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Abstract: The fault diagnosis of safety critical systems such as wind turbine installations includes
extremely challenging aspects that motivate the research issues considered in this paper. Therefore,
this work investigates two fault diagnosis solutions that exploit the direct estimation of the faults
by means of data-driven approaches. In this way, the diagnostic residuals are represented by the
reconstructed faults affecting the monitored process. The proposed methodologies are based on
fuzzy systems and neural networks used to estimate the nonlinear dynamic relations between the
input and output measurements of the considered process and the faults. To this end, the considered
prototypes are integrated with auto-regressive with exogenous input descriptions, thus making
them able to approximate unknown nonlinear dynamic functions with arbitrary degree of accuracy.
These residual generators are estimated from the input and output measurements acquired from a
high-fidelity benchmark that simulates the healthy and the faulty behaviour of a wind turbine system.
The robustness and the reliability features of the developed solutions are validated in the presence
of model-reality mismatch and modelling error effects featured by the wind turbine simulator.
Moreover, a hardware-in-the-loop tool is implemented for testing and comparing the performance
of the developed fault diagnosis strategies in a more realistic environment and with respect to
different fault diagnosis approaches. The achieved results have demonstrated the effectiveness
of the developed schemes also with respect to more complex model-based and data-driven fault
diagnosis methodologies.

Keywords: fuzzy systems; neural networks; fault diagnosis; data-driven approaches; robustness and
reliability; wind turbine

1. Introduction

Wind power is the second largest source of renewable energy after solar technology.
The global popularity of wind power has risen significantly due to the need to harness
electrical power in order to limit and end the necessity of fossil fuels [1,2]. Variable-
speed horizontal-axis Wind Turbines (WTs) represent the most important Wind Energy
Conversion System (WECS). Moreover, for effective and reliable power conversion, suitable
technical and technological solutions have to be properly implemented and exploited
in WECSs.

Technological advances in WECSs have encouraged the installation of wind farms.
Owing to their large size and requirement of high wind speeds, these installations are
located in offshore areas. However, offshore WECSs result in disadvantages such as high
installation costs, continuous supervision, and Operation and Maintenance (O & M), which
in turn affect their degree of reliability and availability. O & M costs for offshore WTs
have been found to be nearly 30–40% of the comprehensive life costs of WECSs [1], thus
increasing the final production costs of the generated electricity.
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Reducing O&M costs and increasing the plant availability are the key points in op-
erating and generating power from WECSs [1,3]. The optimal conversion cost of WECS
operation can be achieved in two ways: (i) by using efficient design techniques to prevent
the unbalancing of loads and maintaining a rated power output throughout the operation,
which can be achieved via appropriate modelling and monitoring strategies of the WT
system; (ii) by developing suitable fault diagnosis techniques that prevent unnecessary
O&M and shutdown periods due to failures. Technological advancements have been pro-
posed and implemented in order to achieve effective designs for different models of WTs in
recent years. However, the existence of faults is inevitable in the operation of WECSs, like
any other industrial system. Electromechanical devices, actuators and sensors represent
the most common components affected by faults in a WECS [1,3]. Any faulty event in
the WECS results in a deviation of the system from its objectives and causes possible
damage to the process components. Moreover, a fault will deteriorate the performance of
the overall plant, resulting in the unscheduled shutdown of the WECS. To remain operative
and competitive, there is a high demand for improving the reliability and availability of
WTs with reduced unplanned downtimes in the electricity market, thus limiting O&M and
significantly reducing the final cost of energy.

To this end, Fault Detection and Isolation (FDI) for WTs has been successfully exploited,
together with Fault Tolerant Control (FTC) strategies, see e.g., [3,4]. In general, FDI relies on
three methods, i.e., parity equations, parameter estimation approaches and observer/filter
methods [5]. In particular, model-based FDI schemes for WTs exploited sliding mode
approaches, as shown e.g., in [6], linear observers [7], and Kalman filters [8]. However,
these methods usually assume that an accurate mathematical description of the monitored
process is available, as well as for the sources of uncertainty and disturbance. Therefore,
any inaccurate information during faults may result in degradation of system performance
and can cause instability during post-fault operation. This issue is of great significance
in safety-critical systems such as WTs, having several sources of noise and uncertainties.
Therefore, it is required to develop robust and reliable FDI strategies in a WECS to ensure
its safe operation.

Robust FDI strategies can be also based on data-driven solutions, as they are able
to learn from experience, i.e., from the information brought by the input and the output
measurements of the monitored process. Therefore, in contrast to model-based techniques,
data-driven approaches for WTs can exploit e.g., fuzzy logic [9,10], neural networks [11–14],
neuro-fuzzy [15], or mixed solutions [16].

With reference to this paper, the topic of the FDI for a WT system is analysed. In par-
ticular, the design of simple and viable solutions to FDI are considered here, with respect
for example, to more complex methodologies relying on convolutional neural networks or
support vector machines. In fact, as already remarked above, the FDI modules provide the
direct reconstruction of the fault signals affecting the process, which represents the most
robust and reliable fault indicator, as remarked e.g., in [5]. Moreover, the FDI design ad-
dressed in the paper is also enhanced by the procedure for deriving the fault reconstructors
that are estimated via data-driven approaches.

In more detail, the first data-driven strategy proposed in this work exploits Takagi-
Sugeno (TS) fuzzy prototypes [17], which are estimated via a fuzzy clustering algorithm
and from the data-driven identification developed in [18]. As alternative tool, a second
approach is also proposed, which uses Neural Networks (NNs) to derive the nonlinear
dynamic relations between the input and output measurements of WT process and the
faults affecting the plant. The selected structures belong to the feed-forward Multi-Layer
Perceptron (MLP) NN class that includes also Auto-Regressive with eXogenous (ARX)
inputs in order to model nonlinear dynamic links among the data. In this way, the training
of these Nonlinear ARX (NARX) prototypes for fault estimation can exploit standard
back-propagation training algorithms, as recalled e.g., in [19].

