
20 February 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Zanchetta F. (2021). Unstable operations on K-theory for singular schemes. ADVANCES IN MATHEMATICS,
384, 107716-107773 [10.1016/j.aim.2021.107716].

Published Version:

Unstable operations on K-theory for singular schemes

Published:
DOI: http://doi.org/10.1016/j.aim.2021.107716

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/861839 since: 2024-03-19

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.aim.2021.107716
https://hdl.handle.net/11585/861839


Unstable operations on K-theory for singular schemes1

Ferdinando Zanchetta2

March 20213

Abstract4

We study the algebraic structures, such as the lambda ring structure, that arise on K-theory seen as an object of5

some homotopy categories coming from model categories of simplicial presheaves. In particular, we show that if we6

take the Jardine local injective model category of simplicial presheaves over the category of divisorial, hence possibly7

singular, schemes with respect to the Zariski topology, these structures are in bijection with the ones we have on K08

seen as a presheaf of sets. This extends some results of Riou ([Rio10]) from smooth schemes to singular ones and does9

not require A1-invariance. We also discuss similar results for symplectic K-theory.10
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1 Introduction28

Algebraic structures and operations on K-theory have played a very important role since Grothendieck invented K-29

theory. Indeed, he associated to any scheme X the so called algebraic K-theory group K0(X) in order to state and30

prove the most general form of what is nowadays known as the Grothendieck-Riemann-Roch theorem (see [SGA71]).31

To prove such a theorem, K0(X) had to be given the structure of a lambda ring. This notion was envisioned by32

Grothendieck and explored for the first time in [SGA71], see [Yau10] for a modern introduction. Loosely speaking, a33

lambda ring is the datum of a ring R together with a family of functions λi : R→ R satisfying some formal properties34

axiomatising the behaviour of the exterior powers in algebra. This formalism and this structure revealed itself to be35

very important also in other contexts. Given a lambda ring R, we can define the so called Adams operations, namely a36

family of ring homomorphisms ψj : R→ R whose properties were famously used by Adams to give a short and elegant37

solution to the Hopf invariant one problem in topology. After higher algebraic K-theory was defined and explored in38

seminal works of Quillen ([Qui67]), Waldhausen ([Wal85]) and Thomason ([TT90]) among others, it became meaningful39

to study which algebraic structure can be given to the higher algebraic K-theory groups (or space) of a scheme (or of a40
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ring). While the K-theory space carries a natural H-group structure and a natural multiplicative structure as well (see1

[Wal85, page 342] and [Wei81]), the task of definining lambda operations has proved to be more challenging. They2

have been defined at various levels of generality by several authors, Hiller, Kratzer, Gillet, Soulé, Lecomte, Levine and3

Grayson among others, using a blend of representation theory and homotopy theory. More recently, Harris, Köck and4

Taelman in [HKT17] defined lambda operations using the explicit presentation of the higher K-theory groups given by5

Grayson ([Gra12]). All these works allowed to study lambda operations for the higher K-theory groups of possibly any6

Noetherian scheme X , leading also to Grothendieck-Riemann-Roch theorems as the one proved in [Sou85] for regular7

schemes, but in general the constructions are quite involved and difficult to handle. For example, Grayson was not able8

to verify the lambda ring axioms using his definition (see [Gra89]) and it is difficult to compare all the a priori different9

operations with each other. After the introduction of A1-homotopy theory, as developed by Morel and Voevodsky in10

[MV99], Riou introduced a new powerful tool to explore algebraic structures on K-theory, seen as an object of the11

unstable motivic homotopy category. For a given regular divisorial (see [SGA71, II 2.2.3] or Definition A.1) Noetherian12

scheme S, we shall denote by HDiv(S) the unstable motivic homotopy category over S ([MV99]) built starting from13

the category DSmS of smooth and divisorial schemes over S. From now until the end of the introduction, we let K to14

denote Thomason’s K-theory simplicial presheaf. The starting point of this paper is then the following result:15

Theorem 1.1. (Riou, [Rio10, Theorem 1.1.4]). If S is a Noetherian divisorial regular scheme, then for any n ∈ N one has the
following isomorphism

HomHDiv(S)(K
n,K) ∼= HomPre(DSmS)(K0(−)n,K0(−))

where K0(−) is the presheaf of sets associating to every smooth scheme X its algebraic K-theory K0(X) and Pre(DSmS) is16

the category of presheaves of sets on DSmS .17

This result allows us to define algebraic structures on K seen as an object of HDiv(S) lifting the ones we have on18

K0. In particular, this gives a lambda ring structure to K ∈ HDiv(S) and also allows to see that such structure is19

uniquely determined by its behaviour on K0 ([Rio10, Theorem 2.3.1]). The lambda operations obtained can be seen20

to induce operations on the higher K-theory groups of any scheme in DSmS . The proof of this theorem relies on21

the fundamental fact that K ∼= Z × Gr in HDiv(S), together with the fact that for divisorial schemes Thomason’s22

K-theory is equivalent to Quillen’s one, Jouanolou’s trick is available (A.6), K-theory satisfies Nisnevich descent and23

is A1-invariant. The drawback of this approach is that it can only give structures to regular Noetherian schemes,24

while operations have been studied in more general contexts, e.g. [Lev97] or [GS99]. The aim of this work is then to25

extend the result of Riou to a larger class of possibly singular schemes. Inspired by the seminal work of Thomason26

and Trobaugh [TT90], it seems natural to consider an extension to the class of divisorial schemes, also called schemes27

with an ample family of line bundles. Indeed, these schemes are quite general and important: any projective or quasi-28

projective scheme is divisorial, for example, and they do satisfy the resolution property, see [Tot04] for an extensive29

discussion of the importance of this property. For such schemes the K-theory of perfect complexes agrees with the30

one of vector bundles (i.e. with Quillen’s K-theory) and we retain desirable descent properties such as Zariski descent.31

However, these schemes can be singular and therefore we loose A1-invariance so that we cannot use the argument of32

Riou any more to show a result analogous to Theorem 1.1. The main goal of this paper is to show that we still have a33

perfect analogue of Riou’s Theorem 1.1 in this setting. Given a Noetherian base scheme S we denote the category of34

divisorial schemes of finite type over S by DSchS , the category of Noetherian schemes of finite type over S by SchS35

and we consider the model category sPreZar(DSchS) (sPreZar(SchS)) of simplicial presheaves over DSchS (SchS ) with36

the choice of the Jardine local model structure with respect to the Zariski topology. The main result of this paper is37

the following:38

Theorem 1.2 (3.5, 4.6, 5.11). If S is a regular quasi-projective scheme over a Noetherian affine scheme R we have, applying
π0, that for any n ∈ N

HomHo(sPreZar(DSchS))(K
n,K) ∼= HomPre(DSchS)(K0(−)n,K0(−))

where Ho(sPreZar(DSchS)) denotes the homotopy category of sPreZar(DSchS). Moreover, for any n ∈ N we have

HomHo(sPreZar(DSchS))(K
n,K) ∼= HomHDiv(S)(K

n,K)

Finally, for any n ∈ N we have

HomHo(sPreZar(SchS))(K
n,K) ∼= HomHo(sPreZar(DSchS))(K

n,K)

Similar statements, if 1
2 ∈ Γ(S,OS), holds for symplectic K-theory KSp, i.e. GW[2] in the terminology of [Sch17].39

This theorem extends the result of Riou from regular schemes to singular ones and states that all the operations40

on K-theory seen as an object of Ho(sPreZar(DSchS)) are uniquely determined by their behaviour on the level of41

Quillen’s algebraic K-theory presheaf K0 ∈ Pre(DSchS). Moreover, their behaviour on the affine schemes suffices,42

see 4.12 for a precise statement. The key ingredients in the proof of this theorem are methods inspired from the43
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classical localisation with respect to homology and the verification that Kn
0 satisfies the so called property (P) with1

respect to the fully faithful inclusion DSmS ⊆ DSchS (4.4). The proprerty (P) is introduced and studied in Section 42

(4.4) and it is studied in the context of K-theory and of GW theory in Section 6. For a given small category C, a full3

subcategory A ⊆ C and a fixed presheaf F ∈ Pre(C) the property (P) gives a sufficient condition for the restriction4

map HomPre(C)(F,G) → HomPre(A)(F,G) to be injective for any G ∈ Pre(C). We remark that the property (P)5

has to be satisfied by F , G may be chosen arbitrarily. It is used not only to prove our Main Theorem 1.2 for both6

K-theory and Symplectic K-theory, denoted KSp, and to prove Theorem 1.5 below concerning the Picard presheaf7

Pic(−), but can be used also for Hermitian K-theory, i.e. for the K-theory of symmetric forms, GW, i.e. GW[0] in8

the terminology of [Sch17]. In particular we have the following:9

Theorem 1.3 (4.5 together with 6.2 and 6.5). Let S be a quasi-projective Noetherian scheme of finite type over a Noetherian
affine scheme R, having 2 invertible if considering K theories of forms1, and F one of the functors K0,KSp0,Pic(−) or
GW0 in Pre(DSchS). Then for any G ∈ Pre(DSchS) and any n ∈ N the natural restriction map

HomPre(DSchS)(F
n, G)→ HomPre(DSmS)(F

n, G)

is injective.10

In particular, the previous theorem applies to F = G = GW0. A result instrumental to the proof of the above11

theorem for the K-theories of forms is the following result which generalises [Zan20, Theorem 5.5] and allows to see12

that any form on a divisorial scheme comes as a pullback of a form on a smooth scheme:13

Theorem 1.4 (6.3). AssumeX is a divisorial scheme of finite type over a scheme S which is quasi-projective over a Noetherian14

affine scheme R where 2 is invertible. Then given a finite number of ε-inner product spaces over X , V1 = (E1, ϕ1), ..., Vn =15

(En, ϕn), there is a divisorial smooth scheme YV over S and ε-inner product spaces V1,YV , ..., Vn,YV over it together with a16

morphism ψV : X → YV such that ψ∗V (Vi,YV ) ∼= Vi for every i = 1, ..., n. If X and S are affine schemes, then we can take17

YV to be affine.18

The methods used in the proof of Theorem 1.2 can be refined to obtain the following theorem. We denote the19

presheaf associating to any scheme its Picard group with Pic ∈ Pre(DSchS) and Ki ∈ Pre(DSchS) will denote the20

ith higher K-theory presheaf.21

Theorem 1.5 (7.18, 7.19). Let be S a regular quasi-projective scheme over a Noetherian affine scheme. Then, for any i ∈ N
we have the following isomorphisms

HomPre(DSchS ,Ab)(K0,Ki) ∼= HomPre(DSchS)(Pic,Ki) ∼= lim
n
Ki(Pn)

where we have denoted the category of presheaves over DSchS with values in abelian groups by Pre(DSchS ,Ab).22

This result generalises to singular schemes [Rio10, Proposition 5.1.1] which is valid only for regular ones and which
was instrumental in the definition of both the homotopy invariant K-theory spectrum in the stable motivic homotopy
category and in the construction of the Chern character as studied in op.cit. Given the simplicial presheaf K we define
for every n ≥ 0 and any X ∈ sPre(SchS),

Kn(X ) := HomHo(sPreZar(SchS)•)(S
n ∧ X+,K)

where Sn is the standard simplicial nth-sphere. Using Theorem 1.2 we are finally able to construct interesting algebraic23

structures on the higher K-groups of schemes.24

Theorem 1.6 (7.1, 7.14). Let S be a regular Noetherian scheme. The K-theory simplicial presheaf K on SchS has a lambda25

ring structure in Ho(sPreZar(SchS)). In addition:26

• for any X ∈ sPre(SchS) and for any n ∈ N, lambda, Adams and γ-operations K0(−)→ K0(−) lift to maps in the27

pointed homotopy category Ho(sPreZar(SchS)•) so that they act, by composition, on the groups Kn(X ). The relations28

that hold at level of K0 are true even in this setting.29

• The lambda ring structure on K induces, for any X ∈ sPre(SchS), a graded ring structure on the graded K0(X )-
module

K∗(X ) :=
⊕
n∈N

Kn(X )

In addition, the lambda operations just defined give, for anyX ∈ SchS , a well defined functorial lambda ring structure30

on the K0(X)-module K∗(X) :=
⊕

n∈NKn(X) where the product of two elements of degree ≥ 1 is set to be zero.31

1Note we do not assume R or S to be regular
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As an additional consequence, we can prove formally an Adams-Riemann-Roch theorem for projective l.c.i mor-1

phisms between divisorial schemes, see Theorem 7.17 below. Finally, we wish to point out that the study of the2

operations is at the center of many recent developments in the context of GW theory. Indeed, in 2018 Zibrowius3

([Zib18]) defined lambda operations for GW0 of any scheme of finite type over a field (with 2 invertible) and his4

results have been generalised by Fasel and Haution ([FH20]) in 2020 to divisorial Z[1/2]-schemes. The latter authors,5

and independently Bachmann and Hopkins ([BH20]) discovered in 2020 how to define Adams operations on the KO-6

spectrum, a.k.a. homotopy invariant Hermitian K-theory, in the stable motivic homotopy category, although under7

suitable assumptions (see op. cit. for details), thus suggesting that there is still room for many further developments in8

the area.9

We shall now describe the contents of the paper.10

In Section 2 we start with recollecting some facts concerning the Bousfield-Kan completion for simplicial sets as11

in [BK72] and in [GJ09], and we extend the notion of completion and Z-completeness to the context of simplicial12

presheaves, which is not well known and documented in literature. Using these facts we prove (2.17) that the maps13

from BGL to K in Ho(sPreZar(SchS)) are in bijection with those from BGL+ to K . Note we do not need to assume14

that our schemes are divisorial.15

In Section 3, building on the results of Section 2, we show that HomHo(sPreZar(SchS))(K
n,K) ∼= HomHDiv(S)(K

n,K)16

for any n ∈ N. This can be seen as a consequence of some general machinery we develop and that allows us to handle17

also symplectic K-theory (3.8).18

In Sections 4 and 5 we prove Theorem 1.2 and its analogue for symplectic K-theory. We also prove that these opera-19

tions only depend on their behaviour on affine schemes (4.10 and 5.12). These proofs rely essentially on showing that20

K0 and KSp0 satisfy the so called property (P) with respect to DSmS ⊆ DSchS (4.4), which is done in Sections 6,21

where the reader can also find the proof of Theorem 1.4.22

In the last section we discuss the algebraic structures determined by our Main Theorem 1.2 on algebraic K-theory,23

proving Theorem 1.6 (7.6 and 7.14 in the text). This is done by giving a general description of the lambda ring struc-24

ture arising on the homotopy groups of a lambda ring in some suitable category of spaces (see 7.10). We also provide25

an Adams-Riemann-Roch Theorem for projective l.c.i. morphisms between divisorial schemes involving the Adams26

operations defined (7.17). Finally, we extend [Rio10, Proposition 5.1.1] to singular schemes proving Theorem 1.5.27

There are 3 appendices. In Appendix A we collect some useful and not widespread facts about divisorial schemes.28

In Appendix B we review the argument that Riou used in order to prove his main theorem 1.1.4 in [Rio10] adapting it29

to our discussion is such a way it is immediately applicable to GW theory. Here we follow more closely Riou’s thesis30

[Rio06], which is available only in French. In Appendix C we collect some facts about lambda rings and we study this31

notion in the context of an arbitrary category with finite products and a terminal object.32

33
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1.1 Assumptions and notations44

All schemes will be always assumed to be Noetherian of finite dimension unless otherwise stated. The underlying45

category of any Grothendieck site considered is assumed to be small and we will always tacitly assume that we have46

choosen an universe big enough to avoid any set theoretic related issue. Whenever we will say that a base scheme S47

is regular, we will mean that its local rings are regular [Sta18, Tag 02IS] and we say that a scheme X is smooth over48

a base S if its structure map is smooth ([GD67, IV 6.8.6, 17.3.1], [GW10, 6.14], [Sta18, Tag 01V5]) so that we do not49

require such schemes to be separated as it is sometimes assumed.50

Notations 1.7. For a given base scheme S, we shall denote the category of schemes of finite type over S by SchS51

and its full subcategory of smooth schemes over S by SmS . We shall denote the full subcategories of divisorial and52

separated schemes in SchS by DSchS and SchSepS , respectively. We shall use DSmS and SmSep
S when we furthermore53

ask our schemes to be smooth over S. We will denote the full subcategory of SchS of affine schemes (in the absolute54

sense, i.e. over Spec(Z)) by AffS and the full subcategory of SmS of smooth affine (over Spec(Z)) schemes by SmAffS .55

Throughout this article, given any model category C, we will denote the homotopy category of C by Ho(C). If we will56

speak about pointed homotopy categories of a given model category C we will mean the homotopy category of the57

model category obtained by considering the pointed category C• and giving to it the pointed model structure induced58
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from C (see [Hov99, Proposition 1.1.8]). We will denote the global projective or injective model structure on a given1

category of simplicial diagrams by P or I . Accordingly, we shall denote the model categories of simplicial presheaves2

over a small category C endowed with the global projective or the global injective model structure by sPreP(C) or3

sPreI(C), respectively. Whenever we handle categories of simplicial presheaves over a Grothendieck site (C, τ) we4

will denote the model categories of simplicial presheaves over C with the local projective or injective model structure5

relative to the Grothendieck topology τ by sPreP
l

τ (C) or sPreI
l

τ (C). If moreover A is a class of maps in C for which6

the left Bousfield localisation of these model categories at A exists as a model category we shall employ the notation7

sPreI
l
A
τ (C) and sPreP

l
A

τ (C) for the Bousfield localisation of sPreI
l

τ (C) and sPreP
l

τ (C), respectively. Thus, for example,8

sPreI
l

Zar(SchS) will denote the model category of simplicial presheaves over SchS where we consider the injective local9

model structure with respect to the Zariski topology. If the choice of the injective local structure is assumed, we will use10

the simpler notation sPreτ (C). In addition, we will use the notation H(S), HDiv(S), HSep(S) and Haff (S) for the11

unstable motivic homotopy categories over SmS , DSmS , SmSep
S and SmAffS respectively (see [MV99] or [AHW17]).12

