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A B S T R A C T

Back-analysis is broadly used for approaching geotechnical problems when monitoring data are available and
information about the soils properties is of poor quality. For landslide stability assessment back-analysis cali-
bration is usually carried out by time consuming trial-and-error procedure. This paper presents a new automatic
Decision Support System that supports the selection of the soil parameters for three-dimensional models of
landslides based on monitoring data. The method considering a pool of possible solutions, generated through
permutation of soil parameters, selects the best ten configurations that are more congruent with the measured
displacements. This reduces the operator biases while on the other hand allows the operator to control each step
of the computation. The final selection of the preferred solution among the ten best-fitting solutions is carried out
by an operator. The operator control is necessary as he may include in the final decision process all the qualitative
elements that cannot be included in a qualitative analysis but nevertheless characterize a landslide dynamic as a
whole epistemological subject, for example on the base of geomorphological evidence. A landslide located in
Northeast Italy has been selected as example for showing the system potentiality. The proposed method is
straightforward, scalable and robust and could be useful for researchers and practitioners.
1. Introduction

Back-analysis (or backward analysis) is a technique broadly used for
dealing with geotechnical problems (Gioda and Sakurai, 1987; Swoboda
et al., 1999) despite its well-known limitations (Leroueil and Tavenas,
1981; Deschamps and Yankey, 2006). For landslide modelling,
back-analysis is often used to determine the soil parameters for the nu-
merical model to eventually be used in designing of structural counter-
measures. As a matter of fact the results of geotechnical laboratory test
performed on landslide soils frequently do not provide sound information
about the actual mechanical strength of the in situ material (Suits et al.,
2008) due to scale effects (Mitchell, 1991), sample disturbance (Tang
et al., 1999) and shear strength recovery effects (Stark and Hussain,
2010). Back-analysis, as an empirical method, cuts off all the un-
certainties related to the limited information of the soil characteristics
relying on direct measures provided by a monitoring system deployed on
site (Peck, 1969).
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However back-analysis of landslide stability based on monitoring
data is generally strongly operator-dependent and the selection of the
parameters is performed through a time-consuming trail-and-error pro-
cedure (Borgatti et al., 2008; Marcato et al., 2012). Several methods
already propose to automatize (or partially automatize) the selection of
the optimal soil parameters combination (Doherty and Lehane, 2009;
Zhang et al., 2010; Sch€adler et al., 2015; Sun et al., 2016; Yin et al., 2018)
but none propose a Decision Support System (DSS) that could permit to
the operator to check each step of the process and integrate also the
operator heuristic.

This paper presents a semi-automatic system based on finite differ-
ence three-dimensional models of landslides for the selection of the
optimal geotechnical parameters combination. It has been applied in
supporting decision making process according to the Multiattribute
Utility Theory (Olson, 2008) face with a multi-objective non-linear
optimization problem (Deb, 2005). The possibility to rely on an
operator-independent procedure increases the reliability of the analysis,
(G. Bossi), gordon@imde.ac.cn (G.G.D. Zhou), gianluca.marcato@irpi.cnr.it
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Table 1
Landslide parameters for movement description.

Definition Variable Dimension Unit of
measure

Monitored Direction of the horizontal
component of the
displacement

αm – rad

Direction of the horizontal
component of the
displacement at SS

αSSm – rad

Direction of the vertical
component of the
displacement

γm – rad

Displacement intensity Im L –

Mutual ratio of displacement
intensities

rm L/L –

Modelled Direction of the horizontal
component of the
displacement

α – rad

Direction of the horizontal
component of the
displacement at SS

αSS – rad

Direction of the vertical
component of the
displacement

γ – rad

Displacement intensity I L –

Mutual ratio of displacement
intensities

r L/L –
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and thus, for example, of the structural countermeasure designed and
based on that model, by removing the inevitable biases of the human
operator. This, however, does not mean that a human control on these
systems is not necessary. On the contrary it is still necessary to discrim-
inate between a selection of the best fitting solutions performed by the
DSS, considering the displacement pattern of the landslide in areas where
no measures are available but where other qualitative information such
as geomorphological evidence may be present, increasing the overall
reliability of the method.

The DSS is based on a backward analysis of the superficial and deep
monitored displacements of the slope instability. Therefore the system
works in 3 steps: (1) the construction of the admissible numerical solu-
tions through the generation of multiple numerical simulations of the
displacement pattern of the landslide; (2) the proximity evaluation of the
surveyed and the simulated displacement; (3) the selection of the most
suitable solution in parameters combination. The results have been also
compared with the parameters combination selected by an operator
through trial-and-error procedure in order to estimate the uncertainties
introduced by the operator biases.