The designed FDI schemes are tested via a high-fidelity simulator of a WT process,
which describes its behaviour in healthy and faulty conditions. This simulator, which repre-



Appl. Sci. 2021, 11, 5035 3 of 21

sents a well-established benchmark [20], includes the presence of uncertainty, disturbance
and model-reality mismatch effects, thus allowing to verify the reliability and robustness
characteristics of the proposed FDI methodologies. Moreover, this work has validated
the efficacy of the designed FDI techniques by exploiting a more realistic scenario, which
consists of a hardware-in-the-loop (HIL) tool.

The same authors have already investigated similar topics in previous papers. For ex-
ample, this study analyses the solutions addressed e.g., in [21], but taking into account a
more realistic real-time system illustrated in Section 4. The fuzzy methodology was also
proposed by the same authors in [22], which considered the development of recursive
algorithms for the implementation of adaptive laws relying on Linear Parameter Varying
(LPV) systems. However, the approach considered in this paper estimates the FDI models
by means of off-line procedures. Moreover, this study improves the solutions achieved
e.g., in [23], but applied to a wind farm. The paper [24] proposed the design of a FTC using
the input-output data from a single WT, by exploiting the results obtained in [25]. On the
other hand, this work considers the verification and the validation of the developed FDI
methodologies by exploiting a HIL tool, proposed considered in a preliminary paper by
the same authors [26].

It is worth highlighting the main aims of the article.

• The paper proposes two data-driven techniques for the FDI of a WT system;
• the developed FDI strategies are based on the direct reconstruction of the fault func-

tions affecting the monitored process. In this way, the diagnostic residuals are repre-
sented by the estimated fault signals;

• the residual generators are organised into a bank structure in order to accomplish the
fault isolation task. Their structures rely on Fuzzy Systems (FSs) in the form of TS
models and dynamic NNs;

• a fault sensitivity analysis enhances the design of the residual generators, by a proper
selection of their inputs;

• the developed FDI schemes are applied to a WT benchmark first; moreover, the ver-
ification of their robustness and reliability features is performed using a HIL tool
representing the realistic behaviour of a WT process.

The paper has the following structure. Section 2 briefly summarises the WT simulator,
as it represents a well-established benchmark [3,20]. Section 3 describes the FDI strategies
based on FS and NN structures, detailed in Section 3.1. Section 4 analyses the obtained
results via extended simulations, whilst Section 4.1 illustrates the HIL tool describing the
behaviour of the WT process. Comparisons and further discussions are also drawn. Finally,
Section 5 concludes the work by summarising the main achievements of the paper, as well
as suggesting interesting issues for further research and future investigations.

2. Wind Turbine Benchmark

This section illustrates the WT benchmark considered in this work. In particular,
Section 2.1 recalls the realistic measurements that are acquired from the WT model for FDI
purpose, whilst Section 2.2 summarises the fault scenario. Moreover, Section 2.3 sketches
the procedure exploited for the selection of the input and output measurements that feed
the residual generators for FDI, as recalled in Section 3.

2.1. WT Benchmark Model

The WT simulator considered in this work was presented in [3,20] and motivated by an
international competition. Despite its simple structure, it is able to describe quite accurately
the actual behaviour of a three-blade horizontal-axis WT that is working at variable-speed
and controlled by means of the pitch angle of its blades. The plant includes several
interconnected subsystems, namely the wind process, the WT system, the controllers,
and the condition monitoring module. The WT block includes the WT aerodynamics,
the drive-train, the electric generator/converter, the sensor and the actuator systems, which
are not detailed here. The overall scheme is sketched in Figure 1, which represents the FDI
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target of this work. The diagram of Figure 1 includes also the switching control strategy
driving the WT system in partial and full load working conditions [20]. These operating
regions will be exploited for the generation of the estimation and validation data sequences,
as remarked in Section 4.

The nominal operating conditions of the WT are selected to satisfy different demands
below and above a certain wind speed. The control task is thus split into the partial and
full load controllers, as shown in Figure 1. The condition monitoring system depicted in
Figure 1 determines the actual working point of the WT plant and drives the controlled
switches accordingly.
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Figure 1. The WT benchmark and its main functional subsystems.

The measurements that are available from the WT benchmark for FDI purpose come
directly from several sensors or, in one case, they are obtained via estimation. In particular,
for each of the three blades, a redundant couple of sensors measures the current pitch angle
βi,m j. Then, a couple of sensors measures the speed of the rotor ωr,m j and another one
the speed of the generator ωg,m j. A single sensor is available for the wind speed at hub
height vw,m, and another one for the generator torque τg,m. The wind measurements are
estimated exploiting the hub anemometer. Table 1 reports a summary of the measured
variables. The model of the measurements consists of the sum of the actual value with a
white Gaussian noise process [20].

Table 1. Signals acquired from the WT benchmark.

Variable β1,m1 β1,m2 β2,m1 β2,m2 β3,m1 β3,m2

Pitch # 1 1 2 2 3 3
Sensor # 1 2 1 2 1 2

Variable ωr,m1 ωr,m2 ωg,m1 ωg,m2

Speed Rotor Rotor Generator Generator
Encoder # 1 2 1 2

Variable τg,m Pg,m vw,m τr,m

Measure Generator torque Generated power Wind speed Rotor torque
Model Generator Generator Anemometer Estimated
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2.2. WT Fault Scenario

The benchmark model implements different kinds of actual faults, namely sensor,
actuator and system faults. Regarding the sensor faults, they affect the measurements of
the pitch angles and the measurements of the rotor speed, in form of a fixed value or a
scaling error. They represent a common fault scenario of WTs, but their severity is low and
they are easily identified. In particular, electrical or mechanical faults in the pitch sensors,
if not handled, result in the generation of a wrong pitch reference for the controller with
the consequence of a loss in the generated power. The speed of the rotor is measured by
means of two redundant encoders, an offset faulty signal can affect these measurements
when the encoder does not detect the updated marker, while a gain factor faulty signal
represents the reading of excessive markers in each loop, due to dirt on the rotating part.