2 Recollections: completion for simplicial presheaves and consequences13

Given a category C with a terminal object, we shall denote its category under the terminal object by C•. We denote14

the category of (pointed, pointed and connected) simplicial sets by S (S•, Sc•), while Top (Top•) will denote a category15

of (pointed) topological spaces which is a convenient category for homotopy theory, such as the category of compactly16

generated Hausdorff spaces (see for examples [Vog71]). We use the term space for an object of either S or Top. We17

shall freely use the language of model categories, see [Hir03],[Hov99],[BK72], [GJ09], [Qui67], [DS95]. When dealing18

with a simplicial model category C, we will denote its simplicial mapping space ([Hir03, 9.1.2]) by MapC(−,−).19

Definition 2.1. Given a model category C we will say that a pointed object in it is a H-space (group) if it is a monoid20

(group) object in the pointed homotopy category Ho(C•).21

In this section we will be primarily concerned with H-groups in the category of spaces. For a given commutative22

ring R, R-nilpotent spaces ([BK72, III 5.2]) are assumed to be path connected and we shall keep this assumption to23

be consistent with the literature. Recall that Bousfield and Kan defined for every solid ring R, i.e. a commutative24

unital ring such that the multiplication R ⊗Z R → R is an iso, see [BK72, page 20], a functor R∞ : S → S , the so25

called Bousfield-Kan completion, see [BK72, I 4.2], [BK71] and [GJ09]. The main feature of this functor is that if a26

simplicial map f : X → Y induces an isomorphism on H∗(−, R), then R∞f is a weak equivalence (see [BK72, I 5.5]).27

In addition, recall that for any X ∈ S , R∞X is fibrant ([BK72, I, 4.2]).28

Definition 2.2. ([BK72, I 5.1]). Consider a solid ring R. A simplicial set X ∈ S is called R-complete if the map29

iX : X → R∞X is a weak equivalence.30

Theorem 2.3. ([BK72, III 5.4] or [BK71, 4.2]). Consider a solid ring R. Every R-nilpotent space X ∈ Sc• is R-complete.31

We define the connected components of a simplicial set as follows (in some literature the definition is slightly
different, see [GJ09]). Let vα ∈ X0, define Xα as the smallest subcomplex of X such that its zero skeleton consists

of vertices w with the property w ∼ vα in π0|X|. One can see that π0(X) = colim( X1

d1 //

d0

// X0 ). This definition

gives us for every simplicial set X a decomposition (see [Lur19, Subsection 00G5] where this decomposition appears
as Proposition 1.1.6.13 Tag 00GJ)

X ∼=
⊔

vα∈π0X

Xα =:
⊔
α

Xα

Therefore, using [BK72, I.7.1-7.5] we get:32

Proposition 2.4. Let be X any space such that its connected components are nilpotent or Z-complete. Then X is Z-complete.33

We immediately obtain the following corollary:34

Corollary 2.5. Any H-group is Z-complete. (This is true both in the category of simplicial sets and in the category of35

topological spaces.)36

Proof. Indeed, if R = Z, X ∈ Sc• is Z-nilpotent if it is nilpotent and if X ∈ Sc• is simple then it is nilpotent, see [MP12,37

page 49] and [Spa95, page 384] for the definition of a simple space. Moreover, any path connected H-space is simple38

([Spa95, Theorem 9 page 384]) and all the path connected components of every H-group are homotopy equivalent39

([Hat02, page 291], [Dug66, page 387]). Therefore Proposition 2.4 allows us to conclude.40

We also have the following proposition of independent interest which is proved in [BK72, II.2.7] (see also [GS99]):41

Proposition 2.6. Given a solid ring R, every simplicial R-module is R-complete.42
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We shall use now the notion of localisation with respect to homology. We are interested in hZ∗ -localisations, i.e. into1

localisation with respect to integral homology, see [Bou75] or [GJ09, Chapter X]. For S , the hZ∗ -local model structure2

will be the one where an object is fibrant if and only if it is a fibrant simplical set Y which is hZ∗ -local ([GJ09, X3

Corollary 3.3]), i.e. for every map of simplicial sets f : X → Z such that H∗(f,Z) is an isomorphism, then the4

induced map MapS(Z, Y )→MapS(X,Y ) is a weak equivalence. We start with the following:5

Lemma 2.7. Let X be a simplicial set. Then Z∞X is hZ∗ -local.6

This is proved in [GJ09, X Remark 3.7]. The following lemma then follows from the properties of the simplicial7

mapping space together with [Hir03, Corollary 9.3.3].8

Lemma 2.8. Any fibrant Z-complete simplicial set X is also hZ∗ -local.9

To make use of the notion of completion in this paper, we will need functors valued in simplicial sets. Suppose I10

is a small category, and consider the category of simplicial presheaves on it, a.k.a. the category of functors Iop → S ,11

denoted sPre(I). We can put several model structures on this category, general references are [BK72], [Jar87], [Jar04],12

[Jar15], [Dug01b].13

• The Bousfield-Kan projective global model structure P ([BK72]) where weak equivalences are sectionwise weak14

equivalences, fibrations are sectionwise fibrations and cofibrations are induced by LLP (Left Lifting Property).15

• The injective Heller global model structure I : as before but in this case the cofibrations are defined sectionwise16

and fibrations by lifting property.17

Both of these model structures are simplicial. We now focus on the P-model structure on sPre(I), unless otherwise18

stated.19

Definition 2.9. Given a small category I , an object X of sPre(I) is called Z-complete if for every i ∈ I , X(i) is a20

Z-complete simplicial set.21

This definition will turn out to be very useful because of the following variation of a theorem by Levine. Given a22

small category I , we say that a morphism f : X → Y in sPre(I) induces H∗(−,Z)-isomorphisms sectionwise if for23

every i ∈ I the map f(i) : X(i)→ Y (i) induces an H∗(−,Z)-isomorphism.24

Theorem 2.10. Given any small category I , assume that Z is a P-fibrant object of sPre(I) such that for every i ∈ I , Z(i) is
a hZ∗ -local simplicial set. Then given a map of P-cofibrant objects f : X → Y inducing H∗(−,Z)-isomorphisms sectionwise,
we have that the map

f∗ : MapsPre(I)(Y,Z)→MapsPre(I)(X,Z)

is a weak equivalence.25

Proof. For every objects i, j of I , since Z(j) is hZ∗ -local, we have that

f∗(i) : MapS(Y (i), Z(j))→MapS(X(i), Z(j))

is a weak equivalence. Hence the result follows from Corollary B.4 of [Lev97].26

We make use of this Theorem thanks to the following lemma:27

Lemma 2.11. Given a Z-complete simplicial presheaf X , there exists a map ϕX : X → XhZ
∗f
which is a sectionwise weak28

equivalence and such that XhZ
∗f

(i) is hZ∗ -local for any i ∈ I .29

Proof. We define XhZ
∗f

by applying sectionwise the Z∞-completion functor. XhZ
∗f

is then sectionwise hZ∗ -local by30

2.7.31

We can now start to exploit the usefulness of Theorem 2.10. We start with the following Proposition:32

Proposition 2.12. For a given small category I , assume X ∈ sPre(I) is P-fibrant and Z-complete. If f : Y → Y ′ is a
map inducing H∗(−,Z)-isomorphisms sectionwise, one has that

HomHo(sPreP(I))(Y
′, X) ∼= HomHo(sPreP(I))(Y,X)

Proof. We can assume that both Y and Y ′ are P-cofibrant after applying the P-cofibrant replacement functor. The33

result then follows from the characterization of HomHo(sPreP(I))(−,−) as π0Map(−,−) (if the first entry is cofibrant34

and the second fibrant) and Theorem 2.10.35
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Consider the case where I = (C, τ) is a Grothendieck site, i.e. a small category C together with the choice of1

a specified Grothendieck topology τ , see [SGA72] or [Jar15] for a discussion in this context. One can put model2

structures on the category sPre(C) such that weak equivalences becomes local weak equivalences, see [Jar15, page 64],3

for example. The most known is the Jardine’s injective local model structure (described in [Jar86] or [Jar15]), denote it4

by Il, where all presheaves are cofibrant. We shall denote this model category by sPreI
l

τ (C). The second one is the5

Blander’s local projective model structure (described for example in [Dug01b] or [Bla01]), denote it by P l. We denote6

this model category by sPreP
l

τ (C). These two structures are homotopy equivalent (see [Dug01b] for an explanation or7

[DHI04] for a full proof) and P l-fibrant objects are also P-fibrant, since P l is obtained from P by Bousfield localising8

at the class of all hypercovers ([DHI04, Corollary 6.3], [Dug01b, Definition 5.4]). We remind that an object is P l-fibrant9

if and only if it is P-fibrant and it satisfies descent as it is explained in [DHI04] or [AHW17]. One then get:10

Corollary 2.13. Suppose we are given a Grothendieck site (C, τ). Let X be a simplicial presheaf which is P l-fibrant and
Z-complete. If f : Y → Y ′ is a map inducing H∗(−,Z)-isomorphisms sectionwise, one has

HomHo(sPrePlτ (C))(Y
′, X) ∼= HomHo(sPrePlτ (C))(Y,X) ∼= HomHo(sPreIlτ (C))(Y,X) ∼= HomHo(sPreIlτ (C))(Y

′, X)

Proof. After applying the P-cofibrant replacement functor, we can also assume that both Y and Y ′ are P-cofibrant.11

In addition, P l-fibrant objects are in particular P-fibrant. So HomHo(sPrePlτ (C))(Y,X) ∼= HomHo(sPrePτ (C))(Y,X) (same12

for Y ′). Then the first isomorphism follows from 2.12 and the last two isomorphisms follow from the fact that the local13

injective and the local projective model structures are Quillen equivalent.14

Remark 2.14. If we Bousfield localise with respect to sectionwise H∗(−,Z)-isomorphisms the projective global model15

structure on sPre(I) (this is possible arguing as in [Jar15, Chapter 7]), then the previous results identify the class of16

P-fibrant and Z-complete diagrams as a full subcategory of fibrant objects in the localised model structure. Moreover,17

localisation with respect to sectionwise H∗(−,Z)-isomorphisms exists for the global injective model structure because18

of [GJ98], therefore we get that I-fibrant diagrams that are levelwise hZ∗ -local simplicial sets are fibrant objects in19

the localised model category. This implies that “ Z-complete fibrant diagrams satisfy hZ∗ -descent" where descent is20

intended as in [Jar15, page 102].21

From now until the end of the section, we will let S to be a Noetherian base scheme. Whenever we will consider
categories of divisorial or separated schemes, we will always assume that S is divisorial or separated, respectively. Let
us consider the small category SchS of schemes of finite type over it and its full subcategory of divisorial schemes
DSchS (see 1.1 and Appendix A). For X ∈ SchS , denote the Waldhausen category of perfect complexes of globally
finite Tor-amplitude ([TT90, 2.2.11]) having quasi-isomorphisms as weak equivalences by ωPerf(X), and denote the
exact category of vector bundles over X by Vect(X). We define Thomason’s and Quillen’s K-theory spaces (see
[TT90, 1.5.2] and [Qui73]) as the simplicial sets

KT (X) := ΩEx∞ωS•Perf(X) KQ(X) := ΩEx∞(QVect(U))

where Ex∞ is the standard fibrant replacement introduced by Kan (see [GJ09, page 182]), S• is Waldhausen’s con-22

struction introduced in [Wal85] and Q denote Quillen’s Q-construction. For divisorial schemes, those two spaces are23

homotopy equivalent via a natural zig-zag map. This is spelt out in [TT90, 3.10] and a proof can be given combin-24

ing [TT90, 1.11.7, 3.8] and [Wal85, 1.9]. The assignment associating to any scheme X its Quillen’s or Thomason’s25

K-theory space K(X) can be made (strictly) functorial using the technique of [FS02, Appendix C.4]. Therefore, this26

gives us simplicial presheaves KQ and KT in sPre(SchS). In addition, there is a local Zariski-weak equivalence27

KQ ' Z × BGL+ as proved in [GS99, Lemma 18] for example. The same result holds true replacing KQ with KT .28

For these reason, in many statements concerning K-theory as an object is some homotopy category of simplicial29

presheaves, we are allowed not to make a difference between KQ and KT . When we will use the symbol K for the30

K-theory simplicial presheaf, we will always refer to Thomason’s K-theory unless otherwise specified. Consider the31

Zariski sites (SchS ,Zar), (DSchS ,Zar) and the Nisnevich site (SchS ,Nis).32

Theorem 2.15. KT , KQ ∈ sPre(SchS) are Z-complete and P-fibrant. KT is also fibrant in sPreP
l

Zar(SchS) and33

sPreP
l

Nis(SchS) while KQ is fibrant in sPreP
l

Zar(DSchS).34

Proof. By their definition, both KT and KQ are presheaves of Kan complexes and they are Z-complete because of 2.535

(sectionwise they are indeed loop spaces). The final sentence comes from the fact that Thomason’s K-theory satisfies36

Zariski and Nisnevich descent ([TT90, 8.1 and 10.8]) and is equivalent to Quillen K-theory for divisorial schemes37

([TT90, 3.10]): these results are enough to verify the explicit fibrancy conditions ([AHW17, 3.1.4 and 3.2.5]) in the38

model categories we are considering because both the Zariski and the Nisnevich topologies are generated by a cd39

structure.40

For any positive natural number n we can define the general and the symplectic linear algebraic groups GLn and
Sp2n. These are smooth over S: for the general linear group it follows from [GD71, I 9.6.4] while for the symplectic
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one this can be proven explicitly when S is a field, see [Wat79], and for the general case one can reduce to fields
because of [DG80, page 289]. We can define the ind-schemes

GL := colim
n∈N

GLn Sp := colim
n∈N

Sp2n

as customary. Taking the classifying spaces of these presheaves (for a detailed account in the context of algebraic
geometry, see [Lev98, pages 357-358]) gives the simplicial presheaves

BGL ∼= colim
n∈N

BGLn BSp ∼= colim
n∈N

BSp2n

Notice that it doesn’t matter if we apply the nerve functor to those presheaves after or before taking the colimits:1

indeed the nerve functor preserves directed colimits since the standard simplices [n] are compact objects in the2

category of small categories. Thus, BGL and BSp are the simplicial presheaves associating to any scheme X ∈ SchS3

the simplicial sets BGL(Γ(X,OX)) and BSp(Γ(X,OX)), respectively. We now let G to be either GL or Sp to simplify4

the notation. Fixed a commutative unital ring R we can apply to BG(R) Quillen’s + construction (references are5

[Wei13], [Sri08], [Ros94]) to get the simplicial set BG(R)+ or the Bousfield-Kan Z∞ completion functor to get the6

simplicial set Z∞(BG(R)). These two simplicial sets are homotopy equivalent because of the following argument due7

to Dror (see [Ger73, 2.16]). Consider the following commutative diagram8

BG(R)
f

//

��

BG(R)+

��

Z∞(BG(R))
Z∞(f)

// Z∞(BG(R)+)

where f is the canonical map given with Quillen’s + construction. Then f induces an isomorphism on integral ho-9

mology so Z∞(f) is a weak equivalence. As BG(R)+ is a connected H-space (this can be also seen as a consequence10

of the general machinery in [Sch17, Appendix A]), Corollary 2.5 applies giving that the right vertical map is a weak11

equivalence, concluding the argument. This also shows that the canonical map iBG(R) : BG(R)→ Z∞(BG(R)) is an12

H∗(−,Z)-isomorphism. As a consequence, we have a simplicial presheaf Z∞BG ∈ sPre(SchS) which is equivalent to13

the one obtained by applying to BG any functorial contruction of the + construction. We shall therefore denote this14

presheaf by BG+.15

In this paper, in addition to the categories SchS and SmS of Noetherian schemes of finite type over S and of smooth16

schemes over S, we shall be interested in other categories of schemes. Indeed, in many situations these two categories17

can be considered to be too large or uninteresting for K-theoretic purposes and additional hypotheses as divisoriality18

or separatedness might be wanted for technical reasons. To the extent of this article, the property of being divisorial19

will be very important, while the hypothesis of being separated can be forgotten. However, because of their mutual20

importance in literature, we think that it’s worthwhile to discuss what happens when we drop or add one of these hy-21

pothesis. Accordingly, we shall focus on the categories SchS , DSchS , SchSepS , SmS , DSmS and SmSep
S as introduced22

in 1.1. We denote the unstable motivic homotopy categories of divisorial and separated smooth schemes over S by23

HDiv(S) and HSep(S), respectively.24

We remark that for any n ∈ N, the schemes GLn and Spn are divisorial, smooth and separated over the chosen base25

S so that GL and Sp are in effect ind-schemes in all the categories of schemes considered.26

27

Proposition 2.16. Let C = (D, τ) be a Grothendieck site where D can be either SchS , DSchS , SchSepS , SmS , DSmS28

or SmSep
S . Let be F a P l-fibrant simplicial presheaf which is Z-complete. Then HomHo(sPreIlτ (C))((BG+)n, F ) ∼=29