2. Materials and methods

For landslide modelling, the main sources of uncertainty associated
with back-analysis are: #1 the reconstruction of the actual slip surface
(SS) (if any) along the whole slope, #2 the definition of the pore pressure
distribution along the slope, #3 the presence of three dimensional effects,
#4 the actual strength of materials in heterogeneous slope profiles
(Deschamps and Yankey, 2006; Hasan and Najjar, 2013).

The research has been focused on the analysis of the influence of soil
parameters (#4) by the three-dimensional model reconstruction of the
slope instability from a group of admissible numerical solutions. The
three dimensional effect (#3) has been, therefore, considered substan-
tially overcame by the use of a three-dimensional model.

The main aim of the multi-objective optimization process is to
minimize the objective functions affected by unknown variables and
restricted by a set of constraints (Said et al., 2014).

The optimization problem engaged can be theorized, at the same
time, as a standard optimization paradigm and a heuristic optimization
paradigm (Winker and Gilli, 2004). In modelling optimization, they are
distinguishable according to the approach to the paradigm. In this work,
the optimization problem has been tackled as a standard optimization
paradigm which can be mathematically expressed as:

max f ðxÞ (1)

where x 2 X and X is a subset of n-dimensional vector space (Winker and
Gilli, 2004) and f ðxÞ is the objective function (Meier et al., 2009). The
paradigm presumes the existence of a unique solution reached by a
simple enumeration or differential calculus. Therefore, to reduce the
complexity of the optimization problem and find a solution, the
multi-objective optimization problem has been solved as a
single-objective optimization problem aimed to optimize singularly two
consequential objective functions.

The standard optimization paradigm has been, thus, approached in
back-analysis through a global and direct search method. The feature
“global” highlights the existence of optimal design parameters obtained
from the absolute minimization of the objective function (Stuckman
et al., 1991). Indeed, “direct search” describes the iterative use of trial
values in a comparison-based analysis between monitored and calculated
variables until their divergence is minimized (Swoboda et al., 1999;
Lewis et al., 2000). In a general application, the trial values in
back-analysis optimization, applied to slope stability, is represented by
the set of unknown soil parameters provided by a search algorithm.
Taking a set of them (St), the t–th solution is modelled and the relative
objective function is evaluated over the iterations until the optimization
paradigmwill be satisfied. The iterative calculation (t–th) is fed by the set
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of trial values of the unknown soil parameters which characterize the
single solution modelled. They are calculated as:

Stþ1 ¼ St þ λtdt (2)

where λt and dt are respectively the entity and the search direction of the
step set, both depending on the assumed optimization technique (Jeon
and Yang, 2004). In this work the DSS is based on a pool of modelled
solutions preliminary determined which allows the visualization of the
solutions cloud and their behavior. Thus, λ and d values have been
established a priori in order to satisfy all the soil parameters permutation
assumed without any specific optimization technique.

The system proposed requires at least 3 superficial displacements

(ℝ3 ¼ fðv1; v2; v3Þjv2 ℝg with V
!

m ¼ ðvm1 ; vm2 ; vm3 Þ 2 ℝ3) and 3 deep

displacements (ℝ2 ¼ fðv1; v2Þjv2 ℝg with V
!

SSm ¼ ðvSSm1 ; vSSm2 Þ 2 ℝ2)
surveyed by the monitoring equipment which is, therefore, composed by
n superficial benchmarks and k deep monitoring points (n ¼ 3 and k ¼ 3
are the minimum requirements).

The numerical three-dimensional model that better reproduces the
monitored displacements assigns the characteristic parameters to the
landslide material. Then, the fitness criteria for the solution selection is
based on the minimization of the function (Opt) which evaluates the
proximity of the numerical three-dimensional models with themonitored
slope failure. It can be expressed as:

Opt¼ f ðαm; αSSm; γm; rm; α; αSS; γ; rÞ (3)

The variables are described in Table 1.
The pool of admissible solutions is automatically computed in

FLAC3DTM which allows the calculation of all the numerical models with
permuted soil parameters. FLAC3DTM (Fast Lagrangian Analysis of Con-
tinua) uses explicit algorithm to describe the evolutionary behavior of the
displacements (Li et al., 2006).