The considered actuator faults are modelled either as a fixed value or changed dynam-
ics of the transfer function. They affect the converter torque and the pitch actuator. In the
former case, the fault is located in the electronics of the converter, while in the latter case
the fault affects hydraulic circuit: it represents the pressure drop in the hydraulic supply
system (e.g., due to a leakage in hose or a blocked pump) or the excessive air content in the
oil that causes the variation of the compressibility factor.

Finally, the considered system fault concerns the drive-train, in form of a slow variation
of the friction coefficient in time due to wear and tear (months or year, but for benchmarking
reason in the model it has been accelerated up to some seconds). It results in a combined
faulty signal affecting the rotor speed and the generator speed.

Table 2 summarises the considered faults, with a brief description of their typology
and topology.

Table 2. Turbine benchmark model fault scenarios.

Fault # 1 2 3

Typology Fixed value Scaling error Fixed value
Sensor # Blade 1 Blade 2 Blade 1

Fault # 4 5 6

Typology Fixed value Scaling error Dynamics
Sensor # Pitch 1 Generator 2 Actuator 2

Fault # 7 8 9

Typology Dynamics Fixed value Dynamics
Sensor # Pitch 3 Converter Drive-train

This scenario comprising the 9 faulty situations is considered in Section 2.3, which
describes the procedure for determining the input and output measurements acquired
from the WT process and mainly affected by these faults.

2.3. Fault Sensitivity Analysis

The paper proposes to exploit this tool, which was suggested earlier by the authors
for a different application, see e.g., [27], as it simplifies the design of the bank of fault
estimators. Moreover, it enhances the identification of the dynamic FS and NN prototypes
recalled in Section 3.1. This analysis must be preliminarily performed on the WT simulator.
In particular, as already remarked, it is used to select the input and output measurements
uj(k) and yl(k) of the process that feed the dynamic FIS or NN of the bank of Figure 2.

In practice, the faults considered in the WT benchmark have been injected into the
simulator, assuming that only a single fault may occur. Then, the Relative Mean Square
Errors (RMSE) index computed by considering the fault-free and faulty measured signals
is computed, so that, for each fault, the most sensitive signal uj(k) and yl(k) is determined.
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In particular, the fault sensitivity analysis relies on a selection algorithm using the
normalised sensitivity function Nx in the form of Equation (1):

Nx =
Sx

S∗x
(1)

with:

Sx =

∥∥∥x f (k)− xn(k)
∥∥∥

2
‖xn(k)‖2

(2)

and:

S∗x = max

∥∥∥x f (k)− xn(k)
∥∥∥

2
‖xn(k)‖2

(3)

The factor Nx represents the effect of the considered fault case on the generic measured
signal x(k), with k = 1, 2, . . . , N its sample number. The subscripts ‘ f ’ and ‘n’ indicate
the faulty and the fault-free case, respectively. Therefore, the signals mainly affected by
the considered fault generate a value of Nx equal to 1. On the other hand, values of Nx
closer to zero indicate that x(k) is not affected by the fault. Those signals corresponding
to significantly higher values of Nx are thus selected as the most sensitive measurements
to the fault cases, and will be used to feed the residual generator modules of the bank
reported in Figure 2.

As already remarked, the WT benchmark is able to generate different typical fault
cases affecting the sensors, the actuators and the process components. This scenario
with the 9 faults is illustrated by means of Table 3, which reports the input and output
measurements acquired from the WT process signals and mainly affected by these faults.
Table 3 thus summarises the results of this fault sensitivity analysis for the case of the
WT simulator.

Table 3. Fault scenario of the WT benchmark.

Fault Case Fault Type Most Affected Input-Output Measurements

1 Sensor β1,m1, β1,m2, ωg,m2
2 Sensor β1,m2, β2,m2, ωg,m2
3 Sensor β1,m2, β3,m1, ωg,m2
4 Sensor β1,m2, ωg,m2, ωr,m1
5 Sensor β1,m2, ωg,m2, ωr,m2
6 Actuator β1,m2, β2,m1, ωg,m2
7 Actuator β1,m2, β3,m2, ωg,m2
8 Actuator β1,m2, τg,m, ωg,m2
9 System β1,m2, ωg,m1, ωg,m2

For FDI purpose, the WT benchmark of Figure 1 can be described as a nonlinear
continuous-time dynamic model represented by the function fwt of Equation (4) with state
vector xwt and fed by the driving input vector u:{

ẋwt(t) = fwt(xwt, u(t))
y(t) = xwt(t)

(4)

Equation (4) highlights that the WT simulator allows to measure the state vector sig-
nals, i.e., the rotor speed, the generator speed and the generated power of the WT process:

xwt(t) = y(t) =
[
ωg,m1, ωg,m2, ωr,m1, ωr,m2, Pg,m

]
The driving input vector is represented by the following signals:

u(t) =
[
β1,m1, β1,m2, β2,m1, β2,m2, β3,m1, β3,m2, τg,m

]
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that includes the acquired measurements of the pitch angles from the three WT blades and
the measured generator/converter torque. These signals are acquired with sample time
T in order to obtain N data indicated as u(k) and y(k) with index k = 1, . . . , N that are
exploited to design the FDI strategies addressed in this work.

Note finally that this tool represents one of the key features of the proposed strategy to
FDI. In fact, the fault reconstructors exploited for FDI can be estimated by using a smaller
number of inputs, thus leading to a noteworthy simplification of the overall complexity,
while decreasing the computational cost of the identification and training algorithms.

3. Data-Driven Strategies for Fault Diagnosis

This section recalls the FDI strategy proposed in this study that relies on FS and NN
tools, as summarised in Section 3.1. These architectures are able to represent NARX models
exploited for estimating the nonlinear dynamic relations between the input and output
measurements of the WT process and the fault signals. In this sense, these NARX prototypes
will be employed as fault estimators for solving the problem of the fault diagnosis of the
WT system.