HomHo(sPreIlτ (C))(BGn, F ) for any n ∈ N where G can be either GL or Sp.30

Proof. Since F is P l-fibrant we can apply 2.13.31

Recall that the equivalence K ' Z× BGL+ continues to hold even if we consider divisorial, separated or smooth32

schemes. We can now prove the following:33

Proposition 2.17. Let C be either SchS , DSchS , SchSepS , SmS , DSmS or SmSep
S . The map i : BGL→ BGL+ induces an

isomorphism
HomHo(sPreIlZar(C))

((BGL+)n,K) ∼= HomHo(sPreIlZar(C))
(BGLn,K)

for any n ∈ N. As a consequence

HomHo(sPreIlZar(C))
(Kn,K) ∼= HomHo(sPreIlZar(C))

((Z× BGL)n,K)

for any n ∈ N.34

8



Proof. The first statement follows directly from Proposition 2.16 and Theorem 2.15 (notice Z∞ commutes with finite1

products up to homotopy because of [BK72, I 7.3]). The last statement follows from the fact that as simplicial2

presheaves, Z × BGL+ ∼= qn∈ZBGL+ and this coproduct is already an homotopy coproduct for the injective model3

structure because of [Hov99, Example 1.3.11].4

We shall need a few recollections on homotopy limits and colimits. Throughout this paper, we shall stick with5

the definitions and formulas found in [Hir, Chapter 18]: all the model categories we consider in this work are indeed6

simplicial.7

Lemma 2.18. Consider a small category I . Let X• be an object in sPreI(I). Then we have X• ' hocolim
[n]∈∆op

Xn where the8

Xn are seen as constant simplicial diagrams. The same is true if we Bousfield localise sPre
I(I) at some class of morphisms.9

Proof. The argument used to show that a simplicial set is the homotopy colimit of its simplices by considering it as10

a bisimplicial set and then noticing that its realization is equivalent to its diagonal applies even in this case. More11

details to be found in [nLa19].12

For a given category I , we recall that (see [BK72, XII])MapsPre(I)(−,−) takes homotopy colimits in the first variable
to homotopy limits ([Hir03, 9.2.2]), i.e. MapsPre(I)(hocolim

i∈J
Xi, Y ) is weakly equivalent to holim

i∈Jop
MapsPre(I)(Xi, Y ) and

these two simplicial sets are actually isomorphic if one uses the definition of homotopy limits and colimits given in
[Hir03] which we to adopt in our work. See [Hir03, 18.1.10] for the proof of this fact and [Hir03, 18.1.11] for a comparison
with the definition of [BK72]. (Warning: there is a minor error in [BK72]. See the reference just given for a discussion.)
Remember that filtered colimits of simplicial sets are homotopy equivalent to their homotopy colimits via the standard
map. This is true for filtered colimits in any combinatorial model category, because of [Dug01a, Proposition 7.3].
Therefore we get

BGL ∼= colim
n∈N

BGLn ' hocolim
n∈N

BGLn BSp ∼= colim
n∈N

BSpn ' hocolim
n∈N

BSpn

We conclude this section with two very important propositions:13

Proposition 2.19. Let (C, τ) be any Grothendieck site. If F is any I-fibrant simplicial presheaf in sPre(C), J a small
filtered set, (Xj)j∈J a directed family of simplicial objects of C and X ∼= colim

j∈J
Xj ' hocolim

j∈J
Xj in sPre(C), we have

MapsPre(C)(X,F ) ' lim
j∈Jop

holim
i∈∆

F ((Xj)i)

' holim
j∈Jop

holim
i∈∆

F ((Xj)i)

A a consequence, if G is any P-fibrant simplicial presheaf satisfying descent (so that it is P l-fibrant)14

HomHo(sPreIlτ (C))(X,G) ∼= π0 lim
j∈Jop

holim
i∈∆

G((Xj)i)

∼= π0 holim
j∈Jop

holim
i∈∆

G((Xj)i)
(A)

Under the same hypothesis on G, let A be a class of maps s.t. we can perform the left Bousfield localization on sPreP
l

τ (C) and
sPreI

l

τ (C) at it in order to obtain the model categories sPreI
l
A
τ (C) and sPreP

l
A

τ (C). Then if a sectionwise weakly equivalent
Il-fibrant replacement of G is also A-local, one has in addition that

Hom
Ho(sPre

Il
A
τ (C))

(X,G) ∼= HomHo(sPreIlτ (C))(X,G) (B)

Proof. It all boils down to the properties of the simplicial model structure. Indeed

MapsPre(C)(X,F ) ∼= MapsPre(C)(colim
j∈J

Xj , F )

∼= lim
j∈Jop

MapsPre(C)(Xj , F )

' lim
j∈Jop

holim
i∈∆

F ((Xj)i)

As before we used in the first isomorphism the definition of X , in the second the fact that Map takes colimits to limits
and the third weak equivalence comes from the properties of representable presheaves together with Lemma 2.18. The
fact that

MapsPre(C)(X,F ) ' holim
j∈Jop

holim
i∈∆

F ((Xj)i)

9



follows similarly. We turn now to the second assertion. By assumption, there is a sectionwise weak equivalence
d : G→ Gf with Gf Il-fibrant. We can write

HomHo(sPreIlτ (C))(X,G) ∼= HomHo(sPreIlτ (C))(colimj∈J
Xj , G)

∼= HomHo(sPreIlτ (C))(colimj∈J
Xj , Gf )

∼= π0 MapsPre(C)(colim
j∈J

Xj , Gf )

∼= π0 lim
j∈J

holim
i∈∆

Gf ((Xj)i)

∼= π0 lim
j∈J

holim
i∈∆

G((Xj)i)

Where we have used the simplicial model structure on sPreI
l

τ (C) together with the result just proved and the fact1

that d is a sectionwise fibrant replacement (between P-fibrant presheaves). Similarly, we could have replaced the first2

colimit indexed by J with its homotopy colimit. The final statement, given the validity of (A), is true because of3

the characterisation of fibrant objects in the model categories arising as a Bousfield localisation of a model category,4

see [Hir03, Proposition 3.4.1]. Indeed, recall that both the injective local and the projective local model structure are5

proper ([Jar15, Theorem 5.9], [Bla01, Lemma 1.7]).6

Applying Proposition 2.19 to the Grothendieck sites of schemes we are considering leads to the following:7

Proposition 2.20. Let D ⊆ C be one of the following inclusions: SmS ⊆ SchS , DSmS ⊆ DSchS , SmSep
S ⊆ SchSepS ,

DSchS ⊆ SchS , SchSepS ⊆ SchS , DSmS ⊆ SmS or SmSep
S ⊆ SmS . Let J be a small filtered set and let (Xj)j∈J be

a directed family of simplicial objects of D and X := colim
j∈J

Xj ∈ sPre(C). Let G be a P-fibrant simplicial presheaf in

sPre(C) satisfying Zariski descent (so that it is P lZar-fibrant). Denote as res(G) its restriction to sPre(D). Then we have

HomHo(sPreIlZar(C))
(X,G) ∼= HomHo(sPreIlZar(D))

(X, res(G))

If the Nisnevich topology is well defined on D and if res(G) satisfies Nisnevich descent, so that, being P-fibrant, it is both
P lZar and P lNis-fibrant, we have:

HomHo(sPreIlZar(C))
(X,G) ∼= HomHo(sPreIlNis(D))

(X, res(G))

If moreover Gs has a IlNis-fibrant replacement which is also A1-local, denoting as H∗(S) the motivic homotopy category over
D, we have

HomHo(sPreIlNis(D))
(X, res(G)) ∼= HomH∗(S)(X, res(G))

Proof. This is a simple application of the previous Proposition once we notice that for any j ∈ J and any i ∈ ∆, (Xj)i8

is represented by a scheme that, being in D, is also in C. Indeed, the first and the second isomorphisms follows from9

equation (A) and the last isomorphism from equation (B).10

Remark 2.21. In the previous Proposition, the bijection HomHo(sPreIlZar(C))
(X,G) ∼= HomHo(sPreIlZar(D))

(X, res(G)) can

be seen to be induced by the functor

Ho(sPreI
l

Zar(C))→ Ho(sPreI
l

Zar(D))

induced by deriving the restriction functor res : sPre(C)→ sPre(D).
The bijection HomHo(sPreIlZar(C))

(X,G) ∼= HomHo(sPreIlNis(D))
(X, res(G)) can be seen to be induced by the functor

Ho(sPreI
l

Zar(C))→ Ho(sPreI
l

Zar(D))

followed by the localization functor

Ho(sPreI
l

Zar(D))→ Ho(sPreI
l

Nis(D))

and finally HomHo(sPreIlNis(D))
(X, res(G)) ∼= HomH∗(S)(X, res(G)) can be seen to be induced by the localisation

functor
Ho(sPreI

l

Nis(D))→ H∗(S)

Indeed, the only non trivial step to see this can be to convince yourself that the restriction functor res induces a11

bijection π0MapsPre(C)(X,F ) ∼= π0MapsPre(D)(X, res(F )) for any X ∈ D and F ∈ sPre(C), but this follows from the12

Yoneda lemma.13
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3 Unstable operations on K-theory1

In this section we stick to the notation introduced in the previous section and recalled in 1.1. We fix a regular2

Noetherian base scheme S, which we will suppose to be also divisorial or separated every time we consider it as the3

base scheme of a category of divisorial or separated schemes, respectively. We will denote by K Thomason’s K-theory4

simplicial presheaf. We start with:5

Proposition 3.1. Consider D ⊆ C to be one of the following inclusions: SmS ⊆ SchS , DSmS ⊆ DSchS , SmSep
S ⊆ SchSepS .

Denote the motivic homotopy category over D by H∗(S). We have

HomHo(sPreIlZar(C))
((BGL+)n,K) ∼= HomH∗(S)((BGL

+)n,K)

Proof. We have
HomHo(sPreIlZar(C))

((BGL+)n,K) ∼= HomHo(sPreIlZar(C))
((BGL)n,K)

from Proposition 2.17. In addition, the isomorphism

HomHo(sPreIlZar(C))
((BGL)n,K) ∼= HomH∗(S)((BGL)n,K)

can be deduced from Proposition 2.20 noticing that the simplices of the simplicial object involved in the colimit
defining BGL are representable by products of general linear groups. Finally, we get

HomH∗(S)((BGL)n,K) ∼= HomH∗(S)((BGL
+)n,K)

from the fact that BGL+ ∼= BGL in H∗(S). (This was first noticed in [MV99], see [Rio02, Proposition 7.17].)6

We are now ready to prove the following, that should be regarded as the main result in this section.7

Theorem 3.2. Consider D ⊆ C to be one of the following inclusions: SmS ⊆ SchS , DSmS ⊆ DSchS , SmSep
S ⊆ SchSepS .

Denote the motivic homotopy category over D by H∗(S). For any natural number n, we have that

HomHo(sPreIlZar(C))
(Kn,K) ∼= HomH∗(S)(K

n,K)

Proof. We already observed that there is a local Zariski (hence Nisnevich) weak equivalenceK ' Z×BGL+. Moreover,8

K ' Z×BGL+ ∼= qn∈ZBGL+ in the homotopy categories considered and disjoint unions (finite products) of cofibrant9

(fibrant) objects are still coproducts (or finite products) in these homotopy categories so that Hom takes coproducts to10

products. Therefore, the result follows from Proposition 3.1.11

After this result was proved, the author discovered that part of the previous statement was essentially implied by12

results contained in unpublished 2013 notes by Cisinski, who sketches a different argument to reach essentially the13

same conclusion. However our method is different and in some extent, “more explicit". As a corollary, we mention14

the following result, interesting on its own. Recall that we have a functor Gr−,− : N2 → SchS associating to any15

(n, d) ∈ N2 the Grasmmannians Grn,d classifying locally free quotients of rank d of the trivial bundle of rank n + d16

(see [GD71, I 9.7.3] or [GW10, page 211], notice the different indices) and defined via the canonical closed embeddings17

on the maps (N2 is a poset in a natural way). The infinite Grassmannian Gr is defined as customary as the ind-scheme18

resulting as the colimit of the previous functor (in the category of presheaves).19

Corollary 3.3. Consider D ⊆ C to be one of the following inclusions: SmS ⊆ SchS , DSmS ⊆ DSchS , SmSep
S ⊆ SchSepS .20

Denote the motivic homotopy category over D by H∗(S). For any natural number n, HomHo(sPreIlZar(C))
((Z × Gr)n,K) ∼=21

HomH∗(S)((Z× Gr)n,K) ∼= HomHo(sPreIlZar(C))
(Kn,K)22

Proof. Under our assumptions on S, we have that K ∼= Z × Gr in H∗(S) because of [MV99, 4.3.7], so that, being23

a colimit of representable smooth schemes, as a direct application of 2.20, we get the first isomorphism. The last24

isomorphism now follows from Theorem 3.2.25

Remark 3.4. After work of Cisinski and Khan ([Kha16, Proposition 2.4.6]), it seems that under suitable assumptions26

on S, the unstable motivic homotopy category H(S) we considered so far is equivalent to the homotopy category of27

the ∞-category called spectral motivic homotopy category as defined in [Kha16, Definition 2.4.1]. This, together with28

our and Riou’s result then provide a way to define and study operations and algebraic structures for a certain class of29

spectral schemes, although we will not address this point in this paper.30

We summarise in a corollary some consequences of the previous theorems and propositions for convenience of the31

reader.32
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Corollary 3.5. For any n ∈ N, all the arrows in the following commutative diagram are bijective:1

HomHo(sPreIlZar(DSchS))
(Kn,K)

��

HomHo(sPreIlZar(SchS))
(Kn,K)

��

//oo HomHo(sPreIlZar(SchSepS ))
(Kn,K)

��

HomHDiv(S)(K
n,K) HomH(S)(K

n,K) //oo HomHSep(S)(K
n,K)

Proof. To start with, because of Propositions 2.17 and 2.20, we have

HomHo(sPreIlZar(SchS))
((BGL+)n,K) ∼= HomHo(sPreIlZar(DSchS))

((BGL+)n,K)

As a consequence,
HomHo(sPreIlZar(SchS))

(Kn,K) ∼= HomHo(sPreIlZar(DSchS))
(Kn,K)

follows using the fact that K ' Z × BGL+ ∼= qn∈ZBGL+ in the homotopy categories considered arguing as in the
proof of 3.2 and we can use it together with 3.2 to prove that

HomHDiv(S)(K
n,K) ∼= HomH(S)(K

n,K)

The case of separated schemes follows similarly. We conclude using Remark 2.21.2

Remark 3.6. Denoting as Ωif the right derived functor of Ωi in the simplicial model categories we considered, we
could have replacedK with ΩifK in the second variable of all the Hom sets considered for any i ∈ N without changing
the final results. Indeed we can still apply 2.16 and 2.20. In addition, since a product of fibrant simplicial presheaves
is a product in the homotopy categories considered, this implies that for any n,m, i ∈ N we have

HomHo(sPreIlZar(SchS))
(Kn,ΩifK

m) ∼= HomHo(sPreIlZar(DSchS))
(Kn,ΩifK

m),

HomHo(sPreIlZar(DSchS))
(Kn,ΩifK

m) ∼= HomHDiv(S)(K
n,ΩifK

m)

and
HomHDiv(S)(K

n,ΩifK
m) ∼= HomH(S)(K

n,ΩifK
m)

The same applies considering separated schemes instead of divisorial ones.3

3.1 Symplectic K-theory4

In this section we will consider a Noetherian divisorial base scheme S where 1
2 ∈ Γ(S,OS), although recent progresses5

indicate that this might be unecessary. We will only consider the category DSchS of divisorial schemes of finite type6

over a fixed base scheme S. Indeed, the descent results we need for Hermitian K-theory proved in [Sch17] fall7

under this assumption and although it seems to be folklore that they can be extended to perfect complexes over8

general Noetherian schemes, we refrain here from using unpublished results. As in the case of K-theory, we can9

define a simplicial presheaf over DSchS representing n-shifted hermitian K-theory. Denote it by GW[n], GW[2]
10

being symplectic K-theory. Roughly speaking one start from a presheaf of dg categories with weak equivalences and11

dualities and then one applies the construction made explicit in [Sch17, 9.1]. What is relevant to our discussion is that12

we end up with a simplicial presheaf which is P-fibrant and Z-complete since it is an H-group for any n as remarked13

for example in [Sch10, 2.7 Remark 2]. Moreover, this presheaf also satisfies Zariski and Nisnevich descent and it is14

A1-homotopy invariant on regular schemes. This can be found in [Sch17, Theorems 9.7, 9.8 and 9.9], notice that15

the assumption of separatedness is used in Theorem 9.8 of op. cit. only to make [Bal01, Theorem 3.4] to work, but16

the proof goes through as well replacing separatedness with the weaker assumption of having affine diagonal. So, in17

particular, GW[n] is P l-Zariski fibrant. We then have because of 2.16 the following:18

Proposition 3.7. We have that

HomHo(sPreIlZar(DSchS))
((BSp+)m,GW[n]) ∼= HomHo(sPreIlZar(DSchS))

(BSpm,GW[n])

for any m ∈ N, n ∈ Z. In particular this holds for n = 2.19

From now on we shall assume that our base scheme S is regular in addition to being Noetherian and divisorial.20