FLAC3DTM has been selected to automatize the generation of the pool
of the modelled solutions considering different permutation of soil pa-
rameters. Generally, only a part of the total soil parameters combinations
reach convergence and may be used for the following analysis, the rest
may generate excessive displacements that are not manageable numeri-
cally by FLAC3DTM.



G. Titti et al. Geoscience Frontiers 12 (2021) 231–241
The movement of the landslide in this analysis are described by: the
displacement along the slip surface which are monitored by in-
clinometers and the displacement at the surface which are monitored by
GNSS benchmarks. Thus, 4 soil parameters have been associated to each
numerical solution: the cohesion (cSS) and friction angle (φSS) of the
landslide material close to the slip surface, the cohesion (c) and friction
angle (φ) of the landslide surface material. The numerical model provides
the displacements of the cells vertices (ℝ3 ¼ fðv1; v2; v3Þjv2 ℝg with

V
! ¼ ðv1;v2;v3Þ 2 ℝ3).
Fig. 1. Flow-chart of the
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The model is based on the evaluation of the similarity in displacement
directions and intensity of monitored and simulated points. A scheme of
the DSS is shown in Fig. 1. The monitored points are spatially coupled
with the geometrical centroids of the relative cells and the surveyed
displacements are compared with the weighted average of the vertices
displacement (α; αSS; γ; I) calculated by the numerical model. The evi-
dence of each cell vertex (j¼ 1,…, 8) depends on the relative intensity of
the displacement.
DSS implemented.
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8>>> αi ¼
 P8

j¼1αj � j
�� V!j j

��P8 �! �
!

i ¼ 1;…; n
9>>>
Table 2
Optimization based variables.

Variable Definition

eh arithmetic average of the horizontal superficial radial divergences (α)
essh arithmetic average of the horizontal deep radial divergences (αSS)
ev arithmetic average of the vertical superficial radial divergences (γ)
er arithmetic average of the ratio divergences (r)
>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

j¼1 j� V j j� i

αSSl ¼
 P8

j¼1αSSj � j
�� V!j j

��P8
j¼1 j
�� V!j j

��
!

l

l ¼ 1;…; k

γi ¼
 P8

j¼1γj � j
�� V!j j

��P8
j¼1 j�� V!j j

��
!

i

i ¼ 1;…; n

Ii;z ¼
 P8

j¼1 j�� V!j j
��

8

!
i

i ¼ 1;…; n

>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

(4)

ri;z ¼ Ii
Iz

i; z ¼ 1;…; n (5)

Overall, the movement of the soil mass is parameterized by: the
horizontal displacement directions of the superficial and deep reference
points; the vertical displacement directions of the superficial reference
points; and additionally the mutual ratios between the entities of the
superficial displacements.

From the numerical point of view, the simulated displacement of the
deep layer is significantly reduced by the contact cells face displacement
inducing the error in the entity evaluation. Therefore, the calculation of
the cell displacement, like the weighted average of the vertices
displacement entity, has been proposed. In this manner, it is possible to
create the relational function between the punctual vertex and the vol-
ume of the cell.

Among the entire variable used, r is probably the most important in
volumetric terms. It creates dependencies between the superficial
monitoring points and describes the relations between the displacement
entities of the superficial monitoring points, pointing out the shape of the
deformation. The ratios r are not considered for the deepmonitored point
because of the small entity of the displacements, which are excessively
affected by measurement errors. The results related to these physical
quantities may be affected by higher errors than the errors associated to
the omission of rSS visible in Eqs. (4) and (5).

The quality of each solution is evaluated by the directional di-
vergences and the intensities relationship of the displacement. The
former is calculated as differences between monitored and calculated
horizontal angles and vertical angles, while the latter as ratios of intensity
displacements for each spatial coupled point. Thus, at least 9 radial di-
vergences (6 horizontal and 3 vertical) of 6 points of relevance and 6
divergences between the ratios of 3 superficial points of relevance are
considered from any numerical solution. Overall, 15 parameters should
be minimized to select the most convergence numerical solution to the
monitored case study.

