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Abstract: The state estimation of distribution networks has long been considered a challenging task
for the reduced availability of real-time measures with respect to the transmission network case.
This issue is expected to be improved by the deployment of modern smart meters that can be polled
at relatively short time intervals. On the other hand, the management of the information coming
from many heterogeneous meters still poses major issues. If low-voltage distribution systems are of
interest, a three-phase formulation should be employed for the state estimation due to the typical
load imbalance. Moreover, smart meter data may not be perfectly synchronized. This paper presents
the implementation of a three-phase state estimation algorithm of a real portion of a low-voltage
distribution network with distributed generation equipped with smart meters. The paper compares
the typical state estimation algorithm that implements the weighted least squares method with an
algorithm based on an iterated Kalman filter. The influence of nonsynchronicity of measurements
and of delays in communication and processing is analyzed for both approaches.

Keywords: distribution management system; distribution network; Kalman filter; smart meters; state
estimation; weighted least squares

1. Introduction

The main task of a distribution management system (DMS) is to monitor and control
the distribution networks to guarantee system reliability, efficiency, security, and resiliency.
In order to accomplish such objective, different control functionalities are implemented in
the DMS, such as state estimation (SE) [1].

While the SE of transmission networks is a well-known practice, the SE of distribution
systems is more recent, and introduces new perspectives and issues with respect to trans-
mission networks: the monitoring of many buses and the system observability requirement
are among the main problems. With the advent of automated meter reading and the corre-
sponding advanced metering infrastructure needed to accomplish it, a valuable quantity
of measurements is now available, mainly coming from smart meters (SMs), but other
sources of measurement might become available in the future, such as digital relays, smart
inverters, smart transformers, automated switches, and voltage regulators [2]. Moreover,
distribution systems are usually unbalanced, and single-phase or two-phase lines might be
present. Thus, the SE problem must be dealt with in a three-phase formulation.

The most common technique used for the static SE of power systems adopts the
weighted least squares (WLS) method [3], while the use of different implementations of
the Kalman filter (KF) [4,5] are proposed to solve dynamic or quasi-dynamic SE. The SE
obtained by using the KF is a trade-off between the state predicted by the dynamic model
of the system and the state estimated by using the most recent information available. The
use of the KF with linearized functions of the dynamic model and of the relationship
between measurements and state variables is usually referred to as an extended Kalman
filter (EKF), while its iterative use is known as an iterated Kalman filter (IKF). The IKF can
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be advantageously used in a power system SE when a dynamic model is available, e.g.,
by using load forecast data, as in [6]. The IKF presents some advantages with respect to
the WLS method because it allows the inclusion of past measurements in the SE problem,
even in the absence of a well-identified process model, as shown in [7,8]. Different KF
implementations were successfully applied to the SE problem, other than the EKF, e.g., the
particle filter [9], the unscented KF [10], and the ensemble KF [11]. In the relevant literature,
several methods have been proposed for the SE of power systems [12,13], among which are
M-estimators [14], Bayesian inference approaches [15], deep-learning techniques [16,17],
and clustering algorithms [18].

The performance of the KFs is largely affected by the process uncertainties, and
specific approaches are proposed to manage the model noise [19], the changing operation
conditions of the power system [20], and the data losses [21]. The measurement delays or
losses can have a major influence on the performance of an SE algorithm and are included
in the main aspects addressed in this paper.

Most KF-SE algorithms for distribution systems (e.g., [7,8,11,19–22]) assume the pres-
ence of phasor measurement units (PMUs) [23]. Unlike PMUs, SMs acquire the measure-
ments in long time intervals, typically 15 min, and report them to the data center with
considerable latencies [24]. Few papers address the problem of SE using SMs (e.g., [24,25])
but none of them implemented a KF-based approach.

