However, the worker could erroneously enter into the 10 

robot's workspace while persuing his tasks. In such a case, a laser scanner (SICK-S30A) detects the worker's 11 

presence and triggers a system error. This device allows monitoring the environment around the manipulator 12 

defining two risk areas. Each area, drawn as rectangles of different colors in Fig. 8, triggers a safety protocol 13 

affecting the speed and acceleration of the Cobot. When an operator invades the yellow area, an error of 14 

category 2-xxx is activated, and the cell continues to work at a reduced performance. However, when the 15 

operator crosses the border between the yellow and red area, a category 1-xxx error occurs, and the cell breaks 16 

down. 17 

 18 

Figure 8. Security areas 19 

To avoid accidental collision between the worker and the dolly a protective cage is prototyped. The structure 20 

is made of extruded aluminum profiles and equipped with gates. Each gate includes a magnetic sensor 21 

(BALLUFF - AG TK-52-CD/2) that detects when the door is open, incurring an error of category 2-xxx. 22 

Implementing these safety solutions reduces the working space of the Cobot as it must lie within the front area. 23 

The safety system depends on the layout and interaction between the robot and the worker, paying particular 24 

attention to the heavily congested zones. 25 

4. Discussion 26 

The literature analyses and the framework application aim to answer the research questions in Section 1. This 27 

paper underlines the constraints occurring along with the automation of labor-intensive manufacturing 28 
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processes. Among these barriers, literature lists: i) technology, ii) cognitive, iii) safety and ergonomic, iv) 1 

throughput and performance, v) law and normative, vi) economic, vii) space and workspace (RQ1). Literature 2 

summarizes such barriers into leading performance metrics like (Hippertt et al., 2019) with HNR index, 3 

(Antonelli & Stadnicka, 2019) with their PFMEA, and (Costa Mateus et al., 2019) with the ergonomic 4 

indicators. Although such indicators lead the design of technically feasible automated solutions, a focused 5 

view of few performance metrics, neglecting the others, lacks addressing the rising demand for the integration 6 

of collaborative robots into labor-intensive manufacturing environments (L. Wang et al., 2019). The 7 

application of the proposed framework in a labor-intensive manufacturing process provides ergonomics 8 

benefits and cost reduction. The economic benefits result from avoiding injuries and musculoskeletal stresses 9 

due to repetitive tasks. We showcase that cost-saving does not necessarily result from the throughput 10 

improvement but occurs as a consequence of safety and ergonomics adjustments (RQ2). Specifically, the 11 

results of the ergonomic risk assessment for the as-is scenario in the food service facility investigated in this 12 

study revealed the presence of high risk for the workers involved in manual materials handling. These results 13 

also suggest that the high frequency of the movements performed with the back and with the upper limbs is 14 

the major risk factor of the manual operations. In this context, the incorporation of a collaborative robot 15 

assisting the workers during manual operations at the production end-of-line would improve the ergonomic 16 

conditions in which these activities are performed 17 

This work handles several aspects of automating a manual production system and proposes a comprehensive 18 

framework that puts different digital twin tools to aid design (Guo et al., 2021; Lv et al., 2021). The illustrated 19 

case study shows how to apply the framework and how the digital twins are implemented to lead re-design. 20 

For instance, CAD allows evaluating the system layout, the workspace, and the zones of interactions (HRI). 21 

To achieve solution feasibility, CAD provides the overall size of each solution in order to comply with the 22 

available space. As shown in Table 4, the system layout occupies 3.82 [sqm], i.e., 40% less than the previous 23 

solution. The identification of the HRI that might occur during the tasks leads to re-design and deletion of 24 

some of critical processes avoiding collision. In the proposed solution we avoid handling empty boxes, saving 25 

the worker from lifting or lowering relatively high loads (RQ3). A Monte Carlo method simulates the 26 

performance of each configuration by tallying ergonomics, like the abatement from relevant ergonomics 27 

impact (NIOSH and OCRA) to almost zero (Figure 4). Simulation also underlines the decrease of capital cost 28 

of 23% from 45.000€ to 35.000€ within the threshold of the available budget (Table 4). Together these tools 29 

benchmark each system configuration and drive the fulfillment of the targets through an iterative approach. 30 

