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Structural Health Monitoring system with
Narrowband IoT and MEMS sensors

Flavio Di Nuzzo, Davide Brunelli, Senior Member, IEEE, Tommaso Polonelli, Student Member, IEEE,
and Luca Benini, Fellow, IEEE

Abstract—Monitoring of civil infrastructures is critically
needed to track aging, damages and ultimately to prevent severe
failures which can endanger many lives. The ability to monitor in
a continuous and fine-grained fashion the integrity of a wide vari-
ety of buildings, referred to as structural health monitoring, with
low-cost, long-term and continuous measurements is essential
from both an economic and a life-safety standpoint. To address
these needs, we propose a low-cost wireless sensor node specifi-
cally designed to support modal analysis over extended periods of
time with long-range connectivity at low power consumption. Our
design uses very cost-effective MEMS accelerometers and exploits
the Narrowband IoT protocol (NB-IoT) to establish long-distance
connection with 4G infrastructure networks. Long-range wireless
connectivity, cabling-free installation and multi-year lifetime are
a unique combination of features, not available, to the best of
our knowledge, in any commercial or research device. We discuss
in detail the hardware architecture and power management of
the node. Experimental tests demonstrate a lifetime of more than
ten years with a 17000 mAh battery or completely energy-neutral
operation with a small solar panel (60 mm x 120 mm). Further,
we validate measurement accuracy and confirm the feasibility
of modal analysis with the MEMS sensors: compared with a
high-precision instrument based on a piezoelectric transducer,
our sensor node achieves a maximum difference of 0.08% at a
small fraction of the cost and power consumption.

Index Terms—Internet of Things, IoT, Narrowband IoT,
MEMS, Structural Health Monitoring, SHM, Smart Sensor
Systems, Sensor Communications

I. INTRODUCTION

In our cities, buildings and civil infrastructures are in-
creasing every year [1]. New materials and techniques ap-
plied to complex structures create the need for continuous
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and autonomous monitoring of the structural integrity of the
buildings over many years [1], [2]. Furthermore, old structures
and facilities such as bridges, viaducts, roads, and apartments
have to be continuously checked to guarantee the safety
of thousands of people: in fact, old civil and mechanical
engineering structures continue to be used daily despite aging,
deterioration, and exceedance of their operational lifespan. For
instance, between 2013 and 2018, one out of nine of the
United States bridges were structurally deficient, while in Italy,
13 bridges collapsed, in addition to a 210 meters highway
bridge breakdown, which killed 43 people [2]. According to
these facts, the ability to monitor a wide variety of buildings
with low-cost and real-time measurements is essential from
both an economic and a life-safety standpoint. The process
of continuously monitoring the integrity and the response
of a structure is referred to as Structural Health Monitoring
(SHM) [3].

The primary function of an SHM system is to provide a
continuous assessment of structural integrity and promptly
identify, or even predict, damages and abnormal structure
behaviors while generating periodic reports about the structure
state [3]. In particular, civil engineers and inspectors need
periodic data to assess the mechanical performance over
long time intervals, typically many years, and to analyze
the structure’s long-term response to environmental and daily
stresses (i.e., weather, wind, weight load, corrosion, or act
of vandalism). Both static and dynamic measurements are
required to achieve this goal: corrosion and crack monitoring
are typical static measurements, while modal analysis [4]
needs dynamic (velocity, acceleration) measurements. A SHM
system comprises four blocks: i) sensors and transducers,
ii) remote communication, iii) data storage, and iv) feature
extraction and data processing. Depending upon the SHM
installation complexity and operation context, the system could
work in small scale, for example, on a single structure or
exploiting many thousands of sensors with national coverage.
In this paper, we focus our effort on the second case, providing
support for sparse installation of heterogeneous IoT devices for
national or internationals SHM networks.

Historically, SHM devices were produced using wired net-
works; however, the low installation and maintenance costs
and high reliability of state-of-the-art LPWAN (Low-Power
Wireless Area Network) and Internet of Things (IoT) protocols
have made them a compelling alternative solution for industrial
deployments [5], [6]. Indeed, due to their high installation
costs, wired systems are generally available only for long-term
monitoring of important key structures. SHM wireless sensors
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enable significant cost reductions [7], [8], allowing a massive
utilization in public and private infrastructures. Moreover, such
sensors are also suitable for short-term structural monitoring
applications, exploiting single clusters of devices for multiple
buildings. Previous works have pointed out that, concerning
power consumption, coverage, and security, LoRaWAN [9]
and NB-IoT [10], [11] are the most suited LPWAN protocols
in distributed IoT applications. In addition to the installation,
the second limiting factor comes from transducers [12]. In-
deed, it is not obvious which kind of behavior better describes
the structure health, and the sensor cost is itself a major
limiting factor. Ordinarily, to read the small vibrations and
oscillation frequency components of a building with sufficient
precision (10−2m · s−2) [12], piezoelectric monoaxial sensors
are used. Furthermore, to characterize a wall crack through
time and space, LVDT (Linear Variable Differential Trans-
formers), optical-fiber based sensors [13], and laser sensors
are often exploited, which a sensitivity below one micrometer.
They are usually noted for their high cost, characterized by
the transducer and the complex analog front-end. Moreover,
the harness’s deployment to connect several devices in a
large and external environment complicates the installation
and raises the costs. Due to these facts, SHM systems are
not commonplace and widespread as they should [14].