This paper extends the algorithms based on WLS and KF-SE presented in [7] to the
three-phase formulation. The two algorithms are tested by considering a real three-phase,
four-wire low-voltage (LV) system. The LV system is fed by a secondary substation of
the distribution system operator (DSO) AMAIE, located in the suburban area of the city
of San Remo, Italy. The development of the SE functionality of the DMS was carried out
in the framework of project PODCAST (platform for the optimization of the distribution
using data from smart meters and distributed storage systems), which was recently ter-
minated [26]. The paper compares the results obtained by using the WLS-SE algorithm
and the KF-SE algorithm, and analyzes the influence of the nonsynchronicity between
the measurements as well as the latency due to communication network limits and data
processing. The main contributions of this paper are threefold: (i) the application of a
three-phase SE in a real LV system with distributed generation; (ii) the implementation of
a KF for the SE of a system monitored with low-rate measurement devices, such as the
SMs employed in the analyzed network; and (iii) the analysis of the influence of both the
nonsynchronicity and the time latencies due to process and communication delays on the
performance of the SE.

The paper is organized as follows. Section 2 presents the formulation of the SE problem
by introducing the WLS-SE and the KF-SE algorithms in a single-phase formulation and
the extension to the three-phase one. Section 3 presents the considered real LV network.
Section 4 presents the analysis of the results obtained by using both algorithms. The
conclusions are drawn in Section 5, and some perspectives for future developments are
given.

2. Formulation of the State Estimation Problem

This section reviews the SE formulation in both single-phase and three-phase imple-
mentation.

2.1. Single-Phase State Estimation

Let N be the number of buses in the network. The system state vector x is composed
of the voltage phasor angles and magnitudes of all buses expressed in polar coordinates.
The phase angle of one bus is taken as reference, so x is an n-row vector with n = 2N − 1,
although it could be convenient to estimate all the phase angles in presence of PMUs [27].
Assuming bus 1 as reference, it follows that [3]:

x = [δ2, . . . , δN , V1, . . . , VN ]
T, (1)
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where δi and Vi represent the voltage phasor angle and magnitude of the of i-th bus,
respectively.

Consider the vector z comprising a set of m measurements; the j-th measurement is
given by:

zj = hj(x1, . . . , xi, . . . , xn) + ej, (2)

where hj is a relation, generally nonlinear [4], between the measurement zj and the state
vector x; and ej is the corresponding measurement error, usually assumed to be random
and independent, and represented by a function with normal probability distribution and
null mean value. Non-normal systematic errors, such as those produced by the sensors [28],
are here neglected. From (2), it follows that the residuals, i.e., the difference between the
measured and the estimated values is:

ej
∣∣
x̂ = zj − hj(x̂). (3)

Hatted variables represent the estimated quantities. [3]. The WLS-SE consists of
minimizing the weighted sum of the squares of the errors, i.e., minimizing the objective
function:

f =
m

∑
j=1

wje2
j , (4)

where wj is the assigned weight of the error ej.
The function is minimum when:

m

∑
j=1

(
wj ej

∣∣
x̂

∂ej

∂xi

∣∣∣∣
x̂

)
= 0 (i =1 . . . n), (5)

The solution of (5) is found by an iterative algorithm. Considering the v-th iteration,
(3) is written as:

e(v)j = zj − hj(x̂(v)). (6)

Linearizing hj around v − 1 by implementing the first order Taylor series, it yields:

hj(x̂(v)) = hj(x̂(v−1)) +
n

∑
k=1

(
∂hj

∂xk

∣∣∣∣
x̂(v−1)

k

∆x̂(v)k

)
, (7)

with ∆x̂(v)i = x̂(v)i − x̂(v−1)
i . Replacing (7) in (6), it gives:

e(v)j = zj − hj(x̂(v−1))−
n

∑
k=1

(
∂hj

∂xk

∣∣∣∣
x̂(v−1)

k

∆x̂(v)k

)
, (8)

from which:

e(v)j = e(v−1)
j −

n

∑
k=1

(
∂hj

∂xk

∣∣∣∣
x̂(v−1)

k

∆x̂(v)k

)
, (9)

then:
∂ej

∂xk

∣∣∣∣
x̂
= −

∂hj

∂xk

∣∣∣∣
x̂
. (10)