Under these assumptions, the fault estimators derived by means of data-driven ap-
proaches represent the residual generators r(k), which provide the on-line reconstruction
f̂(k) of the actual fault signals f(k) summarised in Table 3, as represented by Equation (5):

r(k) = f̂(k) (5)

where the term f̂(k) represents the estimated fault vector of Table 3, with f̂(k) =
{

f̂1(k), . . .
. . . , f̂9(k)

}
.

The FDI scheme exploiting the proposed fault estimators as residual generators is
sketched in Figure 3. Note that, as already highlighted, this scheme is also able to solve the
fault isolation task [5].

Dynamic
process

… …

u (k)
…

u (k)

u (k)

1

2

r

y (k)1

Output
sensors

Input
sensors

…

y (k)
2

y (k)
m

Bus

Outputs

Inputs
bus

…
…

Fault
estimator

Fault
estimator

Fault
estimator

Fault
estimator

1

2

i

r+m

Bus

Selector

Selector

Selector

Selector

Selector

Selector

Selector

Selector

u (k)j

y (k)
l

r (k) = f (k)

r (k) = f (k)

r (k) = f (k)

r (k) = f (k)

1 1

2 2

ii

r+m r+m

Outputs

Inputs

Residual generation scheme
for FDI

Measurement
selection

Fault
reconstruction

Figure 2. Bank of fault reconstructors for FDI.



Appl. Sci. 2021, 11, 5035 8 of 21

Figure 2 shows that the general residual generator exploits the input and output
measurements acquired from the process under diagnosis, u(k) and y(k), properly selected
according to the fault sensitivity analysis shown in Table 3. The fault detection problem can
be easily achieved by means of a simple threshold logic applied to the residuals themselves,
as described in [5]. This issue will not be considered in this paper.

Once the fault detection phase has been solved, the fault isolation stage is directly
obtained via the bank of estimators of Figure 2. In this case, the number of estimators of
Figure 2 is equal to the faults to be detected, i.e., 9, which is much lower than the number
of input and output measurements, r + m, acquired from the WT process.

This condition provides several degrees of freedom, as the i-th fault reconstructor
f̂i(k) = ri(k) is a function of the input and output signals u(k) and y(k). These signals are
thus selected in order to be sensitive to the specific fault fi(k), as highlighted in Table 3. This
procedure enhances also the design of the fault reconstructors, as it reduces the number of
possible input and output measurements, uj(k) and yl(k), which have to be considered for
the identification procedure reported in Section 3.1.

The sensitivity analysis already represented in Table 3 has to be performed before the
derivation of the fault estimators. Therefore, once the input-output signals are selected,
according to Table 3, the FSs and the NNs used as fault reconstructors can be developed,
as summarised in Section 3.1.

3.1. Fault Estimators via FS and NN Tools

This section recalls the procedure for developing the fault estimators modelled as TS
FSs. In this way, the unknown dynamic relations between the selected input and output
measurements of the WT plant and the faults are represented by means of FSs, which
rely on a number of rules, antecedent and consequent functions. These rules are used to
represent the inference system for connecting the measured signals from the WT system to
its faults, in form of IF =⇒ THEN relations, implemented as Fuzzy Inference System (FIS),
see e.g., [17].

According to this modelling strategy, the general TS fuzzy prototype has the form of
Equation (6):

f̂ (k) =
∑nC

i=1 λi(x(k))
(
aT

i x(k) + bi
)

∑nC
i=1 λi(x(k))

(6)

Using this approach, in general, the i-th fault signal f̂ (k) is reconstructed by using
suitable data taken from the WT process under diagnosis. In this case, the fault function
f̂ (k) is represented as a weighted average of affine parametric relations aT

i x(k) + bi (conse-
quents) depending on the input and output measurements collected in x(k). These weights
are the fuzzy membership degrees λi(x) depending on the system inputs.

The parametric relations of the consequents are affine functions of the unknown
variables ai and bi, which are estimated by means of an identification approach. The rule
number is assumed equal to the cluster number nC exploited to partition the data via a
clustering algorithm with respect to regions where the parametric relations (consequents)
are valid [17].

Note that the system under diagnosis corresponds to a WT plant, which is described
by a dynamic model. Therefore, the vector x(k) in Equation (6) contains both the cur-
rent and the delayed samples of the system input and output measurements. Therefore,
the consequents include discrete-time linear Auto-Regressive with eXogenous (ARX) input
structures of order o. This regressor vector is described in form of Equation (7):

x(k) =
[
. . . , yl(k− 1), . . . , yl(k− o), . . . uj(k), . . . , uj(k− o), . . .

]T (7)

where ul(·) and yj(·) represent the l-th and j-th components of the actual WT input and
output vectors u(k) and y(k). These components are selected according to the results
reported in Table 3.
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The consequent affine parameters of the i-th model of the Equation (6) can be organised
into a vector:

ai =
[
α
(i)
1 , . . . , α

(i)
o , δ

(i)
1 , . . . , δ

(i)
o

]T
(8)

where the coefficients α
(i)
j are usually associated to the delayed output samples, whilst δ

(i)
j

to the input ones.
The approach proposed in this paper for the derivation of the generic i-th fault FIS

approximator starts with the fuzzy clustering of the data u(k) and y(k) from the WT
process. This paper exploits the well-established Gustafson-Kessel (GK) algorithm [17].
Moreover, the estimation of the FIS parameters is solved as a system identification problem
from the noisy data of the WT process. Once the data are clustered, the identification
strategy proposed in this work uses the methodology developed by the authors in [28].

Another point not addressed in this work concerns the selection of the optimal cluster
number nC. This issue was investigated and developed by the authors in [28], which leads
to the estimation of the membership degrees λi(x(k)) required in Equation (6) and solved
as a curve fitting problem [17].