We consider the simplicial presheaf GW[2] =: KSp over DSchS . We already recalled its descent properties and there21

is a local weak equivalence Z × BSp+ ' KSp in sPreI
l

Zar(DSchS) (argue as in the case of K-theory using [Sch17,22

Theorem A.1 and Corollary A.2]). in addition, note that that in the paper [ST15], it is shown that KSp ' Z× BSp in23

HDiv(S) and we do not need to consider the étale classifying space in this context because of the equivalence between24

symplectic vector bundles and fppf Sp2n-torsors (the proof of this fact is contained in [AHW18, page 1205], see also25

[PW10a, page 25]). Then we can repeat the arguments of the previous section used for K-theory and get:26

12



Theorem 3.8. We have

HomHo(sPreIlZar(DSchS))
(BSp+,KSp) ∼= HomHDiv(S)(BSp,KSp)

Moreover for any natural number n it holds

HomHo(sPreIlZar(DSchS))
(KSpn,KSp) ∼= HomHo(sPreIlNis(DSmS))

((Z× BSp)n,KSp) ∼= HomHDiv(S)(KSpn,KSp)

If S is in addition separated (over Spec(Z)) then we also have HomHSep(S)(KSpn,KSp) ∼= HomHDiv(S)(KSpn,KSp)1

Proof. The proof follows the lines of the proofs of 3.2 and 3.5 using 2.20 and 3.7.2

Remark 3.9. Similar considerations as in Remark 3.6 apply.3

4 Unstable operations on K-theory depend only on π04

In this section, we make the blanket assumption that all our schemes are Noetherian and divisorial unless otherwise5

stated. In addition, our base scheme S will be always assumed to be regular. We denote by K Thomason’s K-theory6

simplicial presheaf. The starting point of this section is the following theorem of Riou ([Rio06, III.31], [Rio10, 1.1.4]):7

Theorem 4.1. (Riou, [Rio10, Theorem 1.1.4]). For any n ∈ N one has the following isomorphism

HomHDiv(S)(K
n,K) ∼= HomPre(DSmS)(K0(−)n,K0(−))

Moreover, for n = 1, this becomes

HomHDiv(S)(K,K) ∼=
∏
i∈Z

K0(S)[[c1, ..., cn, ...]]

with c1, ... the usual Chern classes. Finally, the pointed analogue of the first isomorphism holds, i.e. we have

HomHDiv
• (S)(K

n,K) ∼= HomPre(DSmS)•(K0(−)n,K0(−))

Remark 4.2. The former theorem in both [Rio10] and [Rio06] assumes our schemes to be separated as well, but,8

replacing separatedness with divisoriality, Riou’s argument still goes through. The structure of Riou’s argument has9

been outlined in Appendix B for the convenience of the reader10

Remark 4.3. From now on we will always suppose to point K ∈ HDiv(S) (Ho(sPreZar(DSchS))) and K0 ∈11

Pre(DSchS) with the same element of K0(S) whenever we consider these objects as pointed. Unless otherwise12

stated, from now on the default choice will be the one of 0 ∈ K0(S).13

Our aim is to extend as much as we can the result of Riou to divisorial (possibly non regular) schemes. We get for14

any n ∈ N the following commutative diagram, where res is induced by the inclusion DSmS ⊆ DSchS15

HomHo(sPreZar(DSchS))(K
n,K) ∼=

//

��

π0

��

HomHDiv(S)(K
n,K)

π0∼=
��

HomPre(DSchS)(K0(−)n,K0(−))
res // // HomPre(DSmS)(K0(−)n,K0(−))

(1)

The existence of the commutative diagram is obtained using 2.21 and Theorem 3.2 gives that the top horizontal arrow16

is an isomorphism, while the Theorem of Riou 4.1 gives that the right vertical map is an isomorphism. Chasing the17

diagram we then get that the left vertical and bottom horizontal maps are injective and surjective, respectively. To18

show that all these maps are isomorphisms, it suffices then to show that res is injective. In order to do this, we shall19

need some generalities about the property (P) that we now introduce.20

Definition 4.4 (Property (P)). Consider a small category C and consider a full subcategory A ⊆ C. We say that the21

presheaf F ∈ Pre(C) satisfies the property (P) with respect to A ⊆ C if for every X ∈ Ob(C) and for every a ∈ F (X)22

there exist YX,a ∈ Ob(A), ϕ : X → YX,a and b ∈ F (YX,a) so that ϕ∗F (b) := F (ϕ)(b) = a.23

The previous definition leads to a simple proof of the following key Proposition:24

Proposition 4.5. Let A ⊆ C be a full subcategory of a given small category C and Res : Pre(C)→ Pre(A) the restriction25

functor. Consider the map res : HomPre(C)(F,G) → HomPre(A)(F,G) induced by Res for two fixed F,G ∈ Pre(C) and26

suppose that F satisfies the property (P) with respect to A ⊆ C. Then res is injective.27
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Proof. Suppose we have two natural transformations F
f
//

g
// G such that res(f) = res(g). To show that f = g it

suffices to show that for any X ∈ Ob(C),

fX = gX : F (X) //
// G(X)

In order to do that, let us consider a ∈ F (X), YX,a ∈ A, b ∈ F (YX,a) and ϕ : X → YX,a as in the statement. Then
we have

fX(a) = fX(ϕ∗F (b)) = ϕ∗G(fYX,a(b)) = ϕ∗G(gYX,a(b)) = gX(ϕ∗F (b)) = gX(a)

Iterating this for any a ∈ F (X) gives the result.1

As a corollary, we get our main result:2

Theorem 4.6. Assume that, for a given n ∈ N, K0(−)n satisfies the property (P) with respect to DSmS ⊆ DSchS . Then3

all the arrows in diagram (1) are bijections. The same is true if we replace the categories in diagram (1) with their pointed4

versions Ho(sPreZar(DSchS)•), Pre(DSchS)•, HDiv
• (S) and Pre(DSmS)•.5

If S is quasi-projective scheme over a Noetherian affine scheme R, we will prove in Proposition 6.2 that for all6

n ∈ N, K0(−)n satisfies the property (P) with respect to DSmS ⊆ DSchS .7

proof of Theorem 4.6. If K0(−)n satisfies the property (P) with respect to DSmS ⊆ DSchS , then all the arrows in8

diagram (1) are bijections as consequence of Proposition 4.5. The statement about the pointed case follows from9

Diagram (1) by diagram chase using Lemma B.9.10

Corollary 4.7. Assume that, for a given n ∈ N, K0(−)n satisfies the property (P) with respect to DSmS ⊆ DSchS . Then
the following maps are bijective:

HomPre(DSchS)((Z× Gr)n,K0)
res // HomPre(DSmS)((Z× Gr)n,K0) HomPre(DSchS)(K0(−)n,K0(−))

τ∗(Z×Gr)n◦res
oo

where res is induced by the restriction functor res : Pre(DSchS)→ Pre(DSmS) and τ(Z×Gr)n is defined in B.1.11

Proof. The fact that the first arrow is a bijection can be proved using Yoneda lemma because (Z × Gr)n is a colimit12

of representables (in both Pre(DSchS) and Pre(DSmS)). The second arrow is a bijection because of the previous13

Theorem and Riou’s theorem B.5 (that we can use because of Proposition B.8).14

Remark 4.8. As in Remark 3.6, we could have replaced K with ΩifK and K0 with Ki in the second variable of all
the Hom sets considered for any i ∈ N without changing the final result, using the [Rio06, Theorem III.32] which is
proved using the machinery recalled in Appendix B. This implies that for any n,m, i ∈ N we have

HomHo(sPreZar(DSchS))(K
n,ΩifK

m) ∼= HomPre(DSchS)(K0(−)n,Ki(−)m) ∼= HomHDiv(S)(K
n,ΩifK)

4.1 Restriction to affine schemes15

In this sections we will see that Theorem 4.6 only relies on what happens to affine schemes, in a sense we will make16

precise below. We fix a Noetherian regular divisorial base scheme S. Recall that we denote the full subcategory of17

DSmS generated by the schemes of DSmS which are affine (over Spec(Z)) by SmAffS ⊆ and byHaff (S) the homotopy18

category of the model category sPre(SmAffS) having model structure determined by considering the injective local19

model structure relative to the affine Nisnevich topology ([AHW17, Example 2.1.2.5]) on it and then by inverting A1-20

weak equivalences (see [AHW17]). We have the following adjoint functors arising from the inclusion SmAffS ⊂ SmS21

(see [SGA72, I Proposition 5.1])22

i#,s, i∗,s : sPre(SmAffS) // sPre(DSmS) : i∗s
oo

where i#,s and i∗,s are respectively left and right adjoint of i∗s . Recall that a weak Quillen adjunction is a pair of adjoint23

functors such that the left (right) adjoint is only required to preserve cofibrant (fibrant) objects and weak equivalences24

between them (indeed, this is enough to derive the adjunction). If we give to both categories the Nisnevich injective25

local model structure and we invert A1-weak equivalences then these adjunctions becomes Quillen adjunctions (weak26

in the case of i#,s a i∗s ) and we can derive them. One notices that i∗s preserves weak equivalences so we do not need27

to derive it to get a functor i∗s : H(S)→ Haff (S). It then makes sense to study the following commutative diagram,28

for any n ∈ N29

HomHDiv(S)(K
n,K) //

π0∼=
��

HomHaff (S)(K
n,K)

π0

��

HomPre(DSmS)(K
n
0 ,K0)

i∗
// HomPre(SmAffS)(K

n
0 ,K0)

(2)

We have30
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Proposition 4.9. The arrow HomHDiv(S)(K,K)→ HomHaff (S)(K,K) is an isomorphism for any n ∈ N.1

Proof. We notice that the functor i∗s , because of [AHW17, Theorem 3.3.2 and Lemma 5.1.2] and the fact that K is2

A1-invariant over regular schemes, induces an equivalence on IlNis-fibrant simplicial presheaves so that we can see3

directly that the arrow HomHDiv(S)(K
n,K) → HomHaff (S)(K

n,K) is an isomorphism. Strictly speaking, in op.cit.4

the authors do not assume their schemes to be divisorial but we can repeat their argument verbatim even in this case5

or use 3.2.6

We then get7

Theorem 4.10. For any n ∈ N, all the arrows in diagram (2) are bijections.8

Proof. One uses Proposition 4.9 together with Corollary B.12. Notice that we can use B.12 because K0 is A1-invariant9

over regular schemes so that using in addition Nisnevich descent we get that it is also T -invariant2.10

Let AffS ⊆ DSchS the full subcategory of DSchS generated by the schemes of DSchS which are affine (over11

Spec(Z)). From now on we assume that S is an affine regular scheme R since we need to use the fact that BGL can be12

seen as a homotopy colimit of affine (in the absolute sense) schemes. We see AffS as a site by considering the Zariski13

affine topology. Even in this case as in the case of the smooth affine schemes we have a functor Ho(sPreZar(DSchS))→14

Ho(sPreZar(AffS)) arising from the adjunctions15

i#,s, i∗,s : sPre(AffS) // sPre(DSchS) : i∗s
oo

By what we know so far, for any n ∈ N we have the following commutative cube16

HomHo(sPreZar(AffS))(K
n,K)

��

π0

��

ϕ

∼=
// HomHaff (S)(K

n,K)

∼= π0

��

HomHo(sPreZar(DSchS))(K
n,K)

∼= //

∼= π0

��

∼=
22

HomHDiv(S)(K
n,K)

∼= π0

��

∼=
22

HomPre(AffS)(K
n
0 ,K0) // // HomPre(SmAffS)(K

n
0 ,K0)

HomPre(DSchS)(K
n
0 ,K0) ∼=

//
22

22

HomPre(DSmS)(K
n
0 ,K0)

∼=
22

(3)
The only thing stated in the diagram that we haven’t proven so far is that all the arrows of the upper square are17

isomorphisms but this is easily solved by the following lemma18

Lemma 4.11. For any n ∈ N the arrow ϕ : HomHo(sPreZar(AffS))(K
n,K)→ HomHaff (S)(K

n,K) is an isomorphism.19

Proof. The proof follows arguing as Theorem 3.2. Indeed, 2.16 can be seen to apply also to affine schemes and we can20

still use 2.19 because all the GLn,R are affine schemes.21

We conclude this section with the following theorem, showing that unstable operations on divisorial schemes are22

uniquely determined by their behaviour on the K0 of affine schemes.23

Theorem 4.12. For any n ∈ N the restriction map

HomPre(AffS)(K
n
0 ,K0)→ HomPre(SmAffS)(K

n
0 ,K0)

is injective. As a consequence, all the arrows in diagram (3) are bijections. This is also true replacing the categories involved24

with their pointed version as in 4.6.25

Proof. The first assertion is a direct application of Proposition 4.5 since Kn
0 satisfies the property (P) with respect to26

SmAffS ⊆ AffS because of Proposition 6.2. A diagram chase gives then that all the arrows in diagram (3) are bijections27

and the statement about the pointed situation now follows from B.10.28

Remark 4.13. Similar considerations to Remark 4.8 apply.29

2i.e. invariant under vector bundle torsors, see the end of Appendix B for this notion.
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4.2 Separated Schemes1

We shall now study the behaviour of the unstable operations on K-theory over separated schemes, because of the2

importance of such schemes in literature. In this section we will then suppose we have a base scheme S which3

is regular, Noetherian and separated (over Spec(Z)). Recall that because of A.3 we have a fully faithful inclusion4

SmSep
S ⊆ DSmS . In the context of separated schemes, we cannot use some property (P) relative to the embedding5

of the category separated schemes into some larger ambient category to study the behaviour of the operations on K-6

theory as in the case of divisorial schemes. Indeed, it not (yet) known if we can embed a separated divisorial scheme7

into a separated smooth one using arguments similar to the ones contained in [Zan20]: handling the homogeneous8

spectra of [BS03] usually leads only to schemes with affine diagonal, the most natural separation axiom for divisorial9

schemes. However, we can still prove the following10

Proposition 4.14. Given two presheaves F,G ∈ Pre(DSchS), if G is T -invariant3 the restriction map

HomPre(DSmS)(F,G)→ HomPre(SmSep
S )(F,G)

is injective. As a consequence, if F satisfies the property (P) with respect to DSmS ⊆ DSchS , the restriction map

res : HomPre(DSchS)(F,G)→ HomPre(SmSep
S )(F,G)

is injective.11

Proof. For every X ∈ DSmS we can use the Jouanolou’s trick to find an affine vector bundle torsor π : T → X .12

Here T will be affine in the absolute sense, so separated (in the absolute sense), divisorial, smooth over X and as a13

consequence over S: hence it lies in SmSep
S . Moreover because of our hypothesis, π induces an isomorphism on G so14

we get the following commutative diagram:15

F (T )
fT //

gT
// G(T )

F (X)
fX //

gX
//

π∗

OO

G(X)

π∗∼=

OO

and since fT = gT by assumption, we get fX = gX . This shows the first assertion in the statement. The last assertion16

follows from Proposition 4.5 noticing that res factors through HomPre(DSmS)(F,G)17

Putting everything together we obtain the following theorem:18

Theorem 4.15. Suppose that for some n ∈ N, Kn
0 satisfies the property (P) with respect to DSmS ⊆ DSchS . For example,19

this holds if S is affine. Then all the arrows in the following commutative diagram are bijections20

HomHo(sPreZar(DSchS))(K
n,K) ∼=

//

��

π0

��

HomHSep(S)(K
n,K)

π0∼=
��

HomPre(DSchS)(K0(−)n,K0(−))
res // // HomPre(SmSep

S )(K0(−)n,K0(−))

This holds true even if we replace the categories we are considering with their pointed versions.21

Proof. The right vertical map is a bijection because of [Rio10, Theorem 1.1.4]. Indeed in op. cit. Riou considers22

separated schemes, although as we noticed in 4.1 and 4.2 his arguments go through also in the case of divisorial23

schemes. The upper horizontal one is bijective because of Corollary 3.5. The others maps have the properties24

depicted in the diagram because of diagram chase. The argument is now concluded by Proposition 4.14, and the25

assertion concerning the pointed situation follows using B.9.26

5 Unstable operations on symplectic K-theory27

In this section we introduce a common ground useful to study both symmetric and symplectic K-theory. The material28

here is basically contained in [ST15], although our presentation deviates from their. Indeed, they do only consider29

symmetric forms explicitly, but the generalization is straightforward as they notice. Let F be a quasi-coherent sheaf30

on a scheme X . For ε = ±1, an ε-symmetric bilinear form on F is a map ϕ : F ⊗OX F → OX of OX -modules such31

3i.e. invariant under vector bundle torsors, see the end of Appendix B for this notion.
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that ϕ ◦ τ = εϕ where τ : F ⊗OX G ∼= G ⊗OX F is the twisting map. If 2 ∈ Γ(S,OS)∗, −1 (skew-)symmetric forms1

(F , ϕ) are called symplectic and they are uniquely determined by ϕ ◦ ∆ = 0 where ∆ : F → F ⊗ F x 7→ x ⊗ x2

is the diagonal map. A form ϕ is called non-degenerate and (F , ϕ) is called an ε-inner product space if F is a vector3

bundle on X and the adjoint morphism ϕ̂ : F → F∗ = HomOX (F ,OX) : s 7→ ϕ(− ⊗ s) is an isomorphism. The4

form ϕ is ε-symmetric if and only if ϕ̂ = εϕ̂∗canF where canF : F
∼=−→ F∗∗ is the canonical isomorphism. One5

can see that if g : G → F is a map of OX -modules, we can define the restriction ϕ|G of ϕ to G using adjoint map6

ϕ̂|G = g∗ ◦ ϕ̂ ◦ g : G g−→ F ϕ̂−→ F∗ g∗−→ G∗. If p : X → S is a morphism of schemes and F is a sheaf on S, we denote7