Replacing (9) and (10) in (5) yields:

m

∑
j=1

{
∂hj

∂xi

∣∣∣∣
x̂(v−1)

wj

[
e(v−1)

j −
n

∑
k=1

(
∂hj

∂xk

∣∣∣∣
x̂(v−1)

k

∆x̂(v)k

)]}
= 0 (i =1 . . . n) (11)

By introducing measurement Jacobian matrix H, (11) in matrix form becomes:

Ĥ(v−1)TWe(v−1) = Ĥ(v−1)TWĤ(v−1)∆x̂(v), (12)
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which constitutes an n-equation system. Ĥ is an m-by-n matrix, e an m-column vector, and
∆x̂ an n-column vector. W is a diagonal m-by-m matrix given by:

W = diag(w1, . . . , wm). (13)

Weights are usually selected to make more accurate measurements having a greater
influence on the SE. This can be achieved by constructing the measurement noise covariance
matrix R considering the measurement variances σ2

j :

R = diag(σ2
1 , . . . , σ2

m

)
, (14)

then:
W = R−1. (15)

From (12) and (15), ∆x̂ is derived:

∆x̂(v) =
(

G(v−1)
)−1

Ĥ(v−1)TR−1e(v−1), (16)

where the matrix G:
G = ĤTR−1Ĥ (17)

is the gain matrix, symmetric and sparse, although less sparse than H [3]. It results that:

x̂(v) = x̂(v−1) + ∆x̂(v), (18)

and the iterative process is repeated until:

fv < tol1 or fv − fv−1 < tol2; (19)

i.e., until either the objective function or its difference with respect to the previous iteration
is minor than the given tolerances.

2.2. The Kalman Filter Implementation

The KF represents a recursive solution of the least squares method [29] obtained by
implementing a discrete model of the process in order to estimate the dynamic variation of
the state variables. The state vector can be a generic nonlinear dynamic system, for which
at the κ-instant it depends on the previous state through the function ϕ as follows:

xκ= ϕ(xκ−1,νκ−1), (20)

where ν is a white-noise sequence following a normal probability distribution with null
mean value, uncorrelated from the measurement noise. The discrete Kalman filter (DKF)
implementation assumes linear measurement and process models, for which the residuals
in (3) and the process model in (20) can be respectively expressed as:

eκ = zκ −Hx̂κ , (21)

xκ = Φκ,κ−1xκ−1 + νκ−1, (22)

where φκ ,κ-1 is the state-transition matrix, which relates the states at the κ- and (κ − 1)-
instants. H is time-independent and is defined by the network topology.

In absence of new data, (22) provides a predicted estimated state, i.e., an a priori
estimate, given by:

x̂κ|κ−1 = Φκ,κ−1x̂κ−1|κ−1. (23)
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The final state estimate is the result of the linear combination of the a priori estimate
and the residuals, and it has the following form:

x̂κ|κ = Φκ,κ−1x̂κ−1|κ−1 + Kκ

(
zκ −Hκ x̂κ|κ−1

)
, (24)

resulting in the a posteriori estimate. The term zκ −Hκ x̂κ|κ−1 is called innovation, and it is
a white-noise sequence [23] with a covariance matrix given by:

Sκ = Rκ + Hκcov
(

xκ − x̂κ|κ−1

)
HT

κ . (25)

Matrix K is the Kalman gain, and it is chosen so it minimizes the a posteriori error,
also called the estimation error, i.e., the absolute value of xκ − x̂κ|κ , which, using the (21)
and (24), is expressed as:

xκ − x̂κ|κ = (I−KκHκ)(xκ − x̂κ|κ−1)−Kκeκ . (26)

where I is the identity matrix. As the KF is a minimum variance estimator, its aim is to
minimize the expected value of the square of the magnitude of the estimation error [23].
A common procedure to achieve this is to choose a K that minimizes the trace of the
covariance matrix of a posteriori errors Pκ|κ (also called estimation error covariance matrix),
defined as:

Pκ|κ = cov
(

xκ − x̂κ|κ

)
, (27)