This paper considers an alternative data-driven approach, which exploits NNs used
as fault approximators in the scheme of Figure 2. Therefore, in the same way of the FSs,
a bank of NNs is employed to reconstruct the faults affecting the WT system using a
proper selection of the input and the output measurements. This NN structure consists of a
feed-forward MLP architecture with 3 layers of neurons [19].

However, as MLP NNs represent static relations, the paper suggests to implement
these structures with a tapped delay line. Therefore, this quasi-static NN represents a
powerful way for estimating nonlinear dynamic regressions between the input and output
measurements from the WT process and its fault functions. This solution allows to obtain
another Nonlinear ARX (NARX) description among the data. Moreover, when properly
trained, these NARX NNs are able to reconstruct the fault function f̂ (k) using a suitable
selection of the past measurements of the WT system inputs and outputs ul(k) and yj(k),
respectively. The example of the general solution is sketched in Figure 3, which can be
implemented by means of FIS or NARX NN structures.
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Similarly to the fuzzy scheme, with reference to the i-th fault reconstructor, a bank
of NARX NNs is exploited, where the generic NARX system models the relation of
Equation (9):

f̂ (k) = F
(
. . . , uj(k), . . . , uj(k− du), . . . yl(k− 1), . . . , yl(k− dy), . . .

)
(9)

the signal f̂ (k) represents the estimate of the general i-th fault in Table 3, whilst uj(·) and
yl(·) indicate the components of the measured inputs and outputs from the WT process.
These signals are selected again by means of the solution of the fault sensitivity problem
reported in Table 3. The accuracy of the fault reconstruction depends on the number of
neurons per layer, their weights and their activation functions.

In order to summarise the overall procedure exploited for the implementation of the
FDI schemes, Figure 4 reports the different phases involved in the proposed methods and
a summary of the complete design flows.

Data collection

Measurement
selection

Data
clustering

Model structure and
parameter estimation

Data-driven
approaches

Banks for fault isolation

Bank design

Fault
diagnosis

Fault detection, isolation
and identification

Fault
information

Fuzzy models Neural networks

Training

Model structure and
parameter estimation

Wind turbine
process

Fault sensitivity
analysis

Figure 4. Tasks involved in the design of the proposed FDI schemes.

In particular, once the measurements have been selected according to the procedure
addressed in Section 2.3, the design of the FIS requires the clustering of the data into nC
regions, the selection of the model structure (order o) and the estimation of the consequent
parameters ai and bi, as well as the membership functions λi in Equation (6). The data
are usually divided into three sets, i.e., the training, the validation and the test sets. This
solution leads to improve the estimation capabilities of the identified fuzzy prototypes.
The FIS models can be thus organised into the bank structure that allows for fault isolation.
Moreover, the fault identification is also accomplished.
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On the other hand, the same procedure can be performed for the NARX NN models.
After the measurement selection, the data are divided into the training, the validation and
the test sets. Also in this case, this partition improves the generalisation capabilities of
these systems. The derivation of the NARX NN prototypes requires the selection of the
delays du and dy in Equation (9), as well as the the number of neurons per layers. Once
these NARX NN models are estimated, they can be organised into the bank structure for
achieving the fault identification task.

The results of the selection of the optimal structure of the fault reconstructors for FDI
and the achieved performances will be shown in Section 4.

4. Simulation Results, Experimental Validation, Comparisons and Discussion

With reference to the WT benchmark of Section 2, the simulations are driven by
different wind sequences generated in a random way. They represent real measurements
of wind speed sequences from typical WT operating conditions, with ranges varying from
5 m/s to 20 m/s. This scenario was modified by the authors with respect to the benchmark
earlier proposed in [20]. The simulations consist of 4400 s, with single fault occurrences
and a number of samples N = 440,000 for a sampling frequency of 100 Hz. Almost all fault
signals are modelled as step functions lasting for 100 s with different commencing times.
Further details can be found in [20,29].

The first part of this section reports the results achieved by means of the fuzzy proto-
types used as fault reconstructors according to Section 3.1. In particular, the fuzzy c-means
and the GK clustering algorithms were exploited. A number of clusters nC = 4 and a
number of delays o = 4 were estimated. The membership functions of the TS FS and the
parameters of the consequents α

(i)
j and δ

(i)
j were derived for each cluster by following the

procedure developed by the same authors in [30]. The TS FSs of Equation (6) were thus
determined and 9 fault reconstructors were organised according to the scheme of Figure 2.

The performances of the 9 TS FSs when used as fault estimators were evaluated again
according to the RMSE index, computed as the difference between the reconstructed f̂ (k)
and the actual f (k) signals for each of the fuzzy estimators. These values were reported in
Table 4.

Table 4. FS fault estimator capabilities.

Fault Case 1 2 3 4 5

RMSE% 1.61% 2.22% 1.95% 1.87% 1.92%
Sdt. Dev. ±0.02% ±0.03% ±0.01% ±0.01% ±0.01%

Fault Case 6 7 8 9

RMSE% 2.15% 1.76% 2.13% 1.98%
Sdt. Dev. ±0.02% ±0.01% ±0.02% ±0.01%

Indeed, the RMSE values reported in Table 4 represent an average of the results ob-
tained from a campaign of 1000 simulations, as the benchmark exploited in this work
changes the parameters of the WT model at each run. Moreover, the model-reality mis-
match, the measurement errors, uncertainty and disturbance effects are described as
Gaussian processes with suitable distributions, as remarked in Section 2. Therefore, Table 4
reports also the values of the standard deviation (std. dev.) of the estimation errors achieved
by the FS fault estimators.

Note that these reconstructed signals f̂ (k) can be directly used as diagnostic resid-
uals in order to detect and isolate the faults affecting the WT. Moreover, each TS FS of
Equation (6) is fed by 3 inputs (according to Table 3), with a number of delayed inputs and
outputs o = 3 and nC = 4 clusters.

As an example, Figure 5 shows the results regarding the fault cases 1, 2, 3, and 4 of the
WT plant recalled in Section 2.
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Figure 5. Reconstructed and actual faults for cases 1, 2, 3, and 4.