FX := p∗F . Fix a Noetherian base scheme S with 2 ∈ Γ(S,OS)∗. We assume that this condition holds until the end8

of this section.9

Definition 5.1. For an ε-symmetric form V = (F , ϕ) with F a quasi-coherent sheaf on S we define the ε-bilinear
grassmannian of non degenerate locally free subspaces of V to be the presheaf

GrBS(V ) :(SchS)op → Sets

(p : X → S) 7→ {E ⊂ FX | E loc.free of finite rank s.t. ϕ|E is non degenerate}

on the objects, and in the case of morphisms f : X → Y in SchS , GrBS(V )(Y ) → GrBS(V )(X) is induced by f∗.
We define the ε-bilinear grassmannian of non degenerate locally free of rank n subspaces of V to as the subpresheaf
of GrBS(V ) of the following form

GrBn,S(V ) :(SchS)op → Sets

(p : X → S) 7→ {E ⊂ FX | E loc.free of rank n s.t. ϕ|E is non degenerate}

We then have the following result, that can be proven following verbatim [ST15, Lemma 2.2]:10

Theorem 5.2. Let V = (F , ϕ) be an ε-symmetric inner product space over a Noetherian scheme S. Then for every n we11

have that GrBn,S(V ) is representable by a scheme which is smooth divisorial and affine over S (notice for ε = −1 n has12

to be even), so in particular it is a sheaf. This is an open subscheme of the Grassmannian Grn,S(F) of rank n subbundles13

of F . We explicitly spell out the universal property of this scheme. For every S-scheme X and every rank n ε-inner product14

space B = (B, α) which comes as a restriction along a mono B ↪→ FX there exists a unique map f : X → GrBn,S(V )15

over S such that f∗(T ⊂ FGrn,S(F)) ∼= B ⊂ FX via the canonical isomorphism FX ∼= f∗FGrn,S(F) and B = f∗T where16

T = (T , ϕ|T ) is the ε-inner product space induced by VGrBn,S(V ) on T . Here T is the restriction to GrBn,S(V ) of the17

tautological rank n vector bundle on Grn,S(F).18

There are certain particular forms that play an important role in the theory19

Definition 5.3. Suppose V = (F , ϕ) is an ε-symmetric form on a vector bundle over S. We then define the split
metabolic space M(F , ϕ) or M(V ) as

M(V ) = M(F , ϕ) =
(
F ⊕ F∗,

(
ϕ̂ 1
εcan 0

)
: F ⊕ F ∗ → F ∗ ⊕ F ∗∗

)
where can is the canonical isomorphism F

∼=−→ F∗∗. For a locally free sheaf F we define the hyperbolic space Hε(F)
as M(F , 0), i.e.

Hε(F) = (F ⊕ F∗, ( 0 1
εcan 0 ))

This is an ε-inner product space. Notice Hε(OX) for a scheme X are the hyperbolic spaces considered in the next20

sections.21

We recall the following well known lemma (use [Knu91, page 19]):22

Lemma 5.4. Let X be any quasi-compact scheme such that 1
2 ∈ Γ(X,OX). Then every split metabolic space of the form23

M(F , ϕ) is isomorphic to Hε(F).24

The following is then immediate:25

Corollary 5.5. Let be X any quasi-compact scheme such that 1
2 ∈ Γ(X,OX). Then for every rank n ε-inner product space26

V = (F , ϕ) we have a morphism f : V ↪→ M(V ) ∼= Hε(F) =: H(V ) given by the inclusion (F , ϕ) ↪→ M(F , ϕ) : x 7→27

( x0 ).28

From now until the end of the section, we shall make the blanket assumption that unless stated otherwise, we29

fix a regular Noetherian divisorial base scheme S so that 1
2 ∈ Γ(S,OS), and any scheme we will consider will be30

always assumed to be in DSchS . Let F be a quasi-coherent sheaf on a scheme X . A symmetric bilinear form is an 1-31

symmetric bilinear form on F as defined before. Same terminology for symmetric inner product spaces. Analogously, a32

symplectic bilinear form is a -1-symmetric bilinear form and we use the same terminology for symplectic inner product33

spaces. We can then define orthogonal and symplectic (or quaternionic) grassmannians following [ST15] and [PW10a],34

[PW10b]. We shall introduce the notation HX := H1(OX) for the so called hyperbolic plane and H ∼= (H−1(OX)) for35

the quaternionic plane. Their n-fold sums, for n ∈ N, will be denoted by Hn
X := H⊥nX and by Hn := H⊥n, respectively.36

17



Definition 5.6. ([ST15, Definition 2.3], [PW10b]). For n, d ∈ N we define the orthogonal grassmannians as GrOd,n :=
GrBd(H

n+d
S ) and the infinite orthogonal grassmannian over S as the ind-scheme

GrO := colim
n∈N

GrB2n(Hn
S ⊥ Hn

S ) ∼= colim
(d,n)∈N2

GrB2d(H
d
S ⊥ Hn

S )

We define the infinite symplectic or quaternionic grassmannian as

GrH := colim
d,n

GrH(d,n)∈N2

where we have denoted the ordinary quaternionic grassmannians by GrHd,n := GrB2d(Hn+d).1

The fact that for any (d, n) ∈ N2, GrOd,n and GrHd,n are indeed smooth schemes follows from 5.2. Moreover2

([PW10a, page 22]) there are closed immersions GrHd,n ↪→ GrHd,n+1 and GrHd,n ↪→ GrHd+1,n classified by the3

inclusions Td,n ⊕ 0 ⊂ Hn+d ⊕H and H⊕ Td,n ⊂ H⊕Hn+d where Td,n is the restriction of the universal symplectic4

bundle on GrHd,n induced by Hn+d
S on the restriction of the universal rank 2d bundle on Gr2d(O2(n+d)

S ) and the5

same is true for the orthogonal grassmannians, so that we can give precise meaning to the colimits appearing in the6

previous Definition. As for K-theory, we can form a system KSp• indexed by N having KSpn := t2n+1GrHn,n with7

colimit Z×GrH. The same holds true for symmetric hermitian K-theory. This way we have that both Z×GrH and8

Z×GrO can be seen as filtered colimits of smooth (over S) schemes having a cofinal sequence so that we can try to9

apply Theorem B.5. First of all we remind that these ind-schemes represent Hermitian K-theory:10

Theorem 5.7. ([ST15, Theorem 1.1], [PW10a] or [ST15, Theorem 8.2.]). The Hermitian K-theory GW (say GW[0] of11

[Sch17, Definition 9.1]) as an object of HDiv(S) is representable by Z × GrO so that π0(Z × GrO) ∼= GW0(−) as12

objects of Pre(DSmS). Analogously, for the Symplectic K-theory KSp (i.e. GW[2] in the terminology of [Sch17]) we have13

Z×GrH ' KSp in HDiv(S) so that π0(Z×GrH) ∼= KSp0(−) as objects of Pre(DSmS).14

We can now prove that Z × GrH and Z × GrO satisfy the property (ii) (Definition B.2). This is an analogue of15

Proposition B.8.16

Proposition 5.8. The presheaves Z × GrO and Z × GrH as objects of Pre(DSmS) satisfy the property (ii) relative to17

SmAffS .18

Proof. The proof follows mutatis mutandis the one found in [Rio06, Proposition III.14] once we have the Hermitian19

analogue of [Rio06, Assertion III.4] coming from the representability results contained in 5.7. For symmetric Hermitian20

K-theory this property is spelt out in [Zib11b, page 38] or in [Zib11a, page 477]. In the symplectic case, it is spelt out21

in [Ana15, Theorem 6.3].22

Therefore, as a direct application of B.5 we have:23

Proposition 5.9. Then for any n ∈ N the map

π0 : HomHDiv(S)(GWn,GW)→ HomPre(DSmS)(GWn
0 ,GW0)

is surjective.24

Unfortunately, we were not capable to go on proving that we indeed have a bijection. This is still an open question.25

For KSp, however, we can say more:26

Theorem 5.10. Then for every natural number n one has the following isomorphisms

HomHDiv(S)(KSp,KSp) ∼= HomHDiv(S)(Z×GrH,Z×GrH) ∼= HomPre(DSmS)(KSp0(−),KSp0(−)) ∼= KSp0(S)[[b1, b2, ...]]

HomHDiv(S)(KSpn,KSp) ∼= HomHDiv(S)((Z×GrH)n,Z×GrH) ∼= HomPre(DSmS)(KSpn0 (−),KSp0(−))

HomHDiv
• (S)(KSpn,KSp) ∼= HomHDiv

• (S)((Z×GrH)n,Z×GrH) ∼= HomPre(DSmS)•(KSpn0 (−),KSp0(−))

the bi being the Borel classes described in [PW10b].27

Proof. For n = 1, by B.5 we have to show that

R1 lim←−
m∈N

KSp1(KSpm) = 0,

i.e that KSp satisfies the property (K) (B.3) with respect to the system KSp• which follows as in the case of K-theory28

using the explicit calculations of [PW10b, Theorem 11.4] (see indeed [PW10a, Theorems 9.4, 9.5]) to show that the29

involved tower satisfies the Mittag-Leffler property. The case with n factors follows by considering the system KSpn• .30

Indeed the computations of [PW10a, Theorems 9.4, 9.5] allow us to conclude the argument even in this case since they31

handle the products of the symplectic grassmannians involved. The statement concerning pointed operations follows32

from B.9.33
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For n = 1 the observation that we can apply Riou’s machinery also to quaternionic Grassmannians has been1

independently noted also in the recent work [DF19] (Proposition 4.0.4 in op. cit.). We can now argue as in the case of2

Theorem 4.6 to extend it to symplectic K-theory. To start with we draw the analogue of Diagram (1) in this setting:3

HomHo(sPreZar(DSchS))(KSpn,KSp) ∼=
//

��

π0

��

HomHDiv(S)(KSpn,KSp)

π0∼=
��

HomPre(DSchS)(KSp0(−)n,KSp0(−))
res // // HomPre(DSmS)(KSp0(−)n,KSp0(−))

(4)

Theorem 5.11. Assume that, for a given n ∈ N, KSp0(−)n satisfies the property (P) with respect to DSmS ⊆ DSchS . Then4

all the arrows in diagram (4) are bijections. The same is true if we replace the categories in diagram (4) with their pointed5

versions Ho(sPreZar(DSchS)•), Pre(DSchS)•, HDiv
• (S) and Pre(DSmS)•.6

If S is quasi-projective scheme over a Noetherian affine scheme R, we will prove in Proposition 6.5 that for all7

n ∈ N, KSp0(−)n satisfies the property (P) with respect to DSmS ⊆ DSchS .8

proof of Theorem 5.11. The proof is mutatis mutandis the same as the one of Theorem 4.6.9

If S is now assumed to be affine, we can prove the following analogue of 4.12:10

Theorem 5.12. All the arrows in the following commutative cube are isomorphisms for every n ∈ N11

12

HomHo(sPreZar(AffS))(KSpn,KSp)

π0

��

// HomHaff (S)(KSpn,KSp)

π0

��

HomHo(sPreZar(DSchS))(KSpn,KSp) //

π0

��

11

HomHDiv(S)(KSpn,KSp)

π0

��

22

HomPre(AffS)(KSpn0 ,KSp0) // HomPre(SmAffS)(KSpn0 ,KSp0)

HomPre(DSchS)(KSpn0 ,KSp0) //

11

HomPre(DSmS)(KSpn0 ,KSp0)

22

13

The pointed version of this theorem also holds.14

Proof. The proof is the same of Theorem 4.12 given Theorems 5.11 and 6.5.15

Remark 5.13. Similar considerations to Remarks 4.8 and 4.13 apply.16

As for ordinaryK-theory, we shall conclude this section by considering the case of separated schemes. We will then17

suppose to have a base scheme S which is regular, Noetherian, separated (over Spec(Z)) and such that 1
2 ∈ Γ(S,OS).18

We remind that because of A.3 we have a fully faithful inclusion SmSep
S ⊆ DSmS so that we can state and prove the19

following:20

Theorem 5.14. Suppose that for some n ∈ N, KSp0(−)n satisfies the property (P) with respect to DSmS ⊆ DSchS , for21

example that S is affine. Then all the arrows in the following commutative diagram are bijections22

HomHo(sPreZar(DSchS))(KSpn,KSp) ∼=
//

��

π0

��

HomHSep(S)(KSpn,KSp)

π0∼=
��

HomPre(DSchS)(KSp0(−)n,KSp0(−))
res // // HomPre(SmSep

S )(KSp0(−)n,KSp0(−))

This holds true even if we replace the categories we are considering with their pointed versions.23

Proof. The right vertical map is a bijection because of Theorem 5.10, proven for separated schemes using Theorem24

B.5 (see also Remark 4.2), while the upper horizontal one is bijective beacuase of Corollary 3.8. We can now finish25

using Proposition 4.14 and the assertion concerning the pointed situation follows using B.9.26

6 Property (P) for algebraic K-theory, Pic and Hermitian K-theory27

In this section we shall show that some important presheaves satisfy the property (P) (see Definition 4.4) for certain28

classes of schemes. We fix a base scheme S which is quasi-projective over a Noetherian affine scheme R throughout29

this section. We start with a mild generalisation of [Zan20, Theorem 5.5].30
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Proposition 6.1. Let X be a divisorial scheme over S. Then given a finite number of vector bundles E1, ..., En ∈ Vect(X)1

there is a smooth divisorial scheme YE over S and vector bundles E1,YE , ..., En,YE over it together with a morphism ψE : X →2

YE such that ψ∗E(Ei,YE ) ∼= Ei for every i = 1, ..., n. If moreover S and X are affine, then YE can be chosen to be affine.3

Proof. We begin with the non affine case and we consider n = 1. Because of the assumptions denoting f : X → S
and ϕ : S → R the two structure morphisms, we have by [Zan20, Theorem 5.5] that there exists a divisorial scheme
Z smooth over R and and an arrow X

γ−→ Z
α−→ R over R such that there exists a vector bundle G on Z having the

property that γ∗G ∼= E . We now consider the following diagram

X
f

%%
γ

��

∃β

##

Z ×R S
α′ //

ϕ′

��

S

ϕ

��

Z
α

// R

Where the inner square is a pullback, the outer square commutes because of our assumptions, β exists because of the
universal property of the pullback and ϕ′ and α′ are of finite type and smooth, respectively because of stability under
base change of these two properties. If we denote ψ := β, YE := Z ×R S and F := ϕ′∗G the lemma is fully proved:
indeed YE is divisorial because ϕ′ is quasi-projective (quasi-projective maps are stable under base change) so that we
can apply [TT90, 2.1.2 (h)]. This conclude the argument for n = 1. For n > 1 one repeat the same argument or follows
verbatim the proof of Theorem [Zan20, Theorem 5.5]. We now assume that X and S are affine. Consider first the case
n = 1. Every vector bundle P (say of rank m for simplicity otherwise we can reason on the connected components
or we can use the result proved in the first part of the proof directly) on X is generated by global sections so there
exists a grassmannian Grassm over S together with a map g : X → Grassm in SchS such that g∗T ∼= P where T is
the universal vector bundle of the grasmannian. Since the Grasmannians are divisorial we can use Jouanolou’s device
(A.6) to build an affine vector bundle torsor π : W → Grassm over the Grassmannian, which is then an object of
SmAffS . Now consider the following pullback

X ×Grassm W

pr2

��

pr1 // W

π

��

X
g

// Grassm

We then have that pr2 : X ×Grassm W → X is a torsor under a vector bundle and it is affine (π is affine so it is pr2) so4

that it is a vector bundle ([Wei89, page 475]) and there exists an arrow i : X → X ×Grassm W which splits pr2. If we5

set XP := W , Q := π∗T and f := pr1 ◦ i we have a datum as the one wanted in the statement of the Proposition in6

the case n = 1. For n > 1 the argument is similar.7

8

As a consequence we can establish the property (P) in some notable cases. Recall that given a full subcategory of9

C ⊆ SchS , we denote the Picard presheaf associating to any scheme X ∈ C its Picard group Pic(X) ([Har77, page10

143]) by Pic ∈ Pre(C).11

Proposition 6.2. Then for any n ∈ N the presheaves Kn
0 and Pic(−)n satisfy the property (P) with respect to DSmS ⊆12

DSchS . If S is affine, then for any n ∈ N the presheaves Kn
0 and Pic(−)n satisfy the property (P) with respect to13

SmAffS ⊆ AffS .14

Proof. We prove only the first statement about K0, the others can be proved in the same way. One first notices that for15

any X ∈ DSchS (representatives of) elements E ∈ K0(X) are of the form E = [E0]− [E1] where E0, E1 ∈ Vect(X).16

Using Proposition 6.1, we can find for every such E0, E1 ∈ Vect(X) vector bundles over X , a divisorial smooth17

scheme YE over S and vector bundles E′0, E
′
1 over it together with a morphism ψE : X → YE such that ψ∗E(E

′
i)
∼= Ei18

for i = 1, 0. One now notices, since pullback is a group homomorphism, that this implies that the element EYE =19

([E′0] − [E′1]) ∈ K0(YE) has the property that ψ∗E(EYE ) = E . This means that for every E ∈ K0(X) we can find a20

divisorial smooth scheme YE over S and EYE ∈ K0(YE) together with a morphism ψE : X → YE (over S) such that21