To overcome these limitations, previous works proposed the
integration of Micro-Electro-Mechanical Systems (MEMS) in
SHM devices for making low-cost monitoring systems [12],
[15]. Currently, structural instrumentation using MEMS pro-
vides low-cost installation, moderate invasive effects, and
equivalent performance compared to their macro-scale coun-
terparts [12]. Off-the-shelf MEMS integrated System on Chips
(SoCs) are appealing for SHM application as they measure
vibrations from 101m · s−2 (severe shaking) to 10−2m · s−2

(micro-vibration) on large-scale structures having natural os-
cillation frequencies in the range of 10−1 to 101Hz [16].
Moreover, it has been demonstrated that data from MEMS
inclinometers can also provide additional information about
the structural health of the system with respect to an increasing
traffic load [17].

This work presents a low-cost wireless SHM monitoring
sensor board that uses low-cost MEMS sensors and data
communication using the NB-IoT protocol. It is specifically
designed to support building modal analysis through low-
cost (price between 1.83C and 2.17C at 1kunit) commercial
MEMS sensors to facilitate wide-scale SHM systems’ de-
ployments. Using NB-IoT communication, the sensor board
guarantees extremely low power consumption (125.4 mW
run, 145.2 µW sleep) and capable of global (nation-scale)
connectivity through the NB-IoT infrastructure network.

A combination of onboard processing and data aggregation
decreases the communication energy, 50µJ per bit on average,
by exploiting the floating-point unit (FPU) performance of
the STML4 MCU series Indeed, applying the edge-computing
methodology in our sensor board enables a data compression
rate of 256. For high-accuracy and short term deployment
using a non-rechargeable thionyl chloride 17000 mAh battery,
our device reaches 214 days of operativity. Moreover, for long-
term monitoring using the same battery, the 10 years threshold

is achieved, considering 6 samples per day, in which 3 MB
of vibration values compose each sample. The node has also
been tested with onboard solar energy harvester support self-
sustainability using a 60 mm × 120 mm solar panel and a
Li-On battery, used as an energy buffer, of 5400 mAh.

The measurement precision of our device is comparable
with piezoelectric sensors. To achieve this result, we per-
formed a comprehensive MEMS assessment to select the
best commercial product in comparison with high precision
piezoelectric sensor. Our device measurements perfectly match
results from expensive and power-hungry piezoelectric sen-
sors, providing an error lower than 0.08% in frequency peak
detection of modal vibration tones.

The rest of the paper is organized as follows. Related
work is reviewed in Section II. Section III presents a design
exploration of NB-IoT, providing consumption analysis and
discussion of the limits. Performance comparison of three
commercial modules has been discussed to justify the more
suitable communication module for the designed SHM node.
We present the hardware and software design of our SHM
board in Section IV. An energy consumption model is elab-
orated in Section V, and it is also validated with laboratory
measurements. Section VI describes all laboratory simulations
and results to test and evaluate the board’s performance
compared to state-of-art sensors. Section VII concludes the
paper.

II. RELATED WORK

Structural Health Monitoring (SHM) has been studied for
some decades already; as we can see in [18] studying the
modal vibration of a structure, it is possible to detect dam-
ages in advance. Furthermore, more recent studies developed
approaches of damage detection based on autoregressive (AR)
time series and damage sensitive features (DSFs) defined as
a function of the AR coefficients [19]. Another example is
given by [20] where the AR coefficients are calculated with
autoregressive moving average (ARMA) processes and then
given to a Gaussian Mixture Model (GMM) to model the
feature vector. These two algorithms permit to detect damage,
but also to locate it in the structure and, most importantly,
they use vibration data coming from inertial sensors. Con-
sidering the improvements in microcontrollers’ computational
performance and considering the last generation of MEMS
with higher precision and newer features of machine learning,
it’s possible to perform SHM in an embedded system.

A major trend in SHM is to replace expensive piezoelec-
tric sensors with more affordable MEMS sensors. In [21],
a comparison between a piezoelectric sensor and a MEMS
sensor for vibration-based SHM is presented, demonstrating
that MEMS is a viable technology for SHM with a remarkable
cost reduction. Another example is given by [15],which has
been validated in production and serves as the initial reference
for this paper. The main limitations of this design are: (i) it
uses short-range wireless communication for data (Wi-Fi) that
is also power-hungry (0.5 W); (ii)it is not designed for battery
operation, and requires power cabling.