By substituting (26) in (27), since the measurement errors are unrelated to the other
terms, it yields:

Pκ|κ = (I−KκHκ)cov(xκ − x̂κ|κ−1)(I−KκHκ)
T −Kκcov(eκ)KT

κ , (28)

which can be written as:

Pκ|κ = (I−KκHκ)Pκ|κ−1(I−KκHκ)
T + KκRKT

κ , (29)

where Pκ|κ–1 is the covariance matrix of the a priori errors (also called prediction error
covariance matrix), i.e., the covariance of xκ − x̂κ|κ−1. Considering (25), (29) can be written
as:

Pκ|κ = Pκ|κ−1 −KκHκPκ|κ−1 − Pκ|κ−1HT
κ KT

κ + KκSκKT
κ (30)

To find the optimal K, the partial derivative of the trace of (30) with respect to K is
computed and made equal to zero, which yields:

Kκ = Pκ|κ−1HT
κ

(
HκPκ|κ−1HT

κ + R
)−1

, (31)

for which (30) becomes:
Pκ|κ = (I−KκHκ)Pκ|κ−1. (32)

From (22) and (23), it follows that:

xκ − x̂κ|κ−1 = Φκ,κ−1

(
xκ−1 − x̂κ−1|κ−1

)
+ νκ−1, (33)

where xκ−1 − x̂κ−1|κ−1 constitutes the estimation error at (κ − 1)-instant, and νκ−1 consti-
tutes the process noise between (κ − 1) and κ-instants, which are uncorrelated. Then, Pκ|κ-1
is computed as:

Pκ|κ−1 = cov
(

xκ − x̂κ|κ−1

)
(34)

which from (33) yields:

Pκ|κ−1 = Φκ|κ−1Pκ−1|κ−1ΦT
κ|κ−1 + Qκ−1, (35)
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where Qκ is defined as the process noise covariance matrix, and is given by:

Qκ = cov(νκ). (36)

It is worth noticing that matrices R and Q have an influence over K.
The problem would be linear if nodal voltages and currents were measured. However,

it is common to also have other types of measurements such as branch currents and powers.
Therefore, the relationship between measurements and state variables is usually nonlinear.
A first attempt to account for the nonlinear SE problems was achieved by the EKF. In this
case, the a priori estimation x̂κ|κ−1 is computed by implementing (20); i.e.,

x̂κ|κ−1= ϕ
(

x̂κ−1|κ−1

)
, (37)

and the a posteriori estimate is given, similarly to (24), by:

x̂κ|κ = x̂κ|κ−1 + Kκ

[
zκ − h(x̂κ|κ−1)

]
, (38)

where Hκ is no longer constant as for the DKF, but the Jacobian of h(x) evaluated at the
state x̂κ|κ−1. Analogously, the prediction error covariance matrix, similarly to (35), is given by:

Pκ|κ−1 = Φκ−1Pκ−1|κ−1ΦT
κ−1 + Qκ−1. (39)

where the state-transition matrix φκ−1 is the Jacobian of ϕ(x) evaluated at the state x̂κ−1|κ−1.
Due to the linearization during the a posteriori state vector computation, the EKF

could lead the filter to diverge. The IKF is a variant that improves the performance of the
filter with respect to the EKF by implementing an iterated computation of the a posteriori
estimate, which aims at minimizing the estimation error due to linearization. The estimate
is improved repeatedly each time by linearizing about the most recent estimate until little
further improvement is obtained [6,30], i.e., the state vector is iteratively computed as:

x̂(i)
κ|κ = x̂κ|κ−1 + Kκ

[
zκ − h

(
x̂(i−1)

κ|κ

)
−Hκ

(
x̂κ|κ−1 − x̂(i−1)

κ|κ

)]
. (40)

where i is the IKF iteration index, until the following condition is met:

x̂(i)
κ|κ − x̂(i−1)

κ|κ < tol3. (41)