Any divergence class selected represents a physical quantity that
characterizes the landslide movement. In order to associate a singular
numerical value to each physical phenomenon, the arithmetic averages
of: the horizontal superficial radial divergences (eh); the horizontal deep
radial divergences (eSSh); the vertical superficial radial divergences (ev)
and the ratio divergences (er) are normalized and calculated (Table 2) by
the following equations:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

eh ¼
Xn
i¼1

jαmi � αij
2π � n i ¼ 1;…; n

eSSh ¼
Xk
l¼1

jαSSml � αSSl j
2π � k l ¼ 1;…; k

ev ¼
Xn
i¼1

jγmi
� γij

2π � n i ¼ 1;…; n

er ¼
Xn
i¼1

jrmi � rij
n2

i ¼ 1;…; n

(6)
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To compare the proximal displacement of the slip surface and the
superficial displacements, the γ variable can be neglected and thus all the
derivative variables, which describe the vertical displacements, are
neglected.

The near-optimal solution of the multi-objective optimization prob-
lem is reached facing the problem as single-objective. It is based on a
consequential resolution of two single-objective functions. The first
function selects the domain of the second (Fig. 2). The objective functions
of the double standard optimization paradigm are expressed as:

Optαðαm; αSSm; α; αSSÞ¼ eh þ eSSh
2

(7)

Optrðrm; rÞ¼ er (8)

At first, the minimization of Eq. (7) defines the numerical solutions
(S) that compose the Dom(Optr).

DomðOptrÞ¼ fer 2ℝ : er ¼ erðSðOptα1 ÞÞ;…; erðSðOptαw ÞÞg (9)

The numerosity of the domain is defined by the first quartile of the
ascending ordered Optα values. w is the number of the solutions popu-
lating the first quartile.

The solution of the optimization problem is reached at the second
stage by the direct search of the absolute minimum of Eq. (8).

The variables selected (α; αSS; r) characterize the dynamic displace-
ments of the landslide. The most intuitive are the angles α and αSS. The
first describes the spatial direction of the superficial displacement and
the second the horizontal direction of the displacement of the deep cells
layer in contrast with the stable soil.

The behavior of the deep soil elements of a landslide is influenced by
its interaction with the stable soil through the slip surface, which induces
a localized deviation in the inclinometers vertical profiles. In this
manner, the discontinuity surface between the moving press and the
stable ones can be traced.

3. Case study

The landslide data used to test the method come from long investi-
gated heart shaped slope instability phenomenon in Northeast Italy
(46�2304900N, 12�4205100E) that interferes with the National Road (Fig. 3).
The phenomenon consists of two adjacent landslides with distinct crowns
but converging toes. The complex topography and the mutually depen-
dent kinematic of the two landslides requires to implement a three-
dimensional model to adequately reconstruct the displacement pattern
(Sinigardi et al., 2015).

The material constituting the landslide are well-graded colluviums, in
average somewhat coarser in the western landslide (called “Frana 2”) and
with more fine fraction in the eastern landslide (called “Frana 1”). The
particle size distribution of Frana 1 shows a material that is a Wide-Grade
Loose Soils (WGLS) (Cui et al., 2019) composed by 15% gravel, 45%
sand, 30% silt and 10% clay. The PI of the fine material is around 10 in
very much all the samples analyzed at different depths.

No direct geotechnical mechanism for explaining the movement of
the landslide has been identified, we are just observing a physical phe-
nomenon (movement from monitoring data) and trying to reproduce its
behavior. However, rainfall infiltration has been excluded as direct
triggering factor for this landslide. There are several evidences support-
ing this statement: a little correlation between displacements measured



Fig. 2. Flow-chart of the double standard optimization paradigm.

Fig. 3. (a) Representation of the study area, the monitoring system and the displacement directions of the GNSS benchmarks. (b) The 3D reconstruction of the
slip surface.
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in real-time along the slip surface by means of in-place inclinometers and
rainfall events exists and there are no evidences about shallower super-
imposed instabilities above the very distinct slip surface that is located at
23–24 m below ground surface. Besides the cumulated displacements
recorded by the inclinometers are coherent with GNSS periodic surveys
(Fig. 4) and the average slope angle of the landslide is less than 20� so the
geometry is not favorable to rainfall induced shallow instabilities. Future
work will investigate internal erosion as main driving force for the
landslide (Nord and Esteves, 2010; Cui et al., 2019), focusing on the
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effect induced by the presence of the Rio Verde stream and/or the springs
that are located near the crown of Frana 1 (Lan et al., 2013; Nunes
Lourenço et al., 2015).