ψ∗E(EYE ) = E . Now, an element of K0(X)n is simply an n tuple of elements of K0(X) and for any morphism of22

schemes f : Y → Z , K0(f)n is the map (f∗)×nK0(Z)n → K0(Y )n given on each component by the usual pullback23

f∗ : K0(Z) → K0(Y ). As a consequence for every element E = (E1, ..., En) ∈ K0(X)n, using Proposition 6.1 and24

arguing as before, we can find a smooth scheme YE over S and EYE = (E1,YE , ..., E1,YE ) ∈ K0(YE)
n together with a25

morphism ψE : X → YE such that ψ∗E(Ei,YE ) = Ei for every i = 1, ..., n.26

20



We shall study the property (P) for Hermitian K-theory. We begin with the analogue of 6.1 for inner product1

spaces.2

Theorem 6.3. Assume X is a divisorial scheme over S having 2 invertible. Then given a finite number of ε-inner product3

spaces over X , V1 = (E1, ϕ1), ..., Vn = (En, ϕn), there is a divisorial smooth scheme YV over S and ε-inner product spaces4

V1,YV , ..., Vn,YV over it together with a morphism ψV : X → YV such that ψ∗V (Vi,YV ) ∼= Vi for every i = 1, ..., n. If X5

and S are affine schemes, then we can take YV to be affine.6

Proof. We first assume n = 1 and that X is connected so that E is a vector bundle of rank n. We can use 6.1 to find7

a scheme W which is divisorial and smooth over S together with a vector bundle F on it and a map g : X → W8

such that g∗(F) ∼= E . If X and S are affine, we remark that we may choose W to be affine. Now, we can consider9

the bilinear Grassmannian GrBn,W (Hε(F)). This is a divisorial smooth scheme affine over W . In particular, if W is10

affine, then it is affine in the absolute sense. Now the universal property of the bilinear grassmannians 5.2 together11

with Corollary 5.5 gives us a map f : X → GrBn,W (Hε(F)) =: YV over W and then over S and an ε-inner product12

space EV over YV such that f∗(EV ) ∼= V , as desired. Now if X is not connected we can reason componentwise and13

then glue together the resulting schemes to get the assertion, as in the proof of [Zan20, Theorem 5.5]. The case n > 114

is similar.15

Remark 6.4. Observe that we do not require all our inner product spaces to have the same value of ε.16

As a consequence, we have the following property (P) for Hermitian K-theory. We denote the symplectic K-theory17

presheaf by KSp0 and by GW0 the presheaf associating to a scheme X its ordinary Grothendieck-Witt groups of18

non degenerate symmetric forms ([Kne77, page 138]). GW0 is GW
[0]
0 (X) in the modern terminology introduced by19

Schlichting in [Sch17, page 74].20

Proposition 6.5. Assume that 2 is invertible in S. Then for any n ∈ N the presheaves KSpn0 and GWn
0 satisfy the property21

(P) with respect to DSmS ⊆ DSchS . If S is affine, for any n ∈ N the presheaves KSpn0 and GWn
0 satisfy the property (P)22

with respect to SmAffS ⊆ AffS .23

Proof. The proof goes mutatis mutandis as the ones of 6.2 using Theorem 6.3.24

We then immediately have the following corollary using 4.5:25

Corollary 6.6. For any n ∈ N the natural restriction maps

HomPre(DSchS)(GW0(−)n,GW0(−))→ HomPre(DSmS)(GW0(−)n,GW0(−))

HomPre(DSchS)(KSp0(−)n,KSp0(−))→ HomPre(DSmS)(KSp0(−)n,KSp0(−))

are injective if S is as in the previous Proposition.26

7 Applications27

7.1 Algebraic structures on K-theory28

In this section we will study the algebraic structures we can put on K-theory using Corollary 3.5 and Theorem 4.6.29

We fix S to be a Noetherian regular divisorial base scheme and we denote with K Thomason’s K-theory simplicial30

presheaf. We shall begin with the most general result:31

Theorem 7.1. There exists a structure of lambda ring on K in Ho(sPreZar(SchS)). This structure is the unique structure32

inducing the standard lambda ring structure on K0 ∈ Pre(DSmS).33

Proof. We notice that by [SGA71, VI, 3.2] we have a functorial lambda ring structure on K0(X) for every X ∈ DSmS ,34

since for schemes in DSmS this is really the algebraic K-theory of vector bundles, so that K0 becomes a lambda ring35

object in Pre(DSmS) in the sense of Definition C.8. Therefore we can combine Theorem 4.1, [Rio10, Proposition 2.2.3]36

and Corollary 3.5 to obtain a commutative ring (K,+,×, 0, 1) together with a family of unary operations λn : K → K37

in Ho(sPreZar(SchS)) making it a lambda ring in Ho(sPreZar(SchS)) in the sense of Definition C.8.38

Remark 7.2. In the ring structure we have just defined on K ∈ Ho(sPreZar(SchS)), 0 and 1 are defined as the two39

morphisms 0 : • → K and 1 : • → K , • being the terminal object S, associated via the Yoneda lemma to the elements40

0, 1 ∈ K0(S). We also remark that, unless explicitly stated, we will always see K as canonically pointed by 0.41

Proposition 7.3. The endomorphisms ψk : K → K defined by lifting the Adams operations ψk0 ∈ HomPre(DSmS)(K0,K0)42

are ring morphisms for every k ≥ 1. Moreover for every m,n ≥ 1 we have ψmψn = ψnm = ψnψm. As a consequence,43

K ∈ Ho(sPreZar(SchS)) has the structure of a ψ-ring (see Definitions C.6 and C.8).44
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Proof. K0 ∈ Pre(DSmS) being a ψ-ring, we can argue as in Theorem 7.1 to conclude.1

Remark 7.4. Notice that given the lambda operations defined by Theorem 7.1, one could define Adams operations2

directly using the Newton formulas (see C.4), but one would get the same operations because of Corollary 3.5 and3

Theorem 4.1.4

Before investigating the behaviour of the lambda operations, we will reassure the reader by showing that the ring5

structure we have just defined agrees with the one usually considered.6

Proposition 7.5. The additive and multiplicative operations of the ring structure on K ∈ Ho(sPreZar(SchS)) given by7

Theorem 7.1 coincide with the ones induced by the usual H-group structure on K-theory and by Waldhausen’s product for8

K-theory (as in [Wal85, page 342]).9

Proof. This is a simple consequence of Corollary 3.5 and the theorem of Riou 4.1 (as observed in [Rio10, Proposition10

3.2.1] for smooth schemes). Indeed, the usual additive and multiplicative operations on K are explicitly given by11

(pointed) maps ⊕ : K ×K → K and ⊗ : K ×K → K in sPre(SchS) (the functorialities can be checked using the12

construction found in [Wal85, page 342]) that induce a ring structure on K ∈ Ho(sPreZar(SchS)). To show that this13

structure agree with the one of Theorem 7.1 it suffices to check that the structures they induce on K0 ∈ Pre(DSmS)14

agree, which is clear.15

Corollary 7.6. The lambda ring structure defined by Theorem 7.1 restricts to a lambda ring structure onK inHo(sPreZar(DSchS)),16

whose underlying ring structure agree with the canonical one. Furthermore if for any n ∈ N, Kn
0 satisfies the property (P)17

with respect to DSmS ⊆ DSchS , this structure induce on K0 ∈ Pre(DSchS) the lambda ring structure defined in [SGA71,18

VI, 3.2].19

Proof. It is a simple application of Theorem 4.6 and Corollary 3.5 given Proposition 7.5.20

In particular, the above corollary applies to the case when S is quasi-projective over an affine Noetherian ring21

R. To speak about higher algebraic K-theory groups, we need to refine the structures and some of the maps given22

by Proposition 7.1 to the pointed unstable homotopy category Ho(sPreZar(SchS)•). This can be done using Corollary23

3.5 and the pointed part of the statement of Theorem 4.1 which is obtained using B.9 since K-theory is naturally an24

H-group in the sense of Definition 2.1. We therefore get that K ∈ Ho(sPreZar(SchS)) has the so called structure of an25

H-ring, i.e. the ring structure it has in Ho(sPreZar(SchS)) can be refined to a ring structure in Ho(sPreZar(SchS)•)26

(in this last category the ring structure is not unital4). This means that the multiplicative product of K comes from a27

map × : K ×K → K in Ho(sPreZar(SchS)•). Using the argument contained in [Rio06, page 96] or directly using28

3.5, 4.6 and [Rio06, Lemme III.33] we get that there is an injective map α : HomHo(sPreZar(SchS)•)(K ∧ K,K) →29

HomHo(sPreZar(SchS)•)(K × K,K) induced by K × K → K ∧ K such that × ∈ HomHo(sPreZar(SchS)•)(K × K,K) is30

the image under α of a map ×• ∈ HomHo(sPreZar(SchS)•)(K ∧K,K). In particular, ×• is the unique morphism which31

makes the following diagram to commute32

K ×K
��

×
((

K ∧K
×•

// K

The fact that × is commutative implies that ×• is commutative too, i.e. we have ×• = ×• ◦ τ where τ is the usual
switch map of ∧. For any simplicial presheaf X ∈ sPre(SchS), we shall be interested to study the following groups

Kn(X ) := HomHo(sPreZar(SchS)•)(S
n ∧ X+,K)

where we have denoted the simplicial n-sphere by Sn as customary. Explicitly note that in the particular case where33

X = X ∈ DSchS is a divisorial scheme, these groups agree with the ordinary Quillen’s higher algebraic K-theory34

groups. We can bundle these groups, letting n to vary, in a ring, as the following proposition makes precise:35

Proposition 7.7. For any X ∈ sPre(SchS) the multiplication law − × − : K ×K → K induces a natural graded ring
structure on

K∗(X ) :=
⊕
n∈N

Kn(X )

Denote this ring together with its multiplication by (K∗(X ),∪). If X is represented by a scheme X ∈ SchS , the induced36

pairings Kp(X)×Kq(X)→ Kp+q(X) induced by this ring structure agree with the ones by Waldhausen, Loday and May37

as discussed in [Wei81].38

4the map 1 : • → K in Ho(sPreZar(SchS)) is not pointed and therefore we cannot hope to refine it to a map in Ho(sPreZar(SchS)•).
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Proof. By the preceding discussion, we can consider the map ×• ∈ HomHo(sPreZar(SchS)•)(K ∧ K,K) induced by
the multiplicative product × defined by Theorem 7.1. If we denote the map in Ho(sPreZar(SchS)•) induced by the
diagonal map X → X × X by ∆X : Si+j ∧ X+ → (Si ∧ X+) ∧ (Sj ∧ X+), for any X ∈ sPre(SchS) we get a
multiplication

− ∪− : Ki(X )×Kj(X )→ Ki+j(X )

induced by the map1

HomHo(sPreZar(SchS)•)(Si ∧X+,K)×HomHo(sPreZar(SchS)•)(Sj ∧X+,K)

∧
��

HomHo(sPreZar(SchS)•)((Si ∧X+) ∧ (Sj ∧X+),K∧2)

×•◦−◦∆X

��

HomHo(sPreZar(SchS)•)(Si+j ∧X+,K)

This multiplication induces the desired graded ring structure and the naturality is clear. The agreement with the other2

pairings when X is a scheme follows from Proposition 7.5.3

To study the lambda ring structure, we explicitly note that for all j > 0 the lambda and Adams operations λj and4

ψj are pointed, and therefore they refine to maps K → K in Ho(sPreZar(SchS)•). As a consequence, the following5

makes sense:6

Definition 7.8. For every simplicial presheaf X ∈ sPre(SchS) we define the lambda and the Adams operations
λrn, ψ

j
n : Kn(X )→ Kn(X ) by postcomposition with the maps λr, ψj : K → K in Ho(sPreZar(SchS)•) coming from

the maps defined in Theorem 7.1 using B.9. In other words, they are defined as

λrn, ψ
j
n : HomHo(sPreZar(SchS)),•(Sn ∧ X+,K)→ HomHo(sPreZar(SchS)),•(Sn ∧ X+,K) f 7→ λr, ψj ◦ f

Before going on, we make a digression of more general nature, which is not only of general interest, but might
have direct applications in the near future, as it will be explained below. We fix a Grothendieck site C having a
terminal object, and we consider the model category sPre(C) of simplicial presheaves with the Jardine local model
structure localised at some class of maps S. This covers all the situations relevant for this paper. We denote the
homotopy category Ho(sPre(C)) by H. We let H• to be its pointed version. By this we mean that we consider the
pointed category of simplicial presheaves, we give to it the pointed model category structure induced by the one we
are considering on the unpointed one and we take the homotopy category, as customary (so we are not considering
the homotopy category pointed). We suppose to have a lambda ring (K,+, •,−, 0, 1) in H where all the maps
λr : K → K are pointed for r > 0 so that by B.9 and B.10 they can be promoted to maps in H•, and where the ring
structure comes from a ring structure in H• (in this last category we are only looking at the non unital ring structure
because we have to take care of the base point) meaning therefore that K is an H-ring. We also assume that the
product • : K × K → K factors through the smash product i.e. that there exists a map ∧• so that the following
diagram commutes

K ×K
•

##

ϕ

��

K ∧K ∧•
// K

Remark that K is in particular an H-group, hence for every simplicial presheaf F , the set

πnK(F ) := HomH•(Sn ∧ F+,K) =: Kn(F )

has a group structure inherited from the H-group structure of K . Now, we assume that K satisfies descent (in the7

sense of [Jar15, page 102], i.e. it admits a weakly equivalent sectionwise fibrant replacement) so that for every object8

X ∈ C, Kn(X) is really the nth homotopy group of the simplicial set K(X). Moreover we assume that the H-group9

structure on K is compatible with the homotopy groups, i.e. that the group structure on Kn(F ) for n ≥ 0 induced10

from the H-group structure coincides with the standard one, i.e. the one defined as in topology using the co-group11

structure on S1. Loopspaces are of this form, for example. We could relax these assumptions but we do not have12

a reason to do that since they allow the discussion to be simpler and all the examples we have in mind fall in this13

description. Now, for any simplicial presheaf F we immediately notice that by applying the functor π0 we obtain a14

lambda ring structure on the set K0(F ). This is true because π0 preserves finite products so that taking π0 of the15

datum of maps and compatibilities we have for K in H gives us what we want.16
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Remark 7.9. Notice that the product induced by • on any Kn(F ) is trivial if n ≥ 1 because of [Kra80, Lemme 5.2].1

Indeed that lemma says that if we are given an H-space E together with a distributive multiplication over its H-space2

structure that factors through the smash product and a co-H-space X having the comultiplication factoring through3

the join (for example any suspension) in Ho(Top•) then the monoid structure induced on HomHo(Top•)
(X,E) by the4

multiplicative structure of E is trivial and in our case the same argument holds.5

Since the multiplication ofK factors through the smash product, we can define pairingsK0(F )×Kj(F )→ Kj(F )
as for K-theory in Proposition 7.7. We define the graded group

K∗(F ) := ⊕n≥0Kn(F )

where the Kn(F ) are K0(F )-modules using the pairings just introduced. Consider the maps λrn : πn(λr) : Kn(F )→6

Kn(F ) for r ≥ 0 if n = 0 and r > 0 if n ≥ 1 defined as in Definition 7.8. Notice that for n ≥ 1 these maps are group7

homomorphisms. Henceforth, K0(F ) being a lambda ring since K ∈ H is such, it is possible to give to K∗(F ) the8

structure of pre-lambda ring (K∗(F ), ·) as in Example C.3 (axioms 1)-3) of the definition of λ ring are satisfied) and9

we call the lambda operations we have λr∗. We want to check that this is indeed a lambda ring.10

Proposition 7.10. For any simplicial presheaf F , the ring (K∗(F ), ·, λr∗) is a lambda ring.11

Proof. We have to check that the axioms 4) and 5) of Definition C.1 are satisfied. For elements in K0(F ) this has12

already been done. Then we notice that because of the definitions and the considerations we made in C.3, we only13

need to verify that for any n ≥ 1, the groups Kn(F ) are K0(F )-lambda algebras. Since we already know that they are14

pre-K0(F )-lambda algebras this really amounts to check axioms 4) and 5) for elements x ∈ Kn(F ) and y ∈ K0(F )15

as in Definition C.1. Using our dictionary, x ∈ Kn(F ) is a map in HomH•(Sn ∧ F+,K). Now the verification of the16

axiom can be done in two steps. As a first step one has from the fact that K is a lambda ring that λr ◦ λs : K → K17

and Pλr,s : K → K in H• given from the polynomial Pr,s using the techniques of Appendix C are equal. Then one18

sees that the left hand side of the equality prescribed by axiom 5) equals the map obtained from HomH•(Sn ∧F+,K)19

by postcomposition with the pointed map λr ◦ λs with r, s ≥ 1. As a second step, using Remark 7.9 we see that the20

polynomial maps (Pλr,s)n : Kn(X)→ Kn(X) involved in the right hand side of axiom 5) defined using (K∗(F ), ·, λr∗)21

equals the ones obtained from HomH•(Sn∧F+,K) by postcomposition with the map Pλr,s : K → K in H•. So axiom22

