
25 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Schedule‐Aware Bundle Routing: Analysis and enhancements / Caini, Carlo; De Cola, Gian Marco;
Persampieri, Lorenzo. - In: INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING.
- ISSN 1542-0973. - ELETTRONICO. - 39:3(2021), pp. 237-249. [10.1002/sat.1384]

Published Version:

Schedule‐Aware Bundle Routing: Analysis and enhancements

Published:
DOI: http://doi.org/10.1002/sat.1384

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/859994 since: 2022-02-16

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1002/sat.1384
https://hdl.handle.net/11585/859994

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Caini, C, De Cola, GM, Persampieri, L. Schedule-Aware Bundle Routing: Analysis and
enhancements. Int J Satell Commun Network. 2021; 39: 237– 249

The final published version is available online at: https://doi.org/10.1002/sat.1384

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/

2

— The Delay-/Disruption-Tolerant Networking

architecture (DTN) was designed to cope with challenges such as

long delays and intermittent connectivity. To exploit the a priori

knowledge of contacts, typical of space networks, NASA-JPL

designed and included in ION (its DTN protocol suite) the Contact

Graph Routing (CGR) algorithm. This paper studies the latest

version, recently standardized as Schedule-Aware Bundle Routing

(SABR) within the Consultative Committee for Space Data

Systems (CCSDS). The first part of the paper is devoted to the

algorithm analysis, which distinguishes three logical phases to

examine sequentially. Following this comprehensive study, three

enhancements are proposed, which aim to improve SABR

accuracy and resistance against possible loops. They are studied

on a simple but challenging DTN topology, implemented on a

virtual GNU/Linux testbed. Tests are performed by running the

latest version of ION and an independent implementation of SABR

developed by the authors, Unibo-CGR. The numerical results are

then examined in detail to highlight both SABR mechanisms and

the advantages offered by the proposed enhancements.

Index Terms— Delay-/Disruption-Tolerant Networking, Inter-

Planetary Networking, CGR, SABR, Bundle Protocol.

I. INTRODUCTION

PACE links are characterized by many challenges, such as

long propagation delay, scheduled link intermittency,

possible link losses and asymmetric bandwidth. In the late 90s’

NASA-JPL researchers, who aimed to build an interplanetary

internet, realized that it would be necessary to build a new

networking architecture to cope with space problems. As some

of the challenges are common to terrestrial “challenged

networks”, such as those in remote areas, military tactical

networks, underwater networks, etc., the research was almost

immediately broadened to find a common solution, called

Delay-/Disruption-Tolerant Networking, (DTN) [1], [2].

DTN architecture extends TCP-IP architecture by inserting

the new Bundle layer between Application and (usually)

Transport. This new layer, and corresponding Bundle Protocol

(BP) [3], should be implemented on the end-nodes and on some

selected intermediate nodes. The new layer forms an overlay,

with its own addresses and routing.

DTN standardization started inside IRTF (Internet Research

Task Force), but after several years of research and

experiments, it moved to the IETF (Internet Engineering Task

Force) DTN group [4], where a new BP version (bpv7) is about

to be standardized [5]. In parallel, DTN protocols are tailored

 Manuscript received XX, 2020.

 Carlo Caini, Gian Marco De Cola and Lorenzo Persampieri are with the
University of Bologna, Italy, and may be contacted at carlo.caini@unibo.it,

for space applications by CCSDS (Consultative Committee for

Space Data Systems) [6], [7], a standardization body consisting

of all major space agencies. DTN protocols have been tested in

space for many years and are at present used on the

International Space Station (ISS) for experimental data delivery

to Earth [8]; they should be part of future space missions.

Concerning DTN routing, intermittent connectivity and

possible long delays demand ad hoc solutions, as a timely

exchange of information between nodes is generally impossible

[9]. In this regard, we must distinguish between terrestrial and

space environments [10]: the former are characterized by

random connectivity, as opportunity of transmissions (contacts)

are generally related to the random motion of terrestrial nodes

(cars, pedestrians, etc.); the latter, by scheduled intermittent

connectivity, where contacts are known in advance, because

they are due to the predictable motion of planets and spacecraft.