2.3. Three-Phase Formulation

In the three-phase SE, the dimension of the state vector is equal to n = N − 1, where
N is the number of nodes, but diversely from the single-phase SE, each phase of each bus
constitutes a node, and one phase of one bus is taken as reference, e.g., phase-a of bus 1.
Therefore, in a network with p buses of which p1, p2, and p3 are the number of single-phase,
two-phase, and three-phase buses, respectively, N is equal to p1 + 2p2 + 3p3, and the state
vector will have the general form:

x =
[
δb

1 , δc
1, δa

2, δb
2 , δc

2, . . . , δc
p, Va

1 , Vb
1 , Vc

1 , Va
2 , . . . , Vc

p

]T
. (42)

Analogously, the number of measurements m refers to the nodes and not to the buses,
and each phase wire is considered as a single branch, i.e., the total number of branches br is
equal to br1 + 2br2 + 3br3, where br1, br2, and br3 are the number of single-phase (one phase
wire and one neutral wire), two-phase, and three-phase lines, respectively. The neutral
wire of the DSO is assumed to be repeatedly and effectively grounded along its path (i.e., it
is assumed to have null voltage to ground).

Matrices and vectors H, e, R, Q, etc. increase in dimension according to the number
of nodes.
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As already mentioned, it is more common in distribution systems to have power and
current measurements other than voltages, for which the computation of H requires the
knowledge of admittance matrix Y of the network. For a single-phase system constituted
by p buses, Y is given by:

Y =

 Y11 · · · Y1p
...

. . .
...

Yp1 · · · Ypp

. (43)

while for a three-phase system it is given by:

Y =



Yaa
11 Yab

11 Yac
11 Yaa

1p Yab
1p Yac

1p
Yba

11 Ybb
11 Ybc

11 · · · Yba
1p Ybb

1p Ybc
1p

Yca
11 Ycb

11 Ycc
11 Yca

1p Ycb
1p Ycc

1p
...

. . .
...

Yaa
p1 Yab

p1 Yac
p1 Yaa

pp Yab
pp Yac

pp

Yba
p1 Ybb

p1 Ybc
p1 · · · Yba

pp Ybb
pp Ybc

pp

Yca
p1 Ycb

p1 Ycc
p1 Yca

pp Ycb
pp Ycc

pp


. (44)

In both cases, Y is an N-by-N symmetric matrix (with the difference in the definition
of N), and for radial networks it is sparse. Some remarks will be made for the computation
of the single matrix elements in the three-phase case.

The computation of Y is carried out from the knowledge of branch–bus incidence
matrix A and primitive admittance matrix Yp [31], by:

Y = ATYpA. (45)

Matrices Yp and A are constructed with the following considerations:

• The first br-rows of Yp contain the longitudinal admittances;
• The last N-rows of Yp contain the shunt admittances;
• Yp is a band matrix;
• Matrix A is constructed as for the single-phase case, with a 1 or −1 in correspondence

to the sending and receiving nodes of the oriented branch.

With these definitions, Yp is a (br + N)-by-(br + N) matrix containing the longitudinal
and shunt admittances of the network, and A is a (br + N)-by-N matrix.

2.4. State Estimation Algorithm Implementation

The three-phase SE algorithm was implemented in MATLAB (The Mathworks, Inc.,
Natick, MA, USA) with the structure illustrated in Figure 1.

The network data input file must contain the following information:

• For lines, sending and arriving nodes, line impedances, and shunt admittances;
• For transformers, sending and arriving nodes, rated voltages and power, and pu data;
• For shunt elements (e.g., capacitor banks), connection nodes, and rated voltage and

power;
• States of circuit breakers.

The file containing the measurement data must contain all the measures obtained
within the network:

• For loads and generating units, measurements of active and reactive powers, voltage
magnitudes and phases, and current magnitudes;

• For lines, measurements of active and reactive transmitted powers, and current mag-
nitudes.
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The file may contain either real measures, obtained by smart meters and/or PMUs, or
pseudo-measurements.

For the initialization of x in the three-phase WLS-SE algorithm, a flat start is usually
implemented.