In particular, Figure 5 reports the estimated faults f̂ (k) = ri(k) provided by the
FSs in faulty conditions (black continuous line). They are compared with respect to the
actual faults (grey dashed line). The fault detection task can be easily accomplished as
the residuals are significantly different from zero in faulty conditions. Note also that
the reconstructed fault functions f̂ (k) = ri(k) are different from zero also in fault-free
conditions due to the measurement errors and the model-reality mismatch. This aspect
serves to highlight the accuracy of the reconstructed signals provided by the estimated
fuzzy models.

As for the FSs, 9 NARX NNs summarised in Section 3.1 were trained to provide
the reconstruction of the 9 faults affecting the WT plant. In particular, the NARX were
implemented as MLP NNs with 3 layers: the input layer consisted of 3 neurons, the hidden
one used 10 neurons, whilst one neuron for the output layer. du = dy = 3 delays were used
in the relation of Equation (9). Moreover, sigmoidal activation functions were used in both
the input and the hidden layers, and linear functions for the output layers. With reference
to Table 3, the NARX NNs were fed by 9 signals, representing the delayed inputs and
outputs from the WT process.

As for the FSs, the prediction accuracy of the NARX NN was analysed by means of
the RMSE index, and its average values summarised in Table 5.

Table 5. NN fault estimator capabilities.

Fault Case 1 2 3 4 5

RMSE % 0.91% 0.92% 0.94% 1.21% 1.17%
Sdt. Dev. ±0.01% ±0.01% ±0.01% ±0.02% ±0.01%

Fault Case 6 7 8 9

RMSE % 1.61% 0.98% 0.95% 1.41%
Sdt. Dev. ±0.01% ±0.01% ±0.01% ±0.02%

As for the TS FS case, Table 5 reports also the values of the standard deviation (std.
dev.) of the estimation errors achieved by the NARX NN fault estimators.
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As an example, Figure 6 depicts some of the residual signals f̂ (k) = ri(k) (black contin-
uous line) provided by the NARX NNs for the fault conditions 6, 7, 8, and 9, and compared
to the actual fault signals (grey dashed line).
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Figure 6. Estimated and actual faults for cases 6, 7, 8, and 9.

Also in this case, the results obtained by the NARX NNs serve to highlight the efficacy
of the developed solution, taking into account disturbance and uncertainty affecting the
WT system.

4.1. HIL Validation

In order to validate the developed FDI solutions in more realistic working situations,
the WT process and the designed algorithms have been implemented and executed by
means of a HIL tool. This test-bed allows to reproduce experimental tests that are oriented
to the verification of the results achieved in simulations. This test-bed is sketched in
Figure 7, which highlights 3 main modules.

The WT simulator that was used to describe the system dynamics, its actuator, mea-
surement sensors, and the WT controllers were implemented in the LabVIEW environment.
Realistic effects such as uncertainty, measurement errors, disturbance and the model-reality
mismatch were also included, as recalled Section 2. The overall system is converted into
the C++ code running on a standard PC, which allows also to test and monitor the signals
generated by the proposed fault diagnosis strategies.

The FDI schemes summarised in Section 3.1 were also compiled as executable code
and implemented in an AWC 500 industrial system that features typical WT requirements.
This industrial module receives the signals acquired from the PC simulating the realistic
WT plant that represent the monitored signals reported in Table 3. Therefore, the on-
board electronics elaborate these signals according to the FDI algorithms and produce the
monitoring signals transmitted back to the WT simulator running on the PC.
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Figure 7. HIL tool for real-time validation.

An intermediate module represents the interface circuits providing the communica-
tions between the PC with the WT simulator and the on-board electronics running the fault
diagnosis algorithms. In this way, it manages the signals and exchanges the data between
the WT simulator and the AWC 500 system.

In the following, the data sequences generated by the WT simulator are briefly de-
scribed. With reference to the WT benchmark model of Section 2 and its HIL implementa-
tion, all simulations are driven by realistic wind sequences, as depicted in Figure 8.

Figure 8 shows an example of the realistic acquisition of wind speed data from a WT,
as described in [20,26]. It should represent a good coverage of typical operating conditions,
as it ranges from 5 to 20 m/s, with a few spikes at 25 m/s.

As further example of WT sequences used for the validation of the FDI schemes,
Figure 9 shows the measured outputs Pg,m and ωg,m with respect to the reference signals,
in partial and full load working conditions [20].
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Figure 8. Measured wind speed signal example driving the WT benchmark.
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Figure 9. Reference and measured Pg,m and ωg,m outputs.

These working conditions represent the operating regions of a WT that motivate the
switching blocks used for the torque and the pitch controls sketched in Figure 1. Therefore,
the WT data sequences are generated according to the nominal operating trajectory to
satisfy different demands below and above a certain wind speed. A condition monitoring
system determines the actual working point of the WT and drives the switches accordingly,
as shown in Figure 1.

When the WT operates in partial load condition, it is driven by the generator torque
controller, which should maximise the produced energy, as shown in Figure 9. On the
other hand, when the WT operates in full load condition, both the speed and the power
controller are active. These controllers should track the rated generator speed and limit the
output power, as depicted in Figure 9. This behaviour is obtained by properly setting the
two switches in Figure 1. In this way, the data sequences exploited for the validation of the
designed FDI schemes are generated.

As final example of data sequences used for the identification of the FS and NN
prototypes, the measured control inputs of the WT blades βi,m j and the generated power
Pg,m are depicted in Figure 10 in full load conditions.
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Figure 10. Pitch sensor measurements βi,m j and generated power Pg,m in full load conditions.
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On the other hand, Figure 11 depicts the WT main variables in full load
working conditions.
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Figure 11. Variables of the WT benchmark in full load operation.

Therefore, for the generated driving wind sequence vw,m, Figure 11 depicts the gener-
ator speed ωg,m1 and power Pg,m, and the control input τg,m.