At date a monitoring system consisting of 3 GNSS benchmarks
(Table 3) and 3 inclinometers (Table 4) is following the landslide dis-
placements (n ¼ 3 and k ¼ 3 are respectively the number of the GNSS
benchmarks and of the inclinometers considered in the case study). The
displacements monitored are expressed in polar coordinates in Table 5
and the mutual ratios of the GNSS benchmark displacements are reported



Fig. 4. Inclinometer profiles of two monitored points: PC1ter and I21bis.

Table 5
Displacements monitored ðαm; ααSSm; γmÞ between 2012 and 2014 and expressed
in polar coordinates referred to the zenit (Z) and the geographic north (N).

Type of displacement Point Displacement (rad, rad)

Horizontal angle (αm, αSSm) Vertical angle (γm)

Superficial PM18 3.85 1.59
PM21 2.81 1.08
PM22 3.00 1.39

Deep I21bis 3.93 –

PC1ter 3.54 –

I15bis 3.31 –
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in Table 6. The average velocity is 1.0–1.5 cm/yr in the western side and
3–3.5 cm/yr in the eastern area. The water table, measured in the
inclinometric boreholes, does not ever reach the slip surface (SS), even
during intense rainy events, so for this specific landslide we can discard
the instability effect induced by pore water pressure variation (#2). The
measures in the two inclinometers of Frana 1 show a distinct slip surface
while in Frana 2 the displacements are distributed along the whole
landslide body (Zabuski et al., 2017). The numerical model was therefore
designed with two material composing Frana 1, one for the actual
landslide body and the other one for the slip surface, while Frana 2 was
composed by a single material for both, landslide body and slip surface
(Sinigardi et al., 2015).

The geometry of the slip surface has been reconstructed using as
control points the location of the slip surface recorded in 20 in-
clinometers that have operated in the area during 2002–2010 and the
contour of the landslides reconstructed on the base of geo-morphological
evidence (Fig. 3). The influence of the uncertainty linked with the ge-
ometry of the slip surface (#1) may be thus assessed as negligible. A 1m
cell helicopter borne LiDAR Digital Terrain Model (DTM) of the area is
available. The DTM has been resampled into a 10–m grid for the three-
Table 3
Geographical coordinates of the benchmarks, reference system EPSG 102092,
elipsoid WGS84.

Point Date Lat North (N) Lon East (E) Elevation a.s.l. (H)

PM18 2012 2344316.793 m 5140763.890 m 789 m
2014 2344316.788 m 5140763.800 m 789 m

PM21 2012 2344263.817 m 5140777.976 m 785 m
2014 2344263.799 m 5140777.938 m 785 m

PM22 2012 2344130.705 m 5140602.471 m 738 m
2014 2344130.700 m 5140602.389 m 738 m

Table 4
Geographical coordinates of the inclinometers at ground level and the elevation of th

Point Date Lat North (N) Lon Ea

I21bis 2010 2344361.299 m 51406
PC1ter 2012 2344140.216 m 51405
I15bis 2012 2344094.385 m 51406
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dimensional reconstruction of the slope surface to reduce the computa-
tional time using the local weighted average. According to Vianello et al.
(2009) the average resampling method seems to be the most respectful
way to reproduce the slope when resampling LiDAR data.

The mesh of the three-dimensional model is composed by 20014
hexahedral elements (Fig. 5). The DSS presented in this paper is inde-
pendent of the rheology selected for the analysis and from the number of
the parameters required. For the example application a Mohr Coulomb
failure criteria has been chosen. This does not mean that other rheologies
or other soil parameters might have an influence in the proper recon-
struction of the process. Mohr Coulomb has been used for straightfor-
wardness and simplicity and to allow an easier readability of the results.

Values derived from laboratory tests have been assigned to the unit
weight and the elastic parameters. The four Mohr Coulomb parameters,
friction angle (φ) and cohesion (c) respectively for the Frana 1 landslide
body and the Frana 1 slip surface (Table 7) have been permuted to
generate 3024 admissible numerical solutions for the problem from
e slip surface (SS) recorded, reference system EPSG 102092, elipsoid WGS84.

st (E) Elevation a.s.l. (H) Elevation a.s.l. of SS

73.531 m 739 m 716 m
27.136 m 690 m 666 m
11.060 m 729 m 712 m



Table 6
Matrix of the ratios between entities of monitored displacements.

Displacements PM18 PM21 PM22

PM18 1 0.50 0.95
PM21 1.99 1 1.89
PM22 1.05 0.53 1

Table 7
Input soil parameters permutation for modelled solutions construction and
relative values used in the case study presented.