For the KF-SE algorithm, the following hypothesis was considered: It was assumed
that the power system was steady under normal operating conditions, for which the
predicted state was assumed to be equal to the last estimated state of the previous time-
iteration [32]; i.e., (23) and (37) become:

x̂κ|κ−1 = x̂κ−1|κ−1, (46)

and (39) becomes:
Pκ|κ−1 = Pκ−1|κ−1 + Qκ−1. (47)

The KF-SE performs from the second time-iteration by assuming the last estimated
state equal to the one resulting from the previous WLS-SE. The KF takes some iterations to
satisfactorily track the system state.

3. The Low-Voltage Network

The network, shown in Figure 2, was an LV radial distribution network fed by a 15/
0.4-kV transformer between buses 1 and 11. It was composed of 4 feeders containing
135 branches, 12 of which were single-phase, and the rest were three-phase. The network
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was equipped with 75 measurement points corresponding to 66 consumers, 6 producers,
and 3 prosumers, for a total of 9 photovoltaic (PV) power plants. Each of these measurement
points observed one or more points of delivery. The results illustrated hereafter are relevant
to the buses denoted with red numbers in Figure 2.
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Figure 2. Topology of the observed low-voltage system with indication of the measurement points.

Meters sent voltages, active and reactive energy records, on a quarter-hourly basis, to
the DMS developed in the PODCAST project. The voltage at the MV-side of the transformer
in the main substation was considered constant and symmetric with a magnitude of 1 pu.

It was assumed that all the information arrived at the DMS without delays and all
measures were time synchronized. The implications of such assumption were assessed
further.

The performances of the implemented SE algorithms were assessed in a time horizon
of 1 day. For the SE algorithm validation, the true values of the observed quantities were
needed, so they were obtained by means of load flow calculations assuming realistic load
and generation profiles. The active and reactive powers for the analyzed nodes are shown
in Figure 3, and the voltage profiles in Figure 4. The maximum and minimum voltage
values within the network are also reported in Figure 4.
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Figure 3. Power profiles of (a) active and (b) reactive consumption, and (c) PV production. Figure 3. Power profiles of (a) active and (b) reactive consumption, and (c) PV production.
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The measured values were obtained by adding a measurement noise to the calculated
power and voltage values. The measurement noise covariance matrix R was built by assuming
the standard deviations indicated in Table 1 and considering the measurements errors
uncorrelated.

Table 1. Measurement standard deviations.

Standard Deviations

Voltage magnitude—σE 0.653 V (0.2% of Emax)
Voltage phase angle—σδ 1 mrad

Power—σS 40 W (0.2% of 20 kW)

4. Test Results

For the appraisal of the performances of the developed methods, the average absolute
deviation (aad) was calculated:

aad =
1
n

n

∑
i=1

∣∣ .
ui − ûi

∣∣ (48)

where
.
ui and ûi are the true and estimated values of u at the i-th instant, and n is the

number of samples, equal to 96 for the considered case.
As already mentioned, other than R, the performance of the KF-SE was strongly

influenced by the process noise covariance matrix Q. The values of qang and qmag, for which:

1 
 

1
2 2

diag( )
N N−

ang ang mag mag= q ,...,q ,q ,...,qQ
 

 
(49)

were chosen by analyzing the values of aad for different values of q in a 1-week dataset, as
done in [33]. The resulting optimized values were 6.5 × 10−4 and 3 × 10−5, respectively.

4.1. Base Case

The estimated states of the analyzed nodes, on a quarter-hourly basis, with both the
WLS and the KF-SE methods are reported in Figures 5–7. To avoid the influence of the KF
initialization errors mentioned in Section 2.4, the SE algorithms were initialized a half-day
before.
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Figure 5. Estimated state values at buses (a) 5, (b) 11, and (c) 41. Figure 5. Estimated state values at buses (a) 5, (b) 11, and (c) 41.
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Figure 6. Estimated state values at buses (a) 47, (b) 63, and (c) 122. Figure 6. Estimated state values at buses (a) 47, (b) 63, and (c) 122.
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Figure 7. Estimated state values at bus 142.