In [22], a sensor node that measures and monitors cracks in
concrete for SHM purposes is proposed. The sensor node uses
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the LoRaWAN protocol to communicate data, and it guaran-
tees a battery lifetime of more than 10 years. Highly accurate
static measurements of crack’s amplitude are demonstrated
along with Long-range connectivity. However, the bandwidth
and sample rate of crack metering is orders of magnitude lower
than what is needed for vibration-based SHM. Concerning
static measurements [13], [22], [23], for example, cracks width
or corrosion, it is possible to detect damages in structures using
strain gauges. These measurements have low bandwidth and
can be performed with very low power sensor and electronics,
which can survive in the building for all its lifetime. Our work
focuses on much higher bandwidth vibration-based analysis,
which is as essential for SHM as static analysis since it
provides complementary information [15], [21], [24]. Ideally,
dynamic analysis should be performed in a continuous, long
term fashion, in parallel with static analysis, but it generally
is not, because of power and cost concerns.

The designs proposed so far in the literature and in the
industrial practice are not suitable for vibration-based (dy-
namic), battery-powered SHM with long lifetime. In this work,
we improve over previous designs in several directions. First,
we use the NB-IoT protocol for our communication link and
leverage its advantages over LoRaWAN [22]: NB-IoT uses a
licensed band, so there is no limitation on band occupation;
moreover, there is no need of gateways because the node
connects directly with mobile operator’s base stations. Note
that, LoRaWAN protocol is generally less energy consuming
than NB-IoT [10] at low datarates, but it is not adequate
for high datarate SHM applications that need thousand of
KBytes of data transferred. The NB-IoT payload is 3 times
bigger than LoRaWAN (1500 Bytes against 300 Bytes in
specific condition); furthermore, NB-IoT datarate is 200 kbps
against 50 kbps of LoRaWAN [25]. Considering a long term
application as in this work, 12kB per inertial measurement
session must be sent, for a total of 6 sessions. 72kB per
day is unfeasible using LoRaWAN protocol because of the
low data rate and, more importantly, for the regulated band
occupation that only permits very low duty-cycle. NB-IoT
has no limitation on data transmission, and the energy per bit
(EPB) with big payload (>5kB) is affordable, as it is lower
than 50µJ (as shown in Table I in Section IV).

After evaluating the performance of MEMS analog sen-
sor presented in [12], we decided to use in our work the
LIS344ALH by ST Microelectronics because of its lead-
ing edge characteristics among MEMS sensors. In fact,
LIS344ALH has a noise density of 50 µg/

√
Hz (the low-

est value in this class of devices), and its performance is
confirmed in [15]. Moreover, thanks to the efficiency of the
microcontroller STM32 series L4 from ST Microelectronics,
we implemented an acquisition chain designed to oversample
and filter the data coming from the sensor, achieving 16 bit
ADC resolution.

To the best of our knowledge, there are no other devices that
exploit the NB-IoT protocol to enable vibration-based SHM. In
literature, [26], [27] provides several examples and evaluations
on wireless communication applied to SHM, but none of them
use NB-IoT. Also, in [24] are presented some examples of
SHM systems based on MEMS sensors, but in all proposed

solutions, the usage of NB-IoT is not considered.

III. BACKGROUND

A. Narrowband IoT

The NB-IoT is a Low Power extension of the LTE (4G
Long Term Evolution) developed for long battery lifetime and
low cost application. Its main features are reduced power con-
sumption, extended coverage extension, user equipment cost
reduction, and backward compatibility [28]. The NB-IoT’s
power consumption depends on multiple environment-related
factors, such as the country and network operator settings,
which can drastically change the end-device performance.
NB-IoT is standardized by 3GPP for LPWANs thanks to its
capability to work virtually everywhere (e.g., TIM guarantees
a country level coverage in Italy for NB-IoT) [11].

The maximum payload for each message is 1500 B, and the
full data transmission rate is limited to 20 kbps uplink and
200 kbps downlink. The minimum bandwidth is 180 kHz,
corresponding to the size of the smallest LTE Physical Re-
source Block (PRB). As presented in [29], this protocol is
meant for extended battery life applications of more than ten
years when transmitting 200 bytes per day, features that fit
into classic SHM requirements. Low power consumption is
achieved by NB-IoT using the LTE energy-saving mecha-
nisms, extending the inactivity periods to minimize energy
consumption. As reported in [30], the RCC state model (LTE
Radio Resource Control) protocol has only two states: RCC
Connected and RCC Idle (Fig. 1 - RCC), the cell handover
and redirection is not supported in NB-IoT release 13. NB-IoT
features a Discontinuous Reception (DRX) mechanism, where
the module alternates active listening for Paging Occasions and
sleep periods. DRX settings are defined in multiple subframes
of 1 ms, ranging from 256 ms to 9216 ms against 10 ms
to 2560 ms of LTE to reduce power consumption. NB-IoT
defines it enhanced DRX in RRC Connected mode (C-eDRX)
(Fig. 1 - C-eDRX Cycles). In RCC Idle, the eDRX in Idle
state (I-eDRX) (Fig. 1 - I-eDRX Cycles) is equal to the one
in LTE, but also, in this case, the timings can be larger It can
return in RCC Connected state at any time, using the same
context saved during the initialization (first connection to the
mobile operator’s cell). The reconnection process from PSM
state to RCC connected state decreases latency and energy
consumption compared to establishing a new connection in the
initialization phase. T3412 and T3324 set the duration of PSM
and I-eDRX, respectively (Extended Timer and the Active
Timer (Fig. 1 - T3412 and T3324). The Active Timer (T3324)
determines the duration of the I-eDRX after entering RCC Idle
state, and the Extended Timer (T3412) sets the period of the
Tracking Area Update (TAU). The TAU is the same as that of
LTE, but NB-IoT can also configure a longer period of up to
413 days (spent in PSM).