Soil parameters Case study input values

φ (�) 16, 18, 20, 22, 24, 26, 28, 30
c (kPa) 12, 14, 16, 18, 20, 22, 24, 26, 28
φSS (�) 12, 14, 16, 18, 20, 22
cSS (kPa) 8, 10, 12, 14, 16, 18, 20
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which to select the best-fitting ones. It was decided to use two units of
measures intervals for the analysis both for cohesion and friction angle as
it seems to us a good balance between number of possible permutation
and geotechnical meaning of the quantity. Besides, since the basic idea of
the method was to “go blind”, a wide range of soil parameters was used
considering as central points the average of the geotechnical tests that
were performed on the soil samples and then expanding them until
excessive displacements (no convergence) or no movements were
observed. The use the Point Estimate Method was also considered but
since back analysis often starts with very little knowledge of the material
involved, and back analysis is our benchmark, it was decided to use this
very simple approach.

Mohr Coulomb values of Frana 2 have been deemed to be far less
influential and have been kept constant in this analysis to reduce the
computational effort. In any case, the mutual influence of Frana 2 and
Frana 1 has been taken into consideration by the monitored displace-
ments at PM21 and I15bis (Fig. 3a).

4. Results and discussion

The double single-objective optimization problem solved by the core
system algorithm is based on an empirical approach that compares
monitored and modelled quantities.

The close relation to the physical behavior of the soil mass repre-
sented by themonitoring data guarantees a high reliability of the solution
proposed.

Unlike the most used method to determine the soil parameters of
landslides which is exclusively based on the investigator expertise, the
semi-automated DSS is validated by the operator which supervises the
automated process and the final solution. The presence of an operator
contribution in the final result does not undermine the utility of the
automatic search activity achieved by the system, rather, it reduces the
potential errors linked with the purely operator dependent procedure.

Considering the context of the case study proposed, the optimization
problem can be resumed mathematically as: given h : A⊆ R2 → R, q : B⊆
A → R and eh0 ; eSSh0 ; er0 ;Optα;Optr 2 R where hðeh; eSShÞ ¼ Optα, qðerÞ ¼
Optr find eh0 , eSSh0 , er0 / hðeh0 ; eSSh0 Þ & qðer0 Þ are absolute minimum.

The search algorithm is focused on the h and q function minimization.
The dependencies f ðehÞ ¼ Optα, f ðeSShÞ ¼ Optα and f ðerÞ ¼ Optα are

described in Fig. 6a (f is a generic function). The graph compares in the
searching space of the modelled solutions the Optα value and the di-
vergences associated. In particular Fig. 6a describes the space of the first-
stage of the optimization analysis where from 1939 numerical solutions
Fig. 5. Mesh calculation of the three-di
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(S) represented, only 485 solutions was used in the second-stage. The 485
solutions, included in the range values 0.06< Optα < 0.08, correspond to
the first quartile of total solutions.

It is noticeable the trend of the f ðerÞ curve in Fig. 6a. The numerical
solutions that minimized the Optα values, and thus the horizontal di-
vergences of the displacements (eα and eSSh), minimized also the di-
vergences of the ratios (er) in the first quartile, whereas they are
independent from Optα in the remaining solutions. Therefore, the mini-
mization of er (by function q), in which the second-stage of the optimi-
zation procedure is focused, starts from the first-stage minimizing eh and
eSSh (by function h). Consequently, the h and q minimization order has
been selected to increase the efficiency in optimization.

Moreover, in Fig. 6a it is noticeable the similar trends of f ðehÞ and
f ðeSShÞ to support the assumption focused on the minimization of the
variables eh and eSSh through the single Optα.

The resizing of the LiDAR resolution in a less detailed mesh increase
the spatial significance of the punctual surveys. Each geo-localized point
monitored has been spatially coupled with the relative cell of the nu-
merical mesh, thus the slope failure movement of the Frana 1 is described
by 6 cells representing a significant volume according to the thickness of
the cells.

These assumptions are adequate to the object of the study since the
model framework is empirical and aimed to develop a DSS.

Few monitored points and a simple monitoring system allow making
the model easy to apply. In particular, 3 superficial and 3 deep monitored
points represent the minimal requirement to apply the model proposed.
This means on the other hand that the model could be updated easily if
and when more monitoring points will be available.