The aad values for each node for both SE methods are reported in Figure 8, and their
total values in Table 2. The improvement with respect to typical arbitrary values of q is also
shown. Relative changes are reported with respect to the WLS-SE.
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Figure 8. Average absolute deviation values for each node.

Table 2. Total average absolute deviations for different SE methods.

WLS-SE

KF-SE

qi = 1 × 10−6 qi = 1 × 10−5 qi = 1 × 10−4
qmag = 6.5 × 10−4

qang = 3.0 × 10−5

(Optimized)

aad (magnitude) 2.68 × 10−3 7.50 × 10−3 5.66 × 10−3 2.74 × 10−3 1.92 × 10−3 (−28.4%)
aad (phase angle) 0.095 0.108 0.077 0.077 0.070 (−25.9%)
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4.2. Influence of Measurement Nonsynchronicity and Time Delays

The above results were obtained under the assumption that all the network data
were collected by the DMS and processed instantaneously, and that the timestamps were
coincident. Actually, smart meters transmit data to the DMS with delays that can be very
large depending on the advanced metering infrastructure technology [24,34].

The results below consider the case of nonsynchronized data transmitted by the
distributed measurement system. The scheme of Figure 9 elucidates the meaning of the
considered time delays, in which tn represents the time between consecutive measurements
for the same node, tm is the time elapsed between the time of the last state estimate and
the arrival of the record, and tdel is the time delay elapsed from the measurement and
its collection by the DMS. The nonsynchronicity was expressed by using tm,i and tdel,i
multiples of 30 s. The SE was carried out every 15 min, and all the measurements arriving
after the last SE were used in the next SE, as represented by the red lines.
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Two scenarios were considered: (i) Scenario A: the measurements of each node were
not synchronized, but arrived exactly every 15 min, i.e., all delays were null, tn,i = 15 min,
and tm,i was constant but different for the various nodes; (ii) Scenario B: the measurements
of each node were carried out every 15 min, but their arrival to the DMS was delayed by
tdel, which randomly varied between 0 and tmax min. In this case, tn,i and tm,i were no
longer constant. In some cases (mainly when tn + tm > 30 min) the delays were so large as
to cause the SE to be computed without the updated information for some nodes.

First, simulations were carried out while considering a very accurate measurement
dataset to highlight the influence of the nonsynchronicity and the time delays on the SE
performance. The results obtained with only the KF-SE algorithm are reported in Figure 10,
together with those obtained under the assumption of measurement synchronicity without
delays, i.e., the ideal case.

Finally, simulations were repeated considering the nonsynchronicity and the mea-
surement standard deviations in Table 1. The resulting aad values obtained with both SE
algorithms are reported in Table 3. Relative variations are reported with respect to the ideal
case. From the obtained results, it was concluded that the influence of nonsynchronicity
and time delays were moderate if they were restrained within some limits, e.g., one period
of the SE computation. As time delays became larger, the worsening performance of the SE
computation became significant.
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WLS-SE
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Asynchronous
(Scenario B)

aad (magnitude) 2.68 × 10−3 2.73 × 10−3

(+2.0%)

tmax = 15 min tmax = 60 min

3.08 × 10−3

(+14.8%)
3.43 × 10−3

(+27.8%)

aad (phase angle) 0.095
0.098

(+3.4%)

tmax = 15 min tmax = 60 min

0.107
(+13.1%)

0.117
(+23.7%)

KF-SE

Ideal Asynchronous
(Scenario A)

Asynchronous
(Scenario B)

aad (magnitude) 1.92 × 10−3 2.10 × 10−3

(+9.4%)

tmax = 15 min tmax = 60 min

2.39 × 10−3

(+24.4%)
2.94 × 10−3

(+53.1%)

aad (phase angle) 0.070
0.073

(+3.8%)

tmax = 15 min tmax = 60 min

0.078
(+11.1%)

0.085
(+21.2%)

5. Conclusions and Future Development

The implementation of a state estimation (SE) algorithm in a real low-voltage network
has been presented. Two common methods for the SE computation were implemented and
compared, mainly the weighted least squares (WLS) and the iterated Kalman filter (KF).
The algorithms could consider unbalanced networks, as well as real load and generation
profiles.