The results achieved via this HIL tool are reported in Table 6 that summarises the
capabilities of the FDI strategies by means of the RMSE performance index.

Table 6. RMSE % index for the HIL tool.

Fault Case 1 2 3 4 5

TS FSs 1.69% 2.29% 2.01% 1.94% 1.99%

NARX NNs 0.99% 0.98% 0.99% 1.28% 1.21%

Fault Case 6 7 8 9

TS FSs 2.22% 1.81% 2.21% 2.03%

NARX NNs 1.69% 1.02% 1.01% 1.51%

Note that the tests summarised in Table 6 are consistent with the results reported in
Tables 4 and 5. Although the accuracy of the simulations seems better than the performance
achieved via the HIL tool, some remarks have to be drawn. First, the AWC 500 system
uses calculations that are more restrictive than the PC simulator. Moreover, A/D and
D/A devices are also exploited, which can introduce further deviations. On the other
hand, the testing of real scenarios does not involve the data transfer from a PC to on-board
electronics, thus reducing possible errors. Therefore, it can be finally remarked that the
achieved results are quite accurate and motivate the application of the developed FDI
strategies to real WT installations.

4.2. Comparative Analysis

To analyse the performance of the proposed solutions, this section compares the
developed FDI schemes with different methodologies already proposed by the same
authors. They rely on a model-based nonlinear approach, i.e., the so-called NonLinear
Geometric Approach Adaptive Filter (NLGA-AF) [31] and a Recursive identification of FSs
(RFSs) [32]. Moreover, the Sliding Mode Observer (SMO) method is also considered [33].

These comparisons are performed on the basis of the estimation accuracy, as shown in
Table 7.
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Table 7. RMSE % index for the HIL analysis and comparisons.

Fault Case 1 2 3 4 5 6 7 8 9

TS FSs 1.69% 2.29% 2.01% 1.94% 1.99% 2.22% 1.81% 2.21% 2.03%
NARX NN 0.99% 0.98% 0.99% 1.28% 1.21% 1.69% 1.02% 1.01% 1.51%

NLGA-AF 1.37% 1.45% 1.73% 1.75% 1.56% 1.99% 1.45% 1.54% 1.76%
RFS 1.99% 2.67% 2.44% 2.56% 2.67% 2.97% 2.23% 2.78% 2.82%
SMO 1.87% 1.82% 2.11% 2.01% 1.91% 2.34% 1.95% 2.08% 2.23%

According to the results summarised in Table 7, the performance of the NARX NN
solution is better than the ones obtained with the other schemes. In more detail, the values
of the RMSE index highlights that when the mathematical description of the dynamic
process under investigation may be included in the design phase, the NLGA-AF technique
with disturbance decoupling still yields to good performances, even if an optimisation
procedure is required. However, when modelling errors are present, the offline learning
feature of the data-driven fuzzy estimators TS FSs allows to achieve interesting results.
For example, this consideration is valid also for the SMO estimators derived via a lin-
earisation procedure. On the other hand, the TS FSs led to more interesting capabilities.
With reference to the adaptive scheme, such as the RFS, it takes advantage of its recursive
features, since it is able to track possible variations of the WT system, due to operation or
model changes. However, it requires quite complicated and not straightforward design
procedures relying on data-driven recursive algorithms. Therefore, fuzzy-based schemes
use the learning accumulated from data-driven offline simulations, but the training stage
can be computationally heavy. Finally, concerning the NARX NN strategy, which repre-
sents the solution with the best results, it is rather simple and straightforward. Obviously,
the achievable performances of linearised or adaptive methods can be quite limited when
applied to nonlinear dynamic processes. It can thus be concluded that the proposed data-
driven approaches (NARX NN and TS FS) seem to represent powerful techniques able to
cope with uncertainty, disturbance and variable working conditions.

4.3. Discussion and Final Remarks

This section discusses the results shown in Section 4.2 relying on model-based and data-
driven methods. In particular, the FS and NN models were compared to the SMO, the RFS
and the NLGA-AF, already proposed for WTs, and applied to the considered benchmark.

SMO was designed on the basis of a linearised model of the WT process. In this
case, the design procedure is based on the selection of an appropriate switching manifold,
and then on the determination of an input, including a discontinuous term, that ensures
the sliding motion in this manifold. This strategy can manage disturbance and modelling
errors, which represent the effect of both the linearisation and measurement errors.

The RFS approach used a recursive identification method for synthesising the residual
generators for FDI, under the assumption of LPV modes. In fact, the considered WT system
has varying parameters caused by the nonlinearity of the aerodynamic relation along the
nominal operating trajectory and due to the model uncertainty. In particular, the instanta-
neous partial derivatives of the aerodynamic torque are part of the linearised model and
change along the nominal operating trajectory. These changes were approximated using an
affine description in the wind speed.

The NLGA-AF is obtained using differential geometry and nonlinear system analysis
tools. In particular, the NLGA-AF methodology, which was developed for the more general
problem of FDI, relies on adaptive filters designed with a nonlinear geometric approach to
obtain the disturbance de-coupling property.

In order to provide a brief but clear insight into the above mentioned techniques,
the comparisons were performed in the same previous working conditions, and based on
the RMSE index, when the realistic WT simulator is considered. It is worth noting that the
FDI schemes implemented via SMO, FS and NN do not exploit any adaptation mechanism.
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In fact, the SMO strategy is able to decouple the uncertainty via the sliding motion, whilst
NNs and FSs were designed to passively tolerate disturbance and modelling errors via the
acquired off-line learning.

The comparisons among the different FDI solutions summarised in Table 7 highlighted
that schemes using adaptive strategies, such as RFS and NLGA-AF, allowed to achieve
acceptable performances in terms of estimation errors. The SMO solution can require
considerable computational time with respect to the other solutions, without any parameter
change, whilst the RFS strategy can lead to larger computational effort at the design stage.