The errors induced by this strong simplification are in any case more
data supported with respect to a classical operator-dependent back-
analysis procedure. To guarantee a physical significance to the model
proposed, it is fundamental to consider the optimum criteria based on the
divergences (eh; eSSh; er). It represents a functional relation between the
superficial and deep physical phenomena. Moreover, the r variable al-
lows relating punctual assessments to the distributed comprehension of
the failure. In particular, it allows considering the influences of the ten-
sions acting on the mass boundaries, reflecting the selected rheology, and
taking into consideration the interactions between cells.

Fig. 6b shows the density distribution of the FLAC3DTM modelled
solutions. It highlights a peak concentration of the modelled solutions in
a limited interval (0.06 < Optα < 0.08) which coincides the first quartile
mensional model of the study area.



Fig. 6. (a) Mathematical optimization problem description. The green, blue and red curves represent respectively the f ðerÞ; f ðehÞ; f ðeSShÞ functions. (b) Density dis-
tribution of the FLAC3DTM solutions respect to the optimum Optα focused on the domain defined by the first-stage analysis equal to the first quartile of numeri-
cal solutions.

Table 8
Soil parameters of top 10 backward analysis solutions.

# φ (�) c (kPa) φSS (�) cSS (kPa)

1 26 28 16 8
2 28 20 16 8
3 28 22 16 8
4 30 14 16 8
5 28 24 16 8
6 30 16 16 8
7 28 26 16 8
8 30 18 16 8
9 28 28 16 8
10 30 20 16 8
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of the solutions distribution, whereas in Fig. 7 the 10 solutions proposed
by the DSS are presented (Table 8). This distribution is intrinsic to the
case study and influenced by the assumptions adopted.

The first 10 best solutions selected by the search model are charac-
terized by identical values of soil parameters for the slip surface. This
means that using the values of 16� for friction angle and 8 kPa of cohesion
for this landslide could lead to a dependable model on which it would be
possible to base the design of countermeasure works. As it is shown in
Fig. 8 the green dots representing φSS ¼ 16� distributed in a large portion
of the solution space but some of them reach the lowest values of er , while
values of φSS<16� tend to increase er . Therefore, some solutions with φSS
¼ 16� create a local convexity, thus a minimum in the divergences space
with respect to er . On the other hand, solutions analyzed with respect to φ
(Fig. 9) show a large variation of possible values near the minimum of er
and for 0<er<0.2 all the range of possible φ are present. However, high
values of φ are a little more proximal to the minimum of eSSh and eh than
the others. Thus, the sets of soil parameters associated to the Frana 1 of
Table 8 show larger variability but they comprehend values that char-
acterize significantly more resistant materials, especially with high
values of friction angle with respect to the slip surface.

The 10 solutions have been inspected by an operator, they do not
Fig. 7. Density distribution of the FLAC3DTM solutions respect to the optimum
Optr focused on the top 10 solutions.
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differ so much and this means that the parameters of the slip surface are
the factor that most influence the kinematic of the models, as expected.
The operator, anyway, selected the solution number 2 that shows a
displacement pattern with somewhat higher distributed displacements
near the toe of Frana 1. The fact that, in this example, the solutions
selected by the DSS are similar, does not hinder the utility of the second
phase operator decision. In fact, in other case studies the differences may
be more pronounced or that local minima may be detected by the pro-
cedure. Furthermore we believe that a human control phase is always
needed, especially when monitoring data coverage on the landslide is not
well distributed and the number of the monitoring points is not that
much representative of the landslide magnitude.

In fact, it is epistemologically impossible to produce amethodwhich is
univocally right because of the discrete nature of the optimization process
with respect to a large continuous object such a landslide. For this reason
we developed the DSS to search to near-optimal solutions that are most
coherent with the available, again discrete, monitoring data. But, how
“near” are the solutions proposed by the DSS? While we can estimate the
accuracywell in the proximityof themonitoringpointswith theOpt index,
the landslide covers much more area. For this reason we think it is
important to keep and maintain “expert knowledge” as last step of the
procedure to include all the qualitative elements that may not be included
in a quantitative assessment, to include in a synthetical solution all the
phenomenological entities that characterize a landslide displacement
pattern. That is whywe highlight the expression “support the operator” or
“Decision Support System”, the final decision is still depending on the
operator. Anyway, we can assume that the accuracy of the results selected
by the operator after theDSSprocedure is comparablewith the accuracyof
the solution selected by the trial-and-error procedure, which is too



Fig. 8. The three-dimensional distribution of the solutions according to the divergences and graduated according to the friction angle of the SS of Frana 1.