Due to the fluctuating nature of loads and of distributed generation, the resulting
voltage profile fluctuates as well, for which the KF parameters, in particular the process
noise covariance matrix, must be carefully tuned. The selection of the KF parameters was
carried out on a 1-week dataset, and the advantages of applying such a procedure with
respect to the adoption of typical values selected a priori were illustrated.

The comparison between both SE algorithms showed the improvement obtained by
the KF implementation in terms of average absolute deviation of the voltage magnitudes
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and phase angles. For the analyzed scenario, the KF implementation led to reductions of
the average absolute deviations of 28.4% and 25.9% for the estimated voltage magnitudes
and phase angles, respectively.

The influences of the measurements’ nonsynchronicity and of the process and/or
communication delays were quantified and analyzed. The influence of measurement non-
synchronicity when delays were not considered was very limited. In such a scenario, the
average absolute deviations increased 2.0% and 9.4% for the estimated voltage magnitudes
and 3.4% and 3.8% for the estimated voltage phase angles, with WLS and KF-SE, respec-
tively. The influence of time delays depended on their size. If the delays were limited, e.g.,
within one period of the SE computation, the deviations increased 14.8% and 24.4% for
the voltage magnitudes and 13.1% and 11.1% for the voltage phase angles, with WLS and
KF-SE, respectively. As time delays became larger, the performance of the SE computation
worsened significantly. For instance, for the scenario in which delays could reach 1 h, the
deviations increased 27.8% and 53.1% for the voltage magnitudes and 23.7% and 21.2% for
the voltage phase angles, depending on whether the WLS or the KF-SE was implemented,
respectively.

The KF-SE also constituted a valid approach for distribution networks equipped
predominantly with smart meters, providing a low measurement rate and in the presence
of renewable energy sources such as photovoltaic power plants. Future work should aim
at optimizing the value of the prediction covariance matrix, for which adaptive strategies
might be appropriate, particularly in the presence of unpredictable energy production or
load variations. Moreover, further strategies must be developed to mitigate the effect of
measurement nonsynchronicity and time delays on the robustness of SE.
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Nomenclature

Acronyms
DKF Discrete Kalman filter
DMS Distribution management system
DSO Distribution system operator
EKF Extended Kalman filter
IKF Iterated Kalman filter
KF Kalman filter
LV Low voltage
MV Medium voltage
PMU Phasor measurement unit
PV Photovoltaic
SE State estimation
SM Smart meter
WLS Weighted least squares
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List of variables 1

N Number of nodes
A Branch–bus incidence matrix
p1, p2, p3, p Number of single-phase, two-phase, and three-phase buses, and total

number of buses
br1, br2, br3, br Number of single-phase, two-phase, and three-phase branches, and total

number of branches
n Number of state variables
m1, m2, m3, m Number of single-phase, two-phase, and three-phase measurements, and

total number of measurements
x, x State variables
x̂ Estimated state
h(x) Relation between measurements and state variables
H Measurement Jacobian matrix
e, e Measurement noise (error)
σ Measurement standard deviation
R Measurement noise covariance matrix
y, Y, Y, Yp Admittance, admittance matrix element, admittance matrix, and primi-

tive admittance matrix
δ, V Phase angle and magnitude of the voltage phasor
z, z Measurements
w, W Weights of the measurement errors
f Objective function
v Weighted least squares iteration index
i Iterated Kalman filter iteration index
G Gain matrix
ν, ν Process noise
q, Q Process noise covariance elements and matrix
ϕ, φ State-transition function and matrix
κ Time instant index
S Innovation covariance matrix
K Kalman gain
Pκ|κ , Pκ|κ−1 Estimation and prediction error covariance matrices at κ-instant
aad Average absolute deviation
1 Bold letters represent either vectors or matrices.
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