While for terrestrial applications, there is a wide variety of

possible solutions [10], generally based on some form of

moderate flooding , for space environments the almost sole

solution is Contact Graph Routing (CGR), developed by

NASA-JPL [11]-[15]. This algorithm uses scheduled contacts

to find the best path to destination, a much more challenging

task than it may appear, as will be shown in the paper. Given

the complexity of the problem, CGR has evolved continuously

since its appearance, in parallel with new versions of ION, the

NASA-JPL implementation of DTN protocols [16], which is

the de facto reference for space applications, although not the

sole. This is largely due to the fact that ION is available as free

software [17]. Recently, a milestone was reached when the

latest version was standardized by CCSDS under the name

SABR (Schedule-Aware Bundle Routing) [18], now included

in the latest ION releases.

The first aim of this paper is to make an in-depth analysis of

the new SABR version, distinguishing between its logical

phases and discussing conditions for optimality. This analysis

is then followed by the proposal of three enhancements, to

improve the accuracy of SABR predictions and to introduce

both reactive and proactive measures against possible loops.

These enhancements have been included in Unibo-CGR, an

independent implementation of SABR, developed by the

authors and then analysed by means of a GNU/Linux testbed

consisting of several virtual machines running ION-4.0.0. A

detailed study of numerical results highlights the possible

gianmarco.decola@studio.unibo.it and lorenzo.persampieri@studio.unibo.it.

S

Schedule-Aware Bundle Routing: Analysis and

Enhancements

Carlo Caini, Gian Marco De Cola, Lorenzo Persampieri

mailto:carlo.caini@unibo.it
mailto:gianmarco.decola@studio.unibo.it
mailto:lorenzo.persampieri@studio.unibo.it

3

benefits of these enhancements.

II. DTN ARCHITECTURE – DELAY-/DISRUPTION-TOLERANT-

NETWORING

DTN architecture [1], [2] is based on the introduction of the

Bundle layer, usually above the Transport layer of the ISO/OSI

model, whose scope is however redefined. A node that

implements the BP [3] is called a DTN “node” (not all nodes of

the network are required to be DTN nodes), and a DTN hop is

the segment of the end-to-end path between two consecutive

DTN nodes. In DTN architecture, the Transport is no longer

end-to-end but restricted to one DTN hop. This is essential to

allow the use of different transport protocols on different

segments of the end-to-end path, as shown in Figure 1 with

reference to a 3-hop path. An example is useful to clarify this

point. Let us consider an Earth-to-Moon connection, consisting

of three segments: one terrestrial segment, from the source to a

terrestrial gateway to space, a space segment between one Earth

and one Moon gateway, a lunar segment, between the lunar

gateway and destination. While the first and last segments are

not challenged, the space segment is characterized by an RTT

of about 2.5s, incompatible with TCP. To cope with this delay,

it is necessary to use a specialized Transport protocol, such as

LTP [19],[20]. Conversely, the use of LTP on terrestrial and

lunar segments is contraindicated, as LTP lacks congestion

control. The use of different transport protocols on different

network segments is the key to satisfactory performance in most

challenged networks, and this is the first major DTN

architecture benefit. The second, maybe more obvious, is the

ability to store data on board DTN nodes, essential to cope with

link intermittency [10].

BP is allowed to work on top of whichever transport protocol

for which a “Convergence Layer Adapter” (CLA) is

implemented (Figure 1). This implies that the bundle protocol

can work as an overlay over different networks, even

implementing a non-TCP/IP stack.

Figure 1: DTN architecture protocol stack on a possible 3-hop path.

Bundles have three “cardinal” priority classes: bulk, normal

and expedited [1]. The ECOS (Extended Class Of Service) draft

[21], implemented in ION, has, however, introduced a further

subdivision of the expedited class into many “ordinal” priorities

and other quality-of-service flags, among which the “critical”

one is of particular interest to SABR. The aim of this priority-

based strategy is to deliver bundles with the highest priority

first. To this end, each node implements three queues towards

each neighbour node, one for each cardinal priority, to send

higher priority bundles first when a contact opens (analogously

to first class passengers at boarding). Cardinal priorities,

however, also have an impact on routing, as the presence of

previous contact allocations to lower priority bundles is

neglected by SABR, as if lower priority bundles were

completely non-existent, or “transparent”, to higher-priority

ones. Thus, it may happen that a high priority bundle is

allocated by SABR to a contact that is already fully booked by

lower priority bundles (as if first-class passengers could grab

the seats of tourist-class ones).

III. ANALYSIS OF THE SABR ALGORITHM

Since its introduction, the CGR algorithm has incorporated

new features at nearly each new version of ION [11]-[15]. Here

we will focus on the SABR version [18].