5) is verified. Notice, because of our definitions, that since n ≥ 1, many of the products on the RHS are equal so that23

it will be really a multiple of λrs(x) as noted in the proof of [HKT17, Theorem 8.18]. The verification of axiom 4) can24

be done in a similar way with the caveat that in the construction of the polynomial maps involved in the verification25

of axiom 4) (see Appendix C), we build the monomial maps xJ using smash products instead of products, i.e. we use26

maps xJ : K ∧n K → K . We can do this since under our assumptions, the multiplicative product we have factors27

through the smash.28

Remark 7.11. Suppose that C is a point with the chaotic topology and that we consider only the Jardine injective29

model structure on sPre(C). Then the homotopy category we obtain is the classical homotopy category of topological30

spaces Ho(Top). This means, as a corollary of the previous definition, that if we have a lambda ring X in Ho(Top)31

satisfying the above properties, then to the direct sum of its homotopy groups π∗(X) := ⊕n≥0πn(X) can be given a32

structure of lambda ring using the previous Proposition.33

Remark 7.12. If a Riou-like theorem will be proved for Hermitian K-theory, then we will be able to use 7.10 to give a34

lambda ring structure on the direct sum on the (symmetric) higher Grothendieck-Witt groups of schemes.35

We can now come back to K-theory to discuss the structure we can put on K∗(X ) for every X ∈ sPre(SchS).36

This abelian group in principle can have two multiplicative structure as a K0(X )-algebra. The first one is the one37

given in Example C.3, where the product of two homogeneous elements of positive degree is set to be 0. We will refer38

to this ring simply as K∗(X ) or (K∗(X ), ·) if confusion might arise. The second one is the noncommutative structure39

induced on it by the Theorem 7.7. In this case, we will denote the resulting graded-commutative K0(X )-algebra by40

(K∗(X ),∪). We defined in Definition 7.8 families of operations λkn : Kn(X ) → Kn(X ) and ψkn : Kn(X ) → Kn(X )41

which bundle to maps λk, ψk : K∗(X )→ K∗(X ). Notice the following:42

Proposition 7.13. For every X ∈ sPre(SchS) and every a ∈ Kn(X ), b ∈ Km(X ), we have for every k ≥ 1 that43

ψk∗ (a ∪ b) = ψk∗ (a) ∪ ψk∗ (b) where the product is induced by the pairing defined in Theorem 7.7. This is also trivially true44

for the product ·.45

Proof. One follows Riou [Rio06, page 99]. In fact as a consequence of Proposition 7.3 and Theorem 7.1 we have that46

in Ho(sPreZar(SchS)•), for every k ≥ 1, the equality ψk ◦ ×• = ×• ◦ (ψk ∧ ψk) holds. This concludes the proof.47

We then have the following theorem:48

Theorem 7.14. Consider X ∈ sPre(SchS). Then the datum (K∗(X ), ·, λk) is a lambda ring with associated ψ-ring49

(K∗(X ), ·, ψk). Moreover, (K∗(X ),∪, ψk) is a noncommutative ψ-ring and the maps ψk : (K∗(X ),∪) → (K∗(X ),∪)50

are morphisms of noncommutative ψ-rings. These structures are functorial.51
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Proof. The noncommutative assertions follows simply from Proposition 7.13 and Proposition 7.3. For the first part,1

to check 4) and 5) (1)-3) follow from the very definition, see C.3) we use Proposition 7.10. To check that the Adams2

operations we defined before agree with the ones induced by λk using the Newton formulas we notice that they are3

both additive so that we only need to check for elements of the form x ∈ Kn(X ), but this follows from the Newton4

formulas we have for K ∈ Ho(sPreZar(SchS)) and the definitions we have given. Indeed as a first step one notices5

that the Newton formulas we have for K ∈ Ho(sPreZar(SchS)) restrict on Kn(X ) to the usual Newton formulas for6

K0(X ) in the case n = 0 and to ψkn = (−1)k+1kλk for n 6= 0 in virtue of Remark 7.9 so they are the same formulas7

we get starting from (K∗(X), ·, λk) because the product of two positive homogeneous elements is set to be trivial (this8

comparison only requires the pre-lambda ring structure because of Remark C.5). The fact that (K∗(X ), ·, ψk) is a9

ψ-ring follows from this comparison or can be proved independently using 7.13.10

Corollary 7.15. For every scheme X ∈ SchS , the ring (K∗(X), ·) is a lambda ring in the sense of Definition C.1, and this11

structure is functorial in X . Moreover, (K∗(X)Q, ·), if (K∗(X), ·) is Z-torsion free, admits a (unique) lambda ring structure12

induced from (K∗(X), ·, λk) defined before. Finally, all Kn(X) are K0(X)-lambda algebras, the product of the elements13

in Kn(X) being trivial for n ≥ 1.14

Proof. The first two assertions follow from our construction of the lambda operations, Theorem 7.14 and [Yau10,15

Theorem 3.49]. The last part follows from Theorem 7.14.16

Remark 7.16. One might wonder if changing our base scheme S, we change the structures induced by the operations17

on Kn(X ). Indeed, a scheme can be seen as a scheme over a priori many bases. However, Riou showed ([Rio10,18

Proposition 2.3.2]) that the operations we get on K-theory in H(S) do not depend on the choice of S, as long as S19

is divisorial and regular. Since we can reduce to the smooth schemes, we have that the operations we define for any20

divisorial scheme of finite type over our allowed bases S are the unique we can define using this method.21

We conclude this section by giving an Adams-Riemann-Roch theorem (see[FL85, Chapter V]) that applies to the22

operations we have defined. Fix S to be a regular quasi-projective scheme over a Noetherian affine scheme R and23

consider the category DSchS . Recall that a map f : X → Y in DSchS is called a projective local complete24

intersection (l.c.i.) morphism if it factors as f = π ◦ i : X → P(E)→ Y for some vector bundle E over Y where i is25

a regular embedding and π : P(E) → Y is the canonical projection. For such maps, the pushforward on Thomason’s26

higher K-theory groups is well defined: indeed because of [TT90, 3.16], if a map is of the form [TT90, 3.16.4-3.16.7],27

we have that pushforwards are well defined. The results in op. cit. also give us a projection formula. This means that,28

having a well defined lambda ring structure on K∗(X) for any X ∈ DSchS which coincides with the one we have on29

K0(X) as studied in [FL85], we can repeat the argument used in [FL85] to prove the Adams-Riemann-Roch theorem30

([FL85, Theorem V.7.6]) even in this context almost verbatim as it has been done in [Kö98] for higher equivariant31

K-theory. Indeed we can use the technique of the deformation of the normal bundle as in [FL85, IV 5] as it doesn’t32

leave the category DSchS and because of [TT90, Theorem 4.1] we also have a projective bundle theorem for higher33

K-theory. This means that we get the following, see [Zan19] for an explicit detailed check of the fact that the usual34

proof goes through:35

Theorem 7.17 (Adams-Riemann-Roch). Assume that S is quasi-projective over a Noetherian affine scheme R. Let be36

f : X → Y a a projective local complete intersection morphism in DSchS . For every scheme Z , denote the direct sum of the37

higher K-theory groups by K∗(Z) := ⊕nKn(Z) and by ψjZ : K∗(Z)→ K∗(Z) the Adams operations induced by Theorem38

7.14. Let τf be the usual Adams-Riemann-Roch multiplier in K0(X) (see [FL85, V.6.3]). Then (after inverting j ∈ Z if39

necessary) we have f∗ ◦ (ψjX · τf ) = ψjY ◦ f∗.40

This should be in agreement with the result of [Kö98] which however employs Grayson’s definition of the Adams41

operations (that has still to be compared with ours).42

7.2 Additive results43

In this section we will assume that our base scheme S is divisorial regular and quasi-projective over a Noetherian44

affine scheme. So far we have studied only the algebraic K-theory K0 as a presheaf of sets. However, it is more45

naturally a presheaf of abelian groups. For a given full subcategory C of SchS let us consider the natural transformation46

δ : Pic → K0 in Pre(C), given for any scheme X ∈ C by the assignment [L] 7→ [L] for a any class [L] of a line47

bundle L on X . Denoting as (Pre(C),Ab) the category of presheaves of abelian groups over a given small category48

C, we remind that Riou was able to show ([Rio10, Proposition 5.1.1]) that the map HomPre(DSmS ,Ab)(K0,K0)
δ∗Sm−−→49

HomPre(DSmS),Sets(Pic,K0) obtained by composition with δ is a bijection. One should replace the hypothesis of being50

divisorial with the one of being separated to be consistent with the assumptions of Riou, but Riou’s proof goes through51

also in this case. We would like to remove the hypothesis of smoothness from the results of Riou. First of all, recall52

that in both HDiv(S) and Ho(sPreZar(DSchS)) the functor Pic is represented by BGm> for an explicit argument, one53

can check that the argument of [NSOsr09, Lemma 2.6] goes through. Moreover, in HDiv(S), Pic is also represented54

by P∞, the standard ind-scheme obtained as colimit of all the projective space along the standard inductive system55

(see [MV99]). We can then prove the following:56
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Theorem 7.18. For any n ∈ N, all the arrows in the following diagram are isomorphimsms

HomHo(sPreZar(DSchS))(BGnm,K) //

π0

��

HomHDiv(S)(BGnm,K)

∼=π0

��

HomPre(DSchS)(Picn,K0) res
// HomPre(DSmS)(Picn,K0)

Moreover, also all the arrows in the following commutative diagram are isomorphisms

HomPre(DSchS ,Ab)(K0,K0) //
δ∗Sch //

��

β

��

HomPre(DSchS)(Pic,K0)

∼=
��

HomPre(DSmS ,Ab)(K0,K0) ∼=

δ∗Sm// HomPre(DSmS)(Pic,K0) ∼= lim
n
K0(Pn) ∼= K0(S)[[U ]]

where the maps δ∗Sm and δ∗Sch are induced from the presheaves maps δ : Pic → K0 and U = [O(1)] − 1 is the compatible1

family in lim
n
K0(Pn).2

Proof. For the first diagram, we see that the top horizontal map is an isomorphism because of Proposition 2.20, and
the lower horizontal map is injective because of Propositions 4.5 and 6.2. This closes the argument since the right
vertical π0 map is an isomorphism because of [Rio10, Proposition 5.1.1]. For the second diagram one notices that the
right vertical arrow is an isomorphism because of what we just proved. The isomorphisms HomPre(SmS)(Pic,K0) ∼=
lim
n
K0(Pn) ∼= K0(S)[[U ]] are proved in [Rio10, 5.1.1], which proves also that the bottom horizontal line is an isomor-

phism. The arrow β is injective because of Theorem 4.6 together with the fact that the category of presheaves of
abelian groups admits a faithful embedding into the category of presheaves of sets. So also the arrow δ∗Sch is 1-1 by
diagram chase. We are then left to prove that β is surjective. Let us study the map

HomPre(DSchS ,Ab)(K0,K0) //
β
// HomPre(DSmS ,Ab)(K0,K0)

ϕ

∼=
// K0(S)[[U ]]

arising from the diagram. Denote the kth Adams operation by ψk : K0 → K0. Riou shows in [Rio10] that denoting as3

x ·ψk ∈ HomPre(DSmS ,Ab)(K0,K0) the map given by y 7→ x ·ψk(y) for x ∈ K0(S), this is mapped via ϕ to x(1 +U)k4

in K0(S)[[U ]] and these elements generates the image of ϕ by [Rio06, IV.15] or [Rio10, page 246]. So if we show that5

all the x · ψk are in the image β, we can conclude. This is true because the Adams operations on K0 over smooth6

schemes comes, because of our theorems, as the unique restriction of the operations we have built on K0 for singular7

schemes. Hence the theorem is fully proved.8

Remark 7.19. In the statement of Theorem 7.18, as in Remarks 3.6 and 4.8, for any i ∈ N, denoting as Ωif the right9

derived functor of Ωi in the simplicial model categories we considered, we could have replaced K with ΩifK and K010

with Ki everywhere in the second variable of the Hom-sets considered because of [Rio10, Proposition 5.1.1]. However,11

since we do not need this extra generality, we preferred to keep the notation and the assumptions to be simpler.12

A Divisorial schemes13

We collect some notions about divisorial schemes.14

Definition A.1. ([SGA71, II 2.2.3] or [TT90, Definition 2.1]) A quasi-compact and quasi-separated (qcqs for short)15

scheme X is called divisorial (or has an ample family of line bundles) if there is a finite family of line bundles L1, ..., Ln16

on X together with finitely many global sections si ∈ Γ(X,Li) such that their non vanishing loci Xsi ([GD71, 0, 4.1.9])17

form an open affine cover of X .18

See [TT90, 2.1.1] for equivalent characterizations of divisorial schemes.19

Remark A.2. Recall that a morphism between schemes f : X → S is said to have affine diagonal if the diagonal20

embedding X → X ×S X ([Sta18, Tag 01KJ]) is affine. A very important property of divisorial schemes is that they21

have affine diagonal over Spec(Z). For a simple proof see [BS03, Proposition 1.2]. Also, for a morphism of schemes,22

the property of having affine diagonal is stable under composition and base change because the same proof used23

for the property of being separated found for example in [Sta18, Tag 01KH] goes through, affine morphisms being24

stable under composition and base change because of [Sta18, Tag 01SC] and [Sta18, Tag 01SD]. In addition, if we have25

morphisms f : X → Y and g : Y → Z so that g and g ◦ f have affine diagonal, then also f has affine diagonal26

because we can mimick the proof of [Sta18, Tag 01KV] using the fact that every affine morphism is separated ([Sta18,27
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Tag 01S7] ) and Remark 9.11 of [GW10, page 230] (or [Sta18, Tag 01SG]). This implies that any morphism between1

schemes with affine diagonal has affine diagonal. We remark that instead of the notion of having affine diagonal, one2

can use the equivalent notion of semi-separated schemes and morphisms detailed in [TT90, Appendix B.7] that we3

find less explicit, although equivalent. In op. cit. one can find observations similar to the ones we just made on the4

schemes and the morphisms having affine diagonal in terms of semi-separatedness.5

Lemma A.3. ([SGA71, II 2.2.7.1]) Every regular (or more generally locally factorial) Noetherian scheme with affine diagonal6

is divisorial.7

Proof. In [SGA71] the hypothesis of having affine diagonal is replaced by the stronger separated hypothesis. However8

the separated hypothesis is used in the proof of [SGA71, II 2.2.7] only in order to apply [SGA71, II 2.2.6]; in particular9

it is required that an open embedding of an affine scheme into our given scheme X is an affine morphism. But this is10

true if X has affine diagonal ([Sta18, Tag 01SG]), so the proof goes through (see also [BS03, Proposition 1.3]).11

We say that a scheme X is smooth over a base S if its structure map is smooth ([GD67, IV 6.8.6, 17.3.1], [GW10,12

6.14], [Sta18, Tag 01V5]). Explicitly note that a smooth morphism is locally of finite presentation ([GD67, IV 1.4.2]) and13

so locally of finite type. We do not assume that a smooth morphism is separated.14

Corollary A.4. Every quasi-compact scheme X that has affine diagonal and that is smooth over a Noetherian regular base15

scheme S is divisorial.16

Recall that, fixed a Noetherian base scheme S, we denote the category of schemes of finite type over S by SchS17

and by DSchS its full subcategory of divisorial schemes. Remark that any morphism of finite type having Noetherian18

target is of finite presentation ([Sta18, Tag 01TX]). Notice that because S is Noetherian, every scheme in SchS is19

Noetherian as well ([GD71, I 6.2.2]) and therefore quasi-separated ([Sta18, Tag 01OY]). In addition, given X ∈ SchS ,20

any open subscheme U ⊆ X is Noetherian ([GD67, I 6.1.4], [GW10, Corollary 3.22]) and it is canonically embedded21

in X via a quasi-compact open immersion. Therefore, the Zariski topology is well defined on both SchS and DSchS22

(because of [TT90, 2.1.2 (e)]). Given a Noetherian regular divisorial base scheme S recall that we shall denote the full23

subcategory of (divisorial) smooth schemes over S by SmS ⊆ SchS (DSmS ⊆ DSchS ). The Zariski topology is well24

defined on both SmS and DSmS and the Nisnevich topology as well. All the topologies introduced are generated by25

a cd structure in the sense of Voevodsky as detailed in [AHW17, Section 2].26

Remark A.5. To see that the Nisnevich topology is well defined as a Grothendieck topology on DSmS one uses the27

facts concerning schemes with affine diagonal that we recollected at the beginning of this Appendix together with A.328

and A.4.29

We conclude by recalling a fundamental property of divisorial schemes, the so called Jouanolou’s trick. This was30

proven for projective schemes by Jouanolou and then generalised to the following statement by Weibel, who apparently31

learnt this fact from Thomason, see [Wei89].32

Proposition A.6. ( Jouanolou’s Trick, [Wei89, Proposition 4.4]). Let X be a divisorial scheme. Then there exists an affine33

scheme T and a morphism T → X which is a torsor under a vector bundle.34

B Riou’s methods35

In this section we shall review some methods of Riou from [Rio06] and [Rio10]. We fix some Noetherian base scheme36

S and we let SchS to be the category of schemes of finite type over S. We let C to be some Grothendieck site37

whose underlying category some full subcategory of SchS . We assume that sPre(C) comes endowed with a simplicial38

model category structure which comes as a left Bousfield localization of the Jardine injective local model structure on39

sPre(C). We denote the homotopy category of sPre(C) with this model structure by H. We can then give the following40

definition:41

Definition B.1. Let X ∈ H. Define a presheaf π0X : (C)op → Sets as

π0X(−) := HomH(−, X)

If X ∈ Pre(C), we define a morphism τX : X → π0X in Pre(C) using the Yoneda lemma in the obvious way. For any42

U ∈ C we denote the function X(U)→ π0X(U) induced by the natural transformation τX with τX,U .43