Fig. 9. The three-dimensional distribution of the solutions according to the divergences and graduated according to the friction angle of the Frana 1 body.
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qualitative. For this reason we can compare the two methodologies in
terms of accuracy, efficiency, bias and time-consuming.

The comparison between the model, which has been calibrated by an
independent operator through a basic trial-and-error procedure, and the
DSS solutions is of interest because it gives some indications about the
operator biases. The operator in a blind procedure selected the values of
14� and 10 kPa for the friction angle and cohesion of the slip surface and
24� and 18 kPa for the friction angle and cohesion of the landslide.

The first thing that appears in Fig. 10 showing the comparison of
cumulated displacements of the three solutions, is that the operator so-
lution shows the highest values of displacements. It is essentially linked to
the 2� difference between values of friction angle for the slip surface. This
means that the operator suffers a bias that requires the entity of superficial
displacements onwhich to calibrate themodel to be less subdue andmore
evident, even though the entity of superficial displacements should not be
239
accounted for since the model is calibrated on the relative displacements
measured in the GNSS benchmarks. This effect could be called graphical
bias. Using an operator-independent procedure it is possible to motivate
the selection of the design soil parameters following a straightforward
procedure discarding the errors associated with the practitioners’ biases.

Therefore, how wrong is the operator? What may console technicians
and practitioners that have built several structural mitigation measures
using back-analysis is that the operator is wrong, but not excessively
(Fig. 11). The solution of the operator lies in the first quartile for the first
phase of the search algorithm and ranking 260 with respect of Optr . Its
Optr value is 0.0708 with a minimum of 0.0610 and a maximum of
0.0730 for the first quartile. Moreover, the bias shown by the operator in
this case tend to be conservative, thus the eventual countermeasure work
designed based on the trial-and-error procedure would have been over-
dimensioned, thus more expensive, but not unsafe.



Fig. 10. Contour displacement maps for (A) best fit solution for the algorithm; (B) best fit solution selected by the operator among the best 10 selected by the al-
gorithm; (C) best fit solution selected by an operator in a trial-and-error procedure.
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Summarizing, the advantages of this method are:

(i) it removes most of the operator biases. It allows to rely on a data-
driven straightforward procedure rather than only on a vague “it
seems right to me” that it usually the epistemological base for any
back-analysis result. The results that may arise from this type of
analysis are more defendable and solid both at the design stage as
in case of legal disputes;

(ii) in cases like the one here presented it can support the reduction of
construction costs since it is shown that using operator-dependent
back-analysis may lead to oversizing the countermeasure works,
with impact also on the landscape and the environment;

(iii) in other condition it may lead to identify local minimum that are
unfavourable combination of parameters that could point to near-
to-collapse slopes. That is extremely interesting in the optic of
reliability analysis.

5. Conclusions

A procedure that allows selecting the soil parameters that are more
congruent with monitoring data of landslide displacements has been
presented. The procedure is (i) straightforward, (ii) scalable and (iii)
robust.
Fig. 11. The three-dimensional distribution of
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(i) The DSS does not rely on a stochastic analysis but uses a pool
consisting of all the admissible solutions. This, even though on one
hand increases the computational effort, on the other allows the
operator to analyze the results cloud with more detail and to
identify an extract the most important elements that concur in the
model slope dynamic. Since we are a presenting a DSS we believe
that a procedure that is as transparent as possible may be more
useful for the operator to take informed decisions. Moreover, the
time required to compute all the solutions is comparable with the
time required by an operator to select a solution with a trial-and-
error procedure. Besides, with the proposed method results are
made available while the operator may work on other projects.
Moreover, in a framework were computational times are contin-
uously reducing by the increasing potentialities of PC and even
more through cloud computing, the confront between the trial-
and-error procedure and the proposed method will become by
the month more marked.

(ii) The scalability of the procedure means (1) it can handle as many
monitoring points as available; (2) the analysis could be refined on
the basis of newmonitoring data without computing a new pool of
admissible solutions.

(iii) The DSS is robust because it is simple. The inputs are merely the
locations of the monitoring points and the associated
the solutions according to the divergences.
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displacements. No calibration phase is required. It may handle any
rheology and it could be implemented with different geotechnical
numerical codes.

These three elements make the presented DSS a tool that could be
useful for researchers and practitioners.
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