B. NB-IoT module: a comparative study

We compared three different modules available on the
market: the Quectel BG96, the Quectel BC95-G and, the
U-Blox Sara N211. The Sara N211 module is mounted on
the development board C030-N211 produced by U-Blox; the
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Fig. 1. Behaviour of a NB-IoT module with description

Fig. 2. Power Consumption in transmission: Quectel BC95, Quectel BG96
and U-Blox Sara N211

modules from Quectel are mounted on development boards
build by MIKROE, called MIKROE-3144 and MIKROE-3294,
respectively for the BG96 and the BC95-G. We mainly focused
on each module’s energy consumption in PSM and the energy
per packet required for each uplink in different coverage
conditions.

The U-Blox dev-board also mounts a current measuring
circuit, consisting of a shunt resistor placed on the supply
voltage and a differential amplifier based on the TSZ121
operational amplifier. For a fair comparison, we built the
same current measurement setup on the MIKROE dev-boards.
We sent the same packet using UDP protocol and measured
the energy, latency, and reliability. Moreover, for each trans-
mission, we assessed the RSSI (Received Signal Strength
Indicator) to classify the level of coverage. Using a -20 dB
coaxial passive attenuator, we simulate different connection
conditions. Results in Fig. 2 gather all the acquired data.
The vertical axis represents the power consumption expressed
in Joule, and the horizontal one shows the RSSI in dBm.
Taking as a reference Fig. 2, the following considerations are
validated. The Quectel BG96 has higher energy consumption;
indeed, it consumes 71% more on average compared to the
Quectel BC95-G and the U-Blox Sara N211; this fact is given
by the extra functionalities of this module. The Quectel BG96
can also operate as an LTE-M module or GPRS (General
Packet Radio Service) module; furthermore, it has additional

interfaces and even a GNSS (Global Navigation Satellite
System) module. The U-Blox Sara N211 and the Quectel
BC95-G are comparable; in good coverage, the Quectel BC95-
G consumes 15% less energy on average than the U-Blox Sara
N211; in medium coverage, the energy consumption is almost
the same.

We selected the Quectel BC95-G instead of the BG96
because of the lower average energy consumption and for
the NB-IoT focused firmware. In fact, the latter provides a
set of proprietary AT commands with extended functionalities
not needed in our application scenario, such as commands
to configure and use the MQTT (Message Queue Telemetry
Transport) protocol or to enable LTE and GNSS functionali-
ties.

C. Quectel BC95-G characterization and energy considera-
tions

We measured the energy consumption of the BC95-G in
different conditions. Moreover, aiming to design a reliable and
plug & play device, we assessed NB-IoT technology bound-
aries in SHM like environments. We perform more than 600
measurements using different passive and active RF attenuator
to simulate different coverage situations. Measurements are
reported in Fig. 3. We grouped the measurements in 3 areas
defined by the RSSI:

Good Coverage: −95 dBm <RSSI;
Medium Coverage:−110 dBm < RSSI < −95 dBm;
Bad Coverage: RSSI < −110 dBm;

In the following tests, the RSSI spans from a maximum of
−75 dBm to a minimum of −120 dBm, a typical received
power in most real application scenarios. In Fig. 3, the
energy consumption is lower than 2 J (with one outlier) for
transmission with RSSI greater than −96 dBm, the mean
energy consumption is lower than 1.1 J with RSSI greater
than −96 dBm. In case of an RSSI lower than −110 dBm
the energy consumption is 4.071 J in average because of the
bad coverage level, and ECL (the Enhanced Coverage Level)
is equal to 2. Hence the module performs multiple (2i with
i = 1...7 based on ECL [30]) re-transmission to send the
packet correctly. In Bad connectivity conditions, each packet
requires 3.8× more energy than in Good or 2.8× more than
in Medium conditions; this is a significant difference which
must be kept into consideration while estimating the battery
life.

In comparison with LoRaWAN, or other LPWAN protocols,
the NB-IoT requires more energy per packet in general.
However, due to its larger payload and its national licensed
connectivity, the energy per bit from the sensor to the cloud
is the best in class for the LPWAN category [11].