The multi-disciplinary perspective of the framework characterizes each design solution with a set of indicators 31 

like production throughput, labor time and cost, worker's skills, safety, and ergonomics. To achieve the 32 

purposed result, we aid the decision-maker with a novel framework as a procedure intended for system design. 33 

Such a framework defines a feasible, affordable, and human-care solution using an iterative closed-loop 34 

methodology open to additional functionalities and tools. The multi-disciplinary perspective and the iterative 35 

approach are together strengths and drawbacks of this framework.  While handling several dimensions at once, 36 
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the designer must run and feed different digital twins with confidence, interpret the results, and enforce the 1 

gap reduction with the set point in the new configuration. Furthermore, the lack of integrated software 2 

involving all the digital twins into a unique platform makes the iterating procedure complex, rugged, and 3 

challenging. Thus, the limitation of this research falls within the lack of integrated and holistic tools able to 4 

carry out the design stages automatically. 5 

Furthermore, given the broad disciplinaries and perspectives involved in this study, data entry would require 6 

a structured knowledge repository with variables and tables properly linked across the design steps. To the 7 

authors' experience, the available digital platforms and skills do not prevent such development. However, the 8 

lack of coordination and horizontal collaboration among designers and experts from different disciplines still 9 

limit the diffusion of such iterative design methodologies in industrial practice. 10 

5. Conclusions 11 

The ergonomic design of workplaces is a significant challenge of the Industry 4.0 revolution. Manufacturing 12 

processes and industrial systems are gradually changing their traditional layouts and configurations, preparing 13 

for the introduction of new technologies, as collaborative robots and exoskeletons. These technologies are not 14 

going to replace human workers in workplaces. Conversely, human assets will find support from innovative 15 

machinery and digital twin technology for improving the efficiency and the effectiveness of manufacturing 16 

processes. However, the digitalization of the processes and the introduction of higher levels of automation are 17 

driving the transition towards the development of new competencies and skills for designers, employers, 18 

employees, but also safety professionals and occupational physicians.  19 

In this context, the active engagement and participation of human assets in each step of the Industry 4.0 20 

revolution is fundamental for assessing the impact of smart technologies on process performance and users 21 

perceptions. Collaborative robots create a direct relationship with the workers. They share work operations, 22 

manufacturing processes, and work areas. Recent studies have extended the research on collaborative robots 23 

to the analysis of the ergonomics of the human-robot interaction, aiming to improve the usability of these 24 

technologies and the overall satisfaction of the users, i.e., the workers (Aaltonen & Salmi, 2019; Fletcher et 25 

al., 2020; Javaid et al., 2021; Kildal et al., 2018; Schmidbauer et al., 2020). Hence, the design of the factory of 26 

the future requires a holistic approach, aware of the importance of ergonomics and human factors, and focused 27 

on the improvement of both the system performances and the human-robot interactions.  28 

The proposed framework aids re-design labour intensive manufacturing systems through feasible and 29 

affordable human-robot integrated processes. A closed-loop iterative methodology supports considering the 30 

system layout, the technology control, the financial aspects, the ergonomics benefits, and potential safety 31 

threats for the workers simultaneously. Applying this framework to the end-of-line of a food service facility 32 

results in a manufacturing configuration that respects the budget and payback constraint and complies with the 33 

regulations. While this framework is straightforward, its implementation requires open mind designers with 34 
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multi-disciplinary skills. Future developments are then expected to develop a unique, integrated, and 1 

automated digital platform incorporating all the framework's steps at once under user-friendly GUIs.  2 
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