We now come to a minor generalisation of the property (ii), which was introduced in [Rio06, III.8] and then44

appeared in a different terminology in [Rio10, Definition 1.2.5].45

Definition B.2. Let X ∈ Pre(C). Assume we have a full subcategory A of C. Then we say that X satisfies the46

property (ii) relative to A if for every U ∈ A, the arrow τX,U defined above is surjective.47
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We can now formalise Riou’s property (K).1

Definition B.3. Let X• = (Xi)i∈I an inductive system in C indexed by a directed set I having a cofinal sequence.
Denote X := colimX• its colimit in Pre(C). We say that E satisfies the property (K) with respect to the system X•
(or simply with respect to X ) if the arrow

α : HomH(X,E)→ HomPre(C)(π0X,π0E)

induced by taking π0 is injective.2

The following Proposition can be proved exactly as in [Rio06, Proposition III.10] with a diagram chase argument.3

Proposition B.4. Let X ∈ Pre(C) and E be an object in H. Assume that X satisfies the property (ii) relative to A and
that for every B ∈ C we have an object A ∈ A and at least one arrow A → B in C which induces an isomorphism in H.
Then the map

τ∗X : HomPre(C)(π0X,π0E)→ HomPre(C)(X,π0E)

is injective.4

As a corollary we have the following theorem, whose proof follows verbatim the one of [Rio10, Proposition 1.2.9]5

using Milnor’s exact sequence (see [Rio06, pages 72-73]).6

Theorem B.5. Let A a full subcategory of C satisfying the hypothesis of the previous Proposition. Let X• = (Xi)i∈I an7

inductive system in C indexed by a directed set I having a cofinal sequence (indexed by the naturals). Set X = colimX• ∈8

Pre(C) and suppose that X satisfy the property (ii) relative to A. For every H-group E we can form the diagram9

HomH(X,E)
α //

γ
((

HomPre(C)(π0X,π0E)

τ∗X

��

HomPre(C)(X,π0E)
∼= // lim←−

i∈Iop
(π0E)(Xi)

where the map α is the one induced by taking π0. Then α and γ are surjective and τ∗X is bijective. Moreover Ker γ =10

Ker α ∼= R1 lim←−
i∈Iop

HomH•(S1 ∧Xi+, E)11

Remark B.6. Under the hypotheses of the previous theorem, E satisfies the property (K) with respect to the system12

X• if R1 lim←−
i∈Iop

HomH•(S1 ∧Xi+, E) = 0.13

Remark B.7. If C = DSmS is the category of smooth divisorial schemes, A = SmAffS , S is regular divisorial and14

Noetherian and we consider the A1-localised Nisnevich injective local model structures over sPre(C), then we get the15

property (ii) as studied by Riou, modulo the fact that our schemes can be non separated. In addition, the conditions16

on A required by the previous two statements are verified in this case. This uses the Jouanolou’s trick A.6 and the fact17

that affine vector bundle torsors are A1-weak equivalences because of [MV99, Example 2.3 page 106]. Note also that18

if two presheaves satisfy the property (ii) then also their product does.19

Proposition B.8. Let be S a Noetherian, regular and divisorial base scheme. For any n ∈ N, the presheaf (Z × Gr)n as20

an object of Pre(DSmS) satisfies the property (ii) relative to SmAffS . In addition, K-theory satisfies the property (K) with21

respect to it.22

Proof. The statement has been proved by Riou in [Rio10, Lemma 1.2.6] and [Rio06, page 94]. This uses the fact that23

K-theory can be represented in HDiv(S) by Z × Gr (see [Rio06, III.4]) and the computations of the K-theory of24

ordinary Grassmannians. These facts don’t rely on the hypothesis of separatedness, so the argument of Riou goes25

through if we drop that assumption keeping the one of divisoriality.26

We also need the following very useful observation of Riou, which we state here together with the proof for the27

reader’s convenience. This is essentially [Rio06, Lemme III.19], we just noticed that the proof applies to a more general28

situation).29

Lemma B.9. Consider some Grothendieck site of the form (A, τ) where A is a full subcategory of SchS and denote C :=
sPreτ (A). Let be E an H-group in C. Then for every object X of C• the evident morphism

HomHo(C•)(X,E)→ {f ∈ HomHo(C)(X,E), f?(•) = • ∈ HomHo(C)(S,E)}

is a bijection, where we have denoted the composition with f by f?.30
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Proof. First one notices that we can assume E to be fibrant. We have a cofiber sequence

S+ → X+ → X

in both C and C•, obtained as the pushout of the two maps S+ → X+ and S+ → ∗ (remark that all the objects
involved are cofibrant and that S+ → X+ is a cofibration so this pushout is actually an homotopy pushout). We can
then apply to this cofiber sequence the pointed mapping space MapC•(−, E) to get a fibration sequence

MapC•(X,E)→MapC•(X+, E)→MapC•(S+, E)

which induces a long exact sequence on the homotopy groups. Now, since E is an H-group, we have that the π0 terms
of this sequence are groups, so that, using the fact that the map S+ → X+ has a retract induced by the terminal map
X → S we can split the long exact sequence of the homotopy groups in short exact sequences, obtaining for the π0

terms the following exact sequence

1→ HomHo(C•)(X,E)→ HomHo(C)(X,E)→ HomHo(C)(S,E)→ 1

that allows us to conclude the proof.1

Remark B.10. The proof of the above lemma shows that the same result holds when replacing C with any model2

category coming from any simplicial model category C where every object is cofibrant, X with an object of C• so that3

its distinguished point is given by a cofibration and E with a fibrant H-group having the same property of X .4

We shall need the following facts, proved by Riou in [Rio06] and [Rio10]. We recall some terminology in op.cit.5

From now until the end of this appendix, we shall fix a Noetherian regular divisorial base scheme S. We denote the6

collection of maps in DSmS which are vector bundle torsors by T and by Taff the collection of projection maps of the7

form A1
X → X in SmAffS . We have the following result8

Proposition B.11. ([Rio06, Proposition II.16]). There is an equivalence of categories Θ : SmAffS [T −1
aff ]

'−→ DSmS [T −1]9

Using [Rio06, Proposition B.8] or [Rio10, Remark 1.2.8] we then have10

Corollary B.12. The equivalence Θ induces an equivalence between the category of T -invariant presheaves in Pre(DSmS)11

and the category of A1-invariant presheaves in Pre(SmAffS)12

Remark B.13. Notice that the proof of the previous two claims does not require the schemes in SmAffS and DSmS13

to be separated.14

C Lambda ring objects in a category15

The aim of this appendix is to collect some facts about lambda rings that are scattered through the literature or can be16

considered folklore. Let us start with the following definition that can be found in [Wei13, Definition I 4.3.1] or [Yau10,17

Definition 1.10]:18

Definition C.1. A lambda ring, is the datum of a commutative unital ring R together with a family of set maps19

λk : R→ R, k ≥ 0 such that20

1) λ0(x) = 1, λ1(x) = x for every x ∈ R.21

2) λk(x+ y) = λk(x) + λk(y) +
∑k−1
i=1 λ

i(x)λk−i(y) for every x, y ∈ R for k > 1.22

3) λk(1) = 0 for k ≥ 2.23

4) λk(xy) = Pk(λ1(x), ..., λk(x);λ1(y), ..., λk(y)) for all x, y ∈ R.24

5) λk(λl(x)) = Pk,l(λ
1(x), ..., λkl(x)) for all k, l ∈ N and x ∈ R.25

where Pk and Pk,l are certain universal polynomial with coefficients in Z (see [Yau10, Examples 1.7 and 1.9]). A26

lambda homomorphism between lambda rings (R, {λrR}) and (S, {λrS}) is a ring homomorphism f : R → S such27

that f ◦ λrR = λrS ◦ f for all r ≥ 0 ([Yau10, Definition 1.25]).28

In literature one can find the name pre-lambda ring or simply lambda ring for a ring satisfying 1)-2) above and the29

name special lambda ring for rings satisfying 1)-5). Since we will be interested mainly in special lambda rings we will30

stick to the notation introduced in the previous definition. Finally, note that for a lambda ring, a splitting principle is31

always satisfied, see [Yau10, Theorem 1.44].32
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Definition C.2. Suppose R is a lambda ring and A is an R-algebra (not necessarily unital) together with a family1

of set maps λk : A → A for k ≥ 1, we will say that A is an R-lambda algebra if R × A with the addition, the2

multiplication and the operations defined below is a lambda ring (see [Kra80, page 240]).3

1) For all a, b ∈ R and x, y ∈ A we set (a, x) + (b, y) := (a+ b, x+ y).4

2) For all a, b ∈ R and x, y ∈ A we set (a, x)(b, y) := (ab, ay + bx+ xy)5

3) For all (a, x) ∈ R×A we set λk(a, x) := (λk(a),
∑k−1
i=0 λ

i(a)λk−i(x)), k ≥ 1.6

Example C.3. (See also [HKT17, page 436]). Suppose we have an N-graded sum of R-modulesM∗ = ⊕n∈NMn where
M0 = R is a lambda ring. Assume that we give to M∗ the following product

(a0, a1, a2, ...)(b0, b1, b2, ...) := (a0b0, a0b1 + a1b0, a0b2 + b0a2, ...)

and that we define, for k ≥ 1 (λ0 being the map (a0, a1, · · · ) 7→ (1, 0, 0, · · · ))

λk(a0, a1, a2, ...) := (λk0(a0),

k−1∑
i=0

λi0(a0)λk−i1 (a1),

k−1∑
i=0

λi0(a0)λk−i2 (a2), ...)

where λin : Mn → Mn are group homomorphisms for all n ≥ 1 and all i ≥ 1. Then the R-algebra M∗ automatically7

satisfies 1)-3) of the definition of lambda ring. In this situation, to check that M∗ is a lambda ring we only need to8

verify that for any n ≥ 1, the groups Mn are R-lambda algebras. This really amounts to check axioms 4) and 5) for9

elements x ∈ Mn and y ∈ M0. See also the proof of [HKT17, Theorems 7.1 and 8.18] for more details about why it10

suffices to check this.11

Given a lambda ring, one can always define the so called Adams operations, which are very useful for many12

purposes.13

Definition C.4. Let R be a lambda ring. For each n ≥ 1 we can define the nth Adams operation ψn by recursion14

as ψ1(x) = x, ψ2(x) = x2 − 2λ2(x), ψk(x) = λ1(x)ψk−1(x) − λ2(x)ψk−2(x) + ... + (−1)kλk−1(x)ψ1(x) +15

(−1)k+1kλk(x) (these are called Newton formulas, see [Yau10, 3.10]).16

Remark C.5. Consider a ring R with a family of lambda operations satisfying only 1)-2) of Definition C.1. Then Adams17

operations can be defined via the Newton formulas as before and they coincide with the ones defined in [SGA71, V18

7.1] or in [Yau10, 3.1]. This gives that ψn are group homomorphism under these assumptions on the given lambda19

operations. If R is a lambda-ring, then each Adams operation ψn is a ring homomorphism and for each m,n ≥ 1, we20

have ψmψn = ψnm = ψnψm ([Yau10, 3.6, 3.7]). If R is Z-torsion free, then the Adams operations uniquely determine21

the lambda ring structure over R used to define them ([Yau10, Theorem 3.15]).22

Definition C.6. ([Yau10, Definition 3.44] and probably having origin in [Knu73, page 49]). A commutative ring R is23

called a ψ-ring if it is equipped with ring endomorphisms ψk : R → R for k ≥ 1 such that ψ1 = idR and for each24

m,n ≥ 1 ψmψn = ψnψm = ψmn. If R is noncommutative, we say that it is a noncommutative ψ-ring if as in the25

commutative case, it is equipped with ring endomorphisms ψk : R → R for k ≥ 1 such that ψ1 = idR and for each26

m,n ≥ 1, ψmψn = ψnψm = ψmn.27

Remark C.7. Usually, a lambda ring is assumed to be commutative and unital. However these two condition might be28

relaxed. Indeed, in the works [Kra80] and [Sou85] one find the notion of lambda ring without the unit being defined29

as a ring satisfying the axiom of Definition C.1 not involving the unit, see [Sou85, page 512] for example. This is30

due to the fact that, strictly speaking, in a pointed category the notion of ring makes perfect sense if we do not ask31

the multiplicative unit to exist because the additive and the multiplicative units cannot be characterized at the same32

time via pointed maps from the zero object to the ring we are considering, and those authors were working mainly33

in pointed (homotopy) categories. Also, as far as we know, there isn’t a well developed theory, or even a notion, of34

lambda rings in the context of noncommutative rings. The problem, roughly speaking, is that the axioms of a lambda35

rings involves symmetric polynomials that do not easily fit in the context of noncommutative rings. To have a feeling36

of the issues, the reader can try to make sense of axiom 2) in this context for example. However, the definition37

of ψ-ring easily extends to the noncommutative case. Indeed the only definition of “noncommutative lambda ring"38

we have been able to find in literature is the one contained in [Pat95, Definition I.1] that agrees with our definition39

of noncommutative ψ-ring. Notice that in [Pat95] the only noncommutative rings considered are noncommutative40

R-algebras for some commutative ring R containing the rationals.41

The previous definitions allow us to make sense of the notion of lambda ring in any category with finite products42

and a terminal object, sometimes the terminal object is referred as the empty product. This can be done using the43

machinery of [Rio10, Section 2] in the context of lambda-rings. We fix in this section such a category C. Since we do44

not know any explicit reference for the notion of lambda ring object is such category besides the one that can be given45
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using the reasoning of [Rio10, Section 2], we think it is worthwhile to spell out its structure here. We will denote the1

terminal object of C by ∗. Suppose we are given a commutative unital ring object K in C. We define this notion using2

the machinery of [Rio10, Section 2], see also [Bor94, Section 3.2 page 125], i.e. as a datum (K,+,−, ·, 0, 1) where K3

is an object of C, + : K × K → K and · : K × K → K represent the additive and the multiplicative laws of K ,4

− : K → K denotes the inverse for the group structure and the two maps 0, 1 : ∗ → K represent the additive and the5

multiplicative neutral elements. These maps satisfy the usual axioms required from the definition of commutative ring6

object, i.e. (K,+,−, 0) is an abelian group object in C, (K, ·, 1) is a commutative monoid object in C and we require7

the obvious diagram expressing the right and left distributivity of the multiplication with respect of the addition to8

commute. We will write a polynomial of degree m in n variables with integer coefficients as9

P =
∑
|J|≤m

aJx
J , J = (j1, . . . , jn), |J | =

n∑
i=1

ji ≤ m, xJ = xj11 · · ·xjnn (5)

here the xi are the variables and aJ ∈ Z for every J . Now, given an integer q ∈ Z we define the multiplication by q
as a map ·q : K → K to be the zero map if q = 0, and as the following composition if q > 0

K
diagonal−−−−−→ Kq := K × · · ·×︸ ︷︷ ︸

q − 1 times

K
+−→ K

which is well defined because of the associativity of the group law. If q < 0 we define the map in the same way but
we postcompose with the map − : K → K . We can do something analogue with the operation “raising to the power
of j" for any j ∈ N. If j = 0 we define this map as 1 : K → K . Otherwise we define the map ·j : K → K as the
following composition

K
diagonal−−−−−→ Kj ·−→ K

also here this map is well defined because of the associativity of the multiplicative law. With the same process, we can
define for every multivariable xJ of length n and degree m as above a map

xJ : Kn → K

by considering the composition

Kn ·j1×···×·jn−−−−−−−→ Kn ·−→ K

which is well defined because of the axioms of commutative ring. Post composing the previous map with a· for any
integer a gives us maps

axJ : Kn → K

Now, suppose we have a polynomial P =
∑
|J|≤m aJx

J in n variables and of degree m as in (5). Denote the number
of summands in P by qP . We can define a map P : Kn → K as follows

Kn ×|J|≤maJx
J

−−−−−−−−→ KqP +−→ K

which is well defined because of the ring axioms (associativity, distributivity etc.). The last step to make sense of the
lambda ring axioms is then to consider a family of maps λr : K → K with r ≥ 0. We can write expressions using
these operations as variables. For example suppose we want to formalize the axiom λr(x+ y) =

∑
i+j=r λ

i(x)λj(y)
as the equality between two maps K ×K → K . We then interpret the left hand side as the composition

K ×K +−→ K
λr−→ K

For the right hand side, we see it as the composition

K ×K (λ0×···×λr)×(λ0×···×λr)−−−−−−−−−−−−−−−−−→ Kr+1 ×Kr+1 P−→ K

where P is the polynomial of degree 2 in 2(r + 1) variables involved in the right hand side. If a map K ×K → K is10

built in this way, we will denote it as Pλ. Asking if the axiom 2) of lambda ring holds then amount to ask if those two11

maps are equal. The same can be done for the remaining axioms of lambda ring: they all involve polynomials with12

coefficients in Z. We can then give the following:13

Definition C.8. A lambda ring object, or simply lambda ring, in a category (C,×) with finite products is the datum of14

a commutative (unital) ring object (K,+,−, ·, 0, 1) in it together with a family of morphisms {λn : K → K}n∈N in C15

such that the axioms 1)-5) of definition C.1 hold, provided we make sense of the terms involved as we explained above.16

Remark that this definition coincides with the one we would get by using the machinery of [Rio10, Section 2]. A ψ-ring17

object in (C,×) is the datum of a ring object (commutative or not) together with a family of ring homomorphisms ψk,18

k ≥ 1, satisfying the formal properties of Definition C.6.19

Notice that all the arrows induced by the polynomials involved in the axioms 2), 4) and 5) of the definition of a20

lambda ring are naturally pointed, i.e. they are pointed maps (Kp, 0)→ (K, 0) for some suitable p.21
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