A. The Contact Graph

Every node uses contact plan information, i.e. contacts and

ranges between nodes, to build a contact graph. This is

searched, e.g. by Dijkstra’s algorithm, to find the best

succession of contacts leading to bundle destination. The

criterion for the best route is the earliest arrival time, The

contact graph is a direct acyclic graph, where vertex are

contacts (not DTN nodes!) and edges represent episodes of data

retention at a given node, waiting for a subsequent contact to

start. An analogy with planes can help. Nodes of the graphs are

flights, and edges are the waiting times in airports. Because

vertices are contacts, a CGR route is a sequence of contacts (the

flights that a passenger must take to get to destination), not a

geographical route, i.e. the sequence of DTN nodes to be visited

(the airports). A CGR route implies a geographical route, but

not vice versa [15], [18].

CGR is a sophisticated algorithm, thus for a comprehensive

treatment we shall divide it into three main logical phases, as in

[22].

B. Phase 1: route computation

Starting from the graph of contacts, the routes (sequence of

contacts) that offer the earliest arrival time are computed. The

SABR standard leaves most aspects of this phase to the

implementation, including the way the contact graph is scanned

and how many routes have to be computed, i.e. when to stop the

search. The ION implementation, our reference, uses Yen’s

variant [23] of Dijkstra’s algorithm and stops after computing

only one route. It is worth stressing that Dijkstra contact search

does not consider either bundle characteristics or the state of the

network (queues, etc.), but leaves them to the next phase. For

computational reasons, it is opportune to compute routes to

destination D only when necessary; therefore, routes to D are

computed for the first time and inserted in a computed route list,

only when the first bundle to D starts to be processed by CGR

on the current node. As shown in the simplified SABR flow

chart (Figure 2), this phase is generally skipped by subsequent

bundles directed to the same destination, essentially to avoid

further Dijkstra searches. However, phase 1 is re-entered if

phase 2 is unable to find a viable route among the computed

routes (see below).

Application

Bundle Protocol

Transport Protocol A

Network Protocol A

Bundle Protocol

Transport

Protocol A

Network

Protocol A

Transport

Protocol B

Network

Protocol B

Bundle Protocol

Transport

Protocol B

Network

Protocol B

Transport

Protocol C

Network

Protocol C

Application

Bundle Protocol

Transport Protocol C

Network Protocol C

Network A

Convergence Layer

Adapter A

Conv. Layer

Adapter A

Conv. Layer

Adapter B

Conv. Layer

Adapter B

Conv. Layer

Adapter C

Convergence Layer

Adapter A

Network B Network C

Application

Bundle Protocol

Transport Protocol A

Network Protocol A

Bundle Protocol

Transport

Protocol A

Network

Protocol A

Transport

Protocol B

Network

Protocol B

Bundle Protocol

Transport

Protocol B

Network

Protocol B

Transport

Protocol C

Network

Protocol C

Application

Bundle Protocol

Transport Protocol C

Network Protocol C

Network A

Convergence Layer

Adapter A

Conv. Layer

Adapter A

Conv. Layer

Adapter B

Conv. Layer

Adapter B

Conv. Layer

Adapter C

Convergence Layer

Adapter A

Network B Network C

4

C. Phase 2: selection of candidate routes

The second phase is validating the computed routes (one or

more) calculated in phase 1, considering the specific

characteristics of the current bundle, e.g. priority, lifetime and

dimension. The routes that pass all checks are inserted into a

candidate route list, for phase 3. Some of the exclusion rules

from the standard are listed below:

 “Each route whose entry node is a member of the excluded

nodes list shall be ignored”. As the previous node is

normally inserted into the excluded nodes list, this rule

prevents a bundle form being sent back, to avoid “ping-

pong” instabilities.

 “Each route for which projected bundle arrival time (PBAT)

is after the bundle’s expiration time shall be ignored”. This

is probably the most important check; it can only be carried

out in this phase because both PBAT and expiration time

depend on bundle characteristics (dimension, priority,

lifetime).

 “Each route that includes any contact indicating

transmission to X (the local node) should be avoided, unless

X and D (the destination node) are identical”. This rule is

necessary to exclude routes implying a geographical loop.

These loops are actually possible only because DTN routes

calculated by Dykstra consist of a series of contacts, instead

of nodes.

 “Each route that is depleted with regard to the bundle’s level

of priority shall be ignored”. In practice, all contacts of the

route must have enough residual volume to accommodate

the current bundle, unless the “anticipatory fragmentation”

option is on. As the utility of this option is questionable,

from now we will consider it off. Note that the residual

volume, called MTV (Maximum Transmission Volume) in

the standard, depends on current bundle priority, as bundles

with lower priority are neglected by SABR, as if they were

non-existent, or “transparent” to the current bundle. The

check on residual volumes of all contacts on the route is one

of the most important novelties introduced by SABR

(previous versions checked only the residual volume of the

first contact) [14].