NB-IoT protocol has no restriction on band utilization
because it uses licensed LTE bands, so there is no limitation
on the number of bytes sent in a single connection to the
cell. In SHM applications, NB-IoT is ideal because gath-
ered data can be buffered, and latency requirements are not
so severe. Several energy consumption measurements with
different payloads size have been done. Table I reports the
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Fig. 3. Quectel BC95-G: average energy consumption in different coverage
levels

TABLE I
MEAN ENERGY CONSUMPTION AND EPB WITH DIFFERENT PAYLOAD
SIZES, THE ∆ DIFFERENCE IS COMPARED TO 500 BYTES OF PAYLOAD

Payload Mean E. ∆ EPB EPB∆
[B] Consumption [J] [µJ]
10 0.7130 ×1.32 8912 ×0.02
200 0.8123 ×1.15 507.7 ×0.46
500 0.9405 —— 235.1 ——

1300 1.0326 ×0.91 99.29 ×2.36
5400 2.1199 ×0.44 49.07 ×4.79
10800 3.6702 ×0.25 42.48 ×5.53

mean energy consumed for each payload size and the energy
per bit (EPB). Notice that the EPB with 500 Bytes of data
transmitted is 235.1 µJ , thus 5.53 times more than the EPB
with 10.8 KBytes of data. An SHM node can generate big
chunks of data (hundreds of kBytes), that NB-IoT protocol can
send with no restriction keeping a low power profile and with
low EPB when data is buffered and sent in a single connection.

IV. SENSOR NODE DESIGN

A. Hardware design

After the exploration of the most suitable NB-IoT module
and configuration, the hardware design of the complete SHM
node is discussed in this section. Recent works in the literature
have already investigated the sensor front-end [15], and the
wireless connectivity [11], providing fundamental hardware
specifications. In fact, as the major problems of commercial
SHM systems are the high sensor and installation cost, we
combined MEMS sensor micro-vibration requirements [15]
with an LPWAN transceiver [11]. An SHM board with wire-
less connectivity and battery supply drastically reduces the
installation costs.

The main components of the designed prototype are:
• STM32L476 microcontroller by ST Microelectronics: L4

Series microcontroller with ARM Cortex-M4 and Float-
ing Point Unit (FPU). It feature low power consumption
(39 uA/MHz) and a direct SD card interface;

• LIS344ALH MEMS inertial sensor: high performance 3-
axis ±2 g/±6 g ultra-compact linear accelerometer;

• IIS2ICLX High-accuracy, high-resolution, low-power, 2-
axis digital inclinometer; it embeds a machine learning

core for pattern recognition and automatic trigger genera-
tions. Moreover, it could provide inclinometric measures
with an accuracy of 0.015 mg/LSB;

• Quectel BC95-G LTE-CatNB1 NB-IoT module, charac-
terized in Section III-C

Furthermore, the board is equipped with two temperature
sensors for onboard and external temperatures. A linear volt-
age regulator has been added to provide a stable supply
voltage starting from the battery output. A USB compatible
battery charger system with an integrated power switch for
Li-Ion/Li-Polymer is mounted in case rechargeable batteries
or an energy harvester are used. Two current measurement
circuits are implemented in the SHM sensor node to sample
the current used by the circuit in real-time. Measures are
split into two power domains: the Quectel BC95-G and the
rest of the components. Analyzing the entire board’s power
consumption permits the detection of abnormal current drains
and, more importantly, the prediction of the residual battery
energy. Indeed, as reported in the previous section, the physical
positioning and the wireless connectivity could vary the power
consumption of the communication link up to 3.8×.

The inclinometer IIS2CLX is used for two main tasks:
gather clinometric data and provide an interrupt in case of
a peak detection. To reduce power consumption between two
measurement sessions, the board is halted in a ”sleep” condi-
tion, but in case of an extraordinary event (e.g., accelerometric
peak caused by an earthquake), the IIS2CLX will wake-up to
transmit emergency measurements. The final 4-layer Printed
Circuit Board (PCB) is 120 mm × 60 mm and is shown in
Figure 7.

B. Firmware design and data acquisition

The board Firmware is based on FreeRTOS to ensure code
efficiency and scalability. Three main tasks are defined:

• BC95-G managment Task: it manages all the commu-
nications and network operations between the NB-IoT
module and the microcontroller. The STM32 controls
initial settings and the first connection procedure, than
it enables both data transmission and reception;

• SD card Task: in this task, the MCU manages the data
logging on the SD card. Measurements coming from
different sensors and sessions are organized and saved in
text files, providing a ready to use format for end-users;

• Sensor acquisition Task: in this task, all procedures that
concern the sensors data acquisition are considered; in
particular, the MCU handles acquisition and filtering of
inertial sensor data.

In BC95-G management task, the microcontroller managed
the NB-IoT communication providing suitable AT commands
through a UART serial port. Furthermore, the state machine
also includes a full set of recovery capabilities in case of errors
or unexpected situations. For example, when the connection to
the network operator stales or takes more than 1 minute, the
software automatically resets the module and tries a new con-
nection. During the transmission phase, the task manages the
packed sending, supporting data fragmentation and replication
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for large volume uplinks. Afterward, it manages the PSM state
and the RTC alarm for the next measuring sessions.