On the other hand, when the mathematical description of the monitored system can
be perfectly obtained, in general model-based strategies such as NLGA-AF are preferred.
However, when modelling errors and uncertainty are present, alternative schemes relying
on adaptation mechanisms, or passive robust methods, showed interesting robustness
properties in the presence of unmodelled disturbance, modelling mismatch, and mea-
surement errors. With reference to data-driven methodologies, and in particular to FS
and NN, in the case of a monitored system with modelling errors, the off-line learning
can lead to very good results. Other explicit disturbance decoupling techniques can take
advantage of their robustness capabilities, e.g., the NLGA-AF, but with quite complicated
and not straightforward design procedures. The FS and NN-based schemes rely on the
learning accumulated from off-line simulations, but the training stage can be computation-
ally heavy. Regarding the considered methods using RFS, or FS, they seem rather simple
and straightforward, even if optimisation stages can be required.

It is worth noting how the achieved results have highlighted that data-driven ap-
proaches, such as fuzzy structures are able to provide good performances. However,
they can be easily outperformed by self-learning schemes, representing data-driven so-
lutions that did not require optimisation stages, adaptation procedures or disturbance
compensation methods. Further investigations will be oriented to apply the developed
methodologies to real WT installations, in the presence of more realistic disturbance and
uncertainty effects. In fact, the methodologies designed in this paper were proposed with
the perspective to implement effective FDI solutions that could be included in real installa-
tions to improve their reliability and availability, thus increasing the effectiveness of the
health monitoring, while improving the energy production, and reducing O&M costs.

Note also that the solutions proposed in this paper rely on data-driven schemes. In fact,
model-based methods are designed to detect any discrepancy between real system and
model behaviours, and it is assumed that a discrepancy signal is related to (has a response
from) a fault. However, the same difference signal can respond to model mismatch or noise
in real measurements, which can be (erroneously) detected as a fault, giving rise to a ‘false
alarm’ in detection.

These considerations have led to investigate ‘robust’ methods, in which particular
attention is paid to the discrimination between actual faults and errors due to model
mismatch. Moreover, this work focused on the determination of ‘good’ solutions suitable
for robust diagnosis. Moreover, the paper also highlighted how ‘accurate models’ can be
obtained from real data. The paper considered the case in which noise and disturbance
affects the acquired data. The FDI strategies can be obtained by means of both model-based
and data-driven approaches. Comparisons between these strategies were thus addressed.

Therefore, the purpose of the study is to provide guidelines for the data-driven
design of robust and reliable FDI schemes. Moreover, attention was paid to the practical
application of the methods to realistic WT installations, as reported in this last section.
On the other hand, this study can aim also to encourage technology transfer in different
engineering fields. In fact, the development of FDI procedures has impacts on all areas
of the control discipline. For example, the proposed solutions can be applied to different
processes, see e.g., the case of image and speech recognition [34,35].

Finally, the key features of this study include viable approaches relying on data-driven
methodologies for robust and reliable fault diagnosis, as well as extended application
studies using different WT measurement data.
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5. Conclusions

This paper investigated two fault diagnosis solutions that can be considered as viable
and effective strategies for condition monitoring of a wind turbine process. To this end,
the work proposed the design of fault estimators by means of data-driven methodolo-
gies relying on fuzzy models and neural networks. These solutions represented effective
methods that allow the management of partially unknown information of the system
dynamics, while coping with measurement errors, the model-reality mismatch and other
disturbance effects. Therefore, these data-driven methodologies were exploited to estimate
the nonlinear dynamic relations between the input and output process measurements
and the faults. To this aim, the fuzzy and neural network prototypes integrated auto-
regressive with exogenous input descriptions, thus making them able to approximate
unknown nonlinear dynamic functions with arbitrary degree of accuracy. Once these mod-
els are derived for fault diagnosis purpose, their capabilities were verified and validated
by using a high-fidelity benchmark that simulates the healthy and the faulty behaviour
of a wind turbine system. The benchmark was also useful to analyse the robustness
and the reliability characteristics of the developed tools in the presence of model-reality
mismatch and measurement errors featured by the wind turbine simulator. Moreover,
a hardware-in-the-loop tool was finally implemented for testing the performance of the
developed fault diagnosis strategies in a more realistic environment. A comparative analy-
sis with different fault diagnosis methods was also performed to demonstrate the better
performance of the proposed dynamic neural network strategy applied to the considered
simulator. The proposed designs enhanced the derivation of these solutions by using
data-driven training and learning algorithms that led to accurate fault identification and
greater robustness. This approach saved the computing cost with reduced iterations, easier
design and implementation. The achieved results highlighted that data-driven approaches,
such as fuzzy structures were able to provide good performances. However, they were
easily outperformed by self-learning schemes, representing data-driven solutions that
did not require optimisation stages, adaptation procedures or disturbance compensation
methods. Further works will consider the application of the considered methodologies
to real installations, in the presence of more realistic disturbance and uncertainty effects.
In fact, the methodologies developed in this paper were designed with the perspective to
implement effective fault diagnosis solutions that could be included in real installations
to improve their reliability and availability, thus increasing the effectiveness of the health
monitoring, while improving energy production, operation and maintenance costs.
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Nomenclature
Acronym Definition
AFTC Active Fault-Tolerant Control
NLGA NonLinear Geometric Approach
ARX Auto-Regressive eXogenous
NLGA-AF NLGA Adaptive Filter
FDI Fault Detection and Isolation
NN Neural Network
FTC Fault-Tolerant Control
O&M Operation & Maintenance
FIS Fuzzy Inference System
PFTC Passive Fault Tolerant Control
FS Fuzzy System
RFS Recursive identification of Fuzzy System
GK Gustafson-Kessel
RMSE Root Mean Square Error
HIL Hardware-In-the-Loop
SMO Sliding Mode Observer
LPV Linear Parameter Varying
TS Takagi-Sugeno
MLP Multi-Layer Perceptron
WECS Wind Energy Conversion System
NARX Nonlinear Auto-Regressive eXogenous
WT Wind Turbine
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