If after all the checks the candidate route list is empty, phase 1

is re-entered to find additional computed routes, i.e. new

chances of finding candidate routes (Figure 2).

An important point is that if the set of computed routes consists

of only one route, as normally in ION, phase-2 is reduced to a

viability check on the sole computed route.

D. Phase 3: bundle forwarding

This phase distinguishes between standard and critical

bundles.

1) Standard bundles

If the bundle is not flagged as critical, the best candidate

route is determined by applying, sequentially, 4 figures of

merit, i.e. PBAT, number of contacts, route termination-time

and entry node number [18]. In practice, the fastest route to

destination is chosen among all candidate routes (shortest

PBAT), and, in case of parity, the route with the fewest

contacts. The application of the last two tiebreak rules, based

on route termination-time and entry node number, is quite

uncommon. The bundle must only be forwarded to the entry

node of the best candidate route, therefore there is no bundle

replication for standard bundles.

2) Critical bundles

If the bundle is critical, (hopefully a rare event), phase 3

selects one route for each neighbour, and a bundle copy is

forwarded to each of them. If there is not any candidate route

for a specific neighbour, phase 1 is re-entered, with the

constraint that only routes starting from this neighbour must be

looked for. The aim is twofold:

 to have at least one candidate route to each neighbour,

provided that the contact plan allows for it.

 to send a copy to all these neighbours.

Actually it would be better to perform the first point in phase

2, in order to have a candidate route for each neighbour for

critical bundles before entering phase 3. This is done in Unibo

CGR implementation, to which Figure 2 refers.

This policy is an ingenious form of controlled flooding,

where the a priori knowledge of contacts is used to avoid

sending bundle copies to neighbours for which there is no

chance of getting to destination in time. As for all forms of

flooding, however controlled, its use should be strictly limited

to exceptional cases.

Phase 1
Route computation

Dijkstra and Yen
(independent of bundle)

Phase 2
Route validation

(based on bundle char.)

First bundle to D ?

Phase 3
Best route(s) selection

Computed routes

Candidate routes

Best route(s)

Exit

Bundle to D

Yes

No

Computed routes
subset for Yen &

ancillary information

Figure 2: SABR logical flow chart, as implemented in Unibo-CGR.

E. Route recomputation

In SABR, route computation and selection serve only to

determine the neighbour (or neighbours for critical bundles) to

which forward the current bundle. Once the bundle arrives at

the next node, the route is recomputed from scratch. The

rationale is that in DTN networks it is impossible to know the

actual state of other nodes, because prompt updates are impeded

5

by long delays and link intermittency. Although a different

approach, based on a form of moderate source routing, is

possible [24], the focus here is on the standard.

F. On SABR optimality

The next step is to discuss under which conditions SABR is

able to select the best route. A full discussion of this complex

topic can be found in [22]; here we will limit ourselves to the

most significant points.

First, we must stress that phase 1 considers neither bundle

properties (dimension, priorities, etc.) nor network state

(expected bundle queues), so it is equivalent to a Dijkstra search

considering a bundle of one byte (B) on an unloaded network.

Therefore, if bundle length is negligible and the network

unloaded, the route found by Dijkstra is the best; this cannot be

taken for granted in any other circumstances.

Moving to phase 2, note that even if the route computed in

phase 1 is the best for the first bundle to D, it could no longer

be optimal for subsequent bundles (for which phase 1 is

normally skipped), for a variety of reasons. Suffice to say that

even for 1B bundle and a still unloaded network, the best route

at time t0 and time t1 may differ. Keeping the old route for new

bundles only because it is still viable is computationally

efficient but clearly suboptimal. Particularly, with a loaded

network, expected queuing delays due to already processed

traffic can make the difference, thus they should theoretically

be considered in the Dijkstra search (i.e. in phase 1) as

envisaged in [12], [14]. This however, would require constant

re-computation of routes, which is not a practical option. A

trade-off between optimality and computational load is

necessary, and that is what is actually done by SABR, which is

therefore not optimal, but simply best effort.

IV. PROPOSED ENHANCEMENTS

The enhancements we are about to propose aim to improve

the terms of this trade-off, by making SABR generally more

accurate at the expenses of a limited computational effort.