Concernign the sensor data acquisition, a filtering task
is implemented. SHM typically measures vibrations in the
0–20Hz bandwidth, while principal modes of the structure
are in the range of 0–10Hz. On extraordinary stressful events
for the structure (like an earthquake) the typical frequencies
can reach a higher range, typically up to 45Hz [15]. For this
reason, the SHM node provides 16 bit acceleration values on
the three axes at 100Hz data rate. We applied oversampling
on the 12-bit ADC of the microcontroller to achieve 16-bit
as ENOB (Effective Number Of Bits) necessary for achieving
sensitivity and precision requirements.

A further advantage associated with the oversampling tech-
nique concerns the post processing, which eases the implemen-
tation of digital filters. In fact, the digital FIR (Finite Impulse
Response) filter is directly optimized for ARM Cortex-M4
to decimate data while applying a low pass filtration. The
acquisition chain samples the data at fOS = 25.6 kHz from
the sensor, the gathered data is then processed by a FIR filter
with a ratio decimation of 256, generating filtered data with
16 bit resolution at the final data rate of fS = 100 Hz. The
filter is a FIR filter composed by 6 different stages with a
resulting decimation factor of 256 and a cutoff frequency of
50 Hz. The minimum attenuation in stop band is 60 dB and
the ripple in pass band is 0.1 dB peak-to-peak, maximum.
The overall number of coefficients is 776, with a measured
computation time of about 510 µs, way lower than 10 ms
(fS = 100 Hz).

The SD card task manages the session data logging. While
the sensor acquisition task is running, the packets with filtered
data are saved on an SD card in a text file format. A double
buffering technique is used between this task and the sensor
task.

V. ENERGY CONSUMPTION MODEL

A. Battery Life Estimation

Different current measurements in multiple operating con-
ditions have been carried out to characterize the behavior
of the SHM sensor. To estimate the battery lifetime, we
have analyzed the power profile of a complete acquisition,
composed by 5.2 kB of data. As shown in Fig. 4, the energy
consumption is partitioned into two major blocks: the energy
used by data acquisition (Eacq) and the one consumed for data
transmission (ETX ). These two blocks contribute as reported
in Fig. 4:

1) Eacq1s: one second of acquisition at 100 Hz;
2) ESD−WR: write data on the SD Card;
3) Ec−1TX : connect and transmit the first packet;
4) Epkt−TX : transmit one packet (general);
5) Ecdrx−disc: energy consumed by Connected DRX and

disconnect phases.

For each acquisition and transmission phase, the NB-IoT
module sends 1300 B, each packet consists of 650 filtered
samples (16-bit depth per sample) saved on the SD card and

Fig. 4. Different energy contributions aligned on a measured transmission

TABLE II
ENERGY CONSUMPTION CONTRIBUTIONS

Contribution Energy [mJ] Contribution Energy [mJ]
Eacq1s 52.596 ESD−WR 2.1816
Ec−1TX 659.72 Epkt−TX 450.83
Ecdrx−disc 616.97 - -

thereafter transmitted. In Fig. 4, the energy consumption varies
with the number of packets (Npkt−TX ) given by Eq. 1:

Npkt−TX =
Tacq ∗ fs
Payload

. (1)

where Tacq is the time duration in seconds of the sampling
time, and it’s set by the user according to the application. The
energy consumption of the Eacq is given by the Eq. (2), the
ETX is given by Eq. (3) and the total energy consumption for
a session is given by Eq. (4):

Eacq = Eacq1s(6.5 ∗Npkt−TX) +Npkt−TX ∗ ESD−WR (2)

ETX = Ec−1TX + Ecdrx−disc + (Npkt−TX − 1)Epkt−TX (3)

Etot = ETX + Eacq (4)

Table II reports the energy consumption of every sub-block,
highlighted in Fig. 4, calculated using a MatLab script. The
current used by the node in sleep mode was measured using
a precise power source meter the Keithley 2470. When the
STM32 enters in Stop Mode 2, all sensors are consequently
configured in low power mode, as well as the Quectel BC95-
G, which is in PSM. In this configuration, the current absorbed
by the board (Isleep) is 34 µA. The total energy consumed in
one day (Eday) is given by the Eq. 5, where Vs is the supply
voltage of 3.3 V, Nsession is the number of acquisition and
transmission performed per day and Tsleep is the number of
seconds in sleep condition.

Eday = Etot ∗Nsession + Tsleep ∗ Vs ∗ Isleep (5)

The battery selected for our application is produced by
SAFT, named LS3360001. It is a Lithium - Thionyl chloride
(Li − SOCl2) primary cell, it’s ideally suited for long-term
applications with its 17Ah of capacity in a D-size bobbin cell
format. The total energy avaible by this cell is 226440 J. The

1https://www.saftbatteries.com/products-solutions/products/ls-lsh-lsp

https://www.saftbatteries.com/products-solutions/products/ls-lsh-lsp
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Fig. 5. Battery life estimation varying the sensors acquisition time and the
number of sessions per day

battery capacity is temperature dependent. The nominal value
is verified at 25◦C, but it could be halved at −40◦C, thereby
modifying results in Fig. 5.

Fig. 5 shows the battery lifetime (in years) as a function
of the acquisition time for each session, and the number of
sessions per day. The acquisition time plotted in Fig. 5 is
from 4 minutes to 20 minutes but it can be lower or higher
depending on the application. We show four different curves
according to the different number of sessions per day: 1, 2, 4,
6. Notice that a configuration with no more than 7 minutes
acquisition time and one session per day, is necessary for
achieving ten years lifetime, with 84 kB transmitted daily. On
the other hand, very frequent acquisitions can discharge the
battery quite quickly. For example, 6 sessions with 20 minutes
of measurement drain the battery charge in 214 days, because
1.44 MB are transmitted every day.

B. Energy Harvesting

In addtion to aggressive power management, to achieve
long term monitoring an energy harvester circuit is designed.
Indeed, considering a typical scenario for SHM, where sen-
sors are deployed out in the open on building or bridges,
a solar harvesting is a valuable solution. In this scenario,
a different battery cell is needed because the LS336000 is
not rechargeable: a Li-Ion alternative is the VL34570 xlr by
SAFT. This cell has the same size of the LS336000 (D-
size bobbin cell) and the same nominal voltage, 3.7 V , but
the capacity is lower: 5.4 Ah. If we focus on a long term
application, we can estimate the energy consumption per day
with the aforementioned power model. According to [20], to
perform an analysis of structural damage detection using a
time series based algorithm, SHM operators need at least 6000
samples at 100 Hz. To collect this amount of data, our SHM
sensor needs 60 seconds of acquisition (from each installed
sensor) 6 times per day to check the integrity of the structure.
With this type of battery, using the equations (1), (2), (3), (4),
we obtain a duration of 3 years. All results are reported in
Table III. The daily energy per day is equal to 61.998 J, with
a corresponding average of 17.22 mWh.

A solar panel in good environment conditions has a power
density from 15 to 100 mW/cm2 [31]. Thus, a solar panel

TABLE III
SPECS AND DATA FOR SHM LONG TERM APPLICATION USING SOLAR

ENERGY HARVESTING

Parameter Value Parameter Value Parameter Value
Nsessions 6 tacq 60 s tactive 546 s
tsleep 85854 s ETX 5.334 J Eacq 3.441 J
Eday 61.998 J Ecell 71928 J BatteryLife 3.18 Years

Fig. 6. Power consumption log of 1000 seconds

with the same surface as the board (120 mm × 60 mm) is
considered. Supposing a worst case scenario with 4 hours of
complete solar light and 25% loss from recharge and storage
circuitry we obtain an average generated power of 3.24 Wh.

The energy intake from the solar panel each day is 2 orders
of magnitude bigger than the power consumed by the node.

C. Model validation

To check the stability of the software and to validate the
power consumption model we extensively tested the sensor
node in a real SHM environment. The software is configured
to acquire 60 seconds of data and transmit it through NB-IoT
protocol to the server, this session is repeated 6 time in a day,
one session every 4 hours.

In Fig. 6 we show a log of 1000 seconds, this specific
window includes one complete session, in which the total
energy consumption is 8.535 J. In the following, a comparison
with Equations (6), (7), (8), (9), (10) is proposed in validation
of our energy model.

ETX = Ec−1TX + Ecdrx−disc + (Npkt−TX − 1)Epkt−TX (6)

Eacq = Eacq1s(6 ∗Npkt−TX) +Npkt−TX ∗ ESD−WR (7)

Etot = ETX + Eacq (8)

Esleep−1000s = Vs ∗ (1000− Tsleep) ∗ Isleep (9)

Etot−model = Etot + Esleep1000s (10)

From Eq. (10), the energy consumed with this window, cal-
culated using our model, is Etot−model = 8.613 J that is
slightly more than the measured one (0.9% more). Hence we
can conclude that the model overestimates by a small factor
the energy consumption and the battery life assumptions are
verified. Furthermore the firmware never stopped in 3 days test
doing a total of 18 session and transmitting a total of 324 KB
to the server. Lastly, the energy consumed in 1 day, measured



8

Fig. 7. Overview of the test set up: in orange the direction of the oscillations
imposed to the structure by the oscillating plate, in violet the axes orientation
of our sensor node, and in green the axis orientation of the piezoelectric
sensor.

Fig. 8. FFT analisys of Dytran 3191A1 (bottom graph) and LIS344ALH (top
graph) data; the values near tones are the precise frequency.

with our set up, is 62.1 J and considering the SAFT LS336000
cell, we obtain a battery life of 10.1 years.

VI. IN-FIELD VALIDATION

To verify the correctness of acquisitions and to check the
measurement accuracy of our SHM sensor node, we assessed
the system in a civil engineering test laboratory test structure
and environment (Fig. 7). The steel test structure is mounted
on an oscillating plate that can apply programmed vibration to
simulate typical buildings behaviors. The sensor used as ref-
erence is a high precision piezoelectric transducer, the Dytran
3191A12. It is specifically designed for SHM applications, and
used in high-end instrumentation, as reported in several studies
starting from 2010 [32].

2https://www.dytran.com/Model-3191A-Industrial-Accelerometer-P1625/

TABLE IV
TONE FREQUENCY COMPARISON LIS344ALH VS DYTRAN 3191A1

Modal Vibration LIS344ALH DYTRAN 3191A1 ∆%
I Mode 2.805 Hz 2.807 Hz -0.07%
II Mode 8.383 Hz 8.379 Hz +0.05%
III Mode 13.133 Hz 13.125 Hz +0.06%
IV Mode 16.066 Hz 16.052 Hz +0.08%

Fig. 9. FFT analisys of LIS344ALH in 3 test: undamaged structure
(NO DAMAGE), slightly damaged structure (DAMAGE 1) and damaged
structure (DAMAGE 2)

Fig. 10. FFT analisys of IIS2CLX in 3 test: undamaged structure
(NO DAMAGE), slightly damaged structure (DAMAGE 1) and damaged
structure (DAMAGE 2)

A vibration has been imposed on the oscillating plate to
see the structure’s first four vibration modes on 2.8 Hz,
8.4 Hz, 13.1 Hz, and 16.2 Hz. The data coming from the
Dytran 3191A1 and the LIS344ALH has been recorded in
multiple measurement sessions of 180 s. Fig. 8 shows the two
resulting FFTs. Notice that the data from LIS344ALH permit
to detect the expected vibration modes, as well as the Dytran
3191A1. Moreover there are no other unexpected frequency
components. The exact frequency values calculated from the
two sensors are reported in Table IV and shown in Fig. 8.
The difference is maximum 0.08%; confirming that Low-cost
analog MEMS accelerometers can be used for the assessment
of buildings in SHM.

After the comparison tests, a damage detection simulation
has been performed. The steel structure used in the tests
(Fig. 7) can be modified to simulate specific damage, and 2
different situations have been simulated, replacing columns of
the steel structure with thinner ones. Fig.9 shows the FFT of 3
measurements; the first modal tone is detailed to highlight the
frequency shift. Notice that the first modal tone with undam-
aged structure (Fig.9 - NO DAMAGE) is at 2.807 Hz, but
when a column of the structure is replaced with a thinner one
simulating light damage (Fig.9 - DAMAGE 1), the frequency
of the first modal tone shifts of 0.089 Hz (2.718 Hz). In the

https://www.dytran.com/Model-3191A-Industrial-Accelerometer-P1625/
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last test 4 columns of the structure are substituted with thinner
ones to simulate moderate damage (Fig.9 - DAMAGE 2), and
this can be clearly measured in the resulting frequency of the
first modal tone 2.284 Hz (0.523 Hz less than “undamaged”
structure). The same analysis has been executed with data
gathered from the IIS2CLX inclinometer sensor. Results show
similar modal frequencies, a difference less than 0.3%. In
Fig.10 shows the result of the test, with the frequency shift
in the 3 cases. IIS2CLX is a digital sensor with built-in
programmable features like a machine learning core processor
and a programmable low pass filter. It is more expensive, with
14.31 C at 1kunit, it is almost 7× the cost of the LIS344ALH.
If the specific SHM application requires machine learning
core features, the IIS2CLX could be a viable solution. If the
main focus is on cost reduction or the application needs a
scale-up to hundreds or thousands of measurement points, the
LIS344ALH is the most suitable solution.

VII. CONCLUSIONS

Nowadays, the ability to monitor the integrity of a wide
variety of buildings with low-cost and real-time measurements
is essential from both an economic and a life-safety standpoint.
In this work, we proposed a completely untethered wireless
sensor node specifically designed to support long-term modal
analysis with long-range connectivity at low power consump-
tion.

We analyzed and tuned the main parameters of the NB-IoT
communication protocol, chosen because it provides wireless
connectivity to the 4G (and future 5G) global infrastructure
network at low power consumption, suitable for continuous
monitoring. We provided a comparison of the most recent NB-
IoT modules on the market and selected the most appropriate
for a continuous SHM scenario. We presented the design,
both hardware and software, of a SHM node that can operate
unattended for more 10 years, or even indefinitely with the
support of a small size solar panel of 72 cm2.

We validated the measurement accuracy of the system
by comparing our low-cost devices with a state-of-the-art
piezoelectric transducer used in high-end commercial instru-
mentation for temporary cabled installations.

Results show a difference lower than 0.08% in the accuracy
of estimation of the modal vibration frequencies, with a cost
reduction of around 10×. Moreover, our solution enables ease
of deployment due to the total absence of cables and long
operation lifetime. Lastly, we present three structural damage
laboratory tests that confirm the usability of our solution in
SHM applications.
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