A. “One-route-per-neighbor” enhancement

In SABR, phase 1 is not re-entered unless necessary, to

minimize Dijkstra searches. To be effective, this approach

would require multiple candidate routes among which to select,

in phase 3, the best, which can change depending on bundle

characteristics and contact residual volumes. In the standard,

when to stop phase 1 (i.e. after how many computed routes) is

not specified, leaving this critical point to the implementation

(in ION after one).

The “one-route-per neighbor” enhancement is inspired by the

current treatment of critical bundles, and by pre-SABR versions

of ION, which had a multiplicity of computed routes (ideally,

one for each contact departing from the source node). When

enabled, the one-route-per neighbor enhancement forces the

calculation of a candidate route for each neighbor, even for

standard bundles, to enhance the chances of selecting a better

candidate route in phase 3. In brief, it aims to have a true

election here, with multiple candidates, instead of a “Bulgarian”

one. The drawback is that multiple candidate routes must be

checked in phase 2, with an increase of the computational cost,

depending on the number of proximate nodes, i.e. on the

operational scenario. However, we think that this cost is well

worth paying in most cases, to achieve satisfactory

performance.

B. The “queue-delay” enhancement

Traffic load, key for optimality, is only partially addressed

by SABR in phase 2, where the Expected Volume Consumption

(EVC) of the current bundle is compared with residual volumes

of all contacts of the computed route, given by MTVs down-

counters, one for each level of priority. However, the contact

volume already allocated to previous bundles (i.e. the original

contact volume minus the MTV) is not converted into an

expected queuing delay. The queue-delay enhancement fills

this gap by adding an expected queuing delay to the PBAT

calculation, for each contact after the first. This delay is simply

calculated as the total amount of bytes already allocated divided

by the Tx rate declared in the contact. This expected delay can

differ from what will really be encountered for contacts after

the first, i.e. not departing from the current node (essentially

because in DTN the current node cannot receive fast updates of

traffic processed by other nodes). Adding these delays is a

conservative strategy and by improving PBAT accuracy SABR

performance should improve as well. Moreover, the additional

computational cost of this enhancement is null.

Note that the first contact is skipped because its queuing delay

is already precisely calculated by the ETO (Earliest

Transmission Opportunity) variable. The present queue-delay

enhancement simply extends the same concept to further

contacts, inspired by the idea behind the ETO original proposal

[12], [14], which worked on all contacts, not only on the first.

Note, however, that the queue-delay enhancement significantly

differs from the original ETO, as the delays are now applied

after Dijkstra, i.e. in phase 2 rather than in phase 1. This is

clearly less optimal, but, on the other hand, it saves further

Dijkstra calculations.

C. Anti-loop enhancement

SABR decisions are based on two kinds of information:

general and local. While the information in the contact plan is

general, as it is supposed to be common to all nodes, local

information is given by all parameters that are known locally

and that cannot be rapidly shared with other nodes, because of

the well-known limitations of challenged networks. The more

local information is used, the better the accuracy, but also the

higher the risk of routing instabilities, such as loops. To

counteract these, a prerequisite is being aware of their presence,

when they happen. To this end, we introduced in ION a bundle

extension, called RGR (Record Geographical Route) [22],

which lists all nodes visited, thus extending the already existing

“previous hop” extension, which reports only the last one [5].

By inspecting the RGR extension, it is possible to know if the

current bundle has performed a loop and, if so, to take

countermeasures to avoid a second loop, such as sending the

bundle to a different neighbor. This is done by the reactive

mechanism of the anti-loop enhancement.

6

A more ambitious goal, such as loop prevention, is pursued

by the proactive anti-loop mechanism. When this is enabled, the

list of already visited nodes is compared in phase 2 with those

associated to contacts of a computed route. If one of the contact

end-nodes coincides with a visited node, the checked route will

close a loop. On the other hand, it should be considered that the

“closing-loop” route could be the sole candidate route and that

there is no certainty that the bundle is destined to loop, because

following nodes might take different routing decisions.

Therefore, we decided to still consider a closing-loop route as

viable in phase 2, but introduced a loop warning flag, to be

considered in phase 3. This flag prevents a closing-loop route

from being selected, if other (non-flagged) candidate routes

exist. The computational cost of the anti-loop enhancement is

irrelevant, but the inclusion of the RGR extension necessarily

increases the total bundle dimension. However, as the RGR

consumes only very few bytes per visited node, this cost is

negligible too.

V. SYSTEM MODEL USED IN TESTS

The primary aim of the test environment considered here is

to highlight the different SABR behavior that the three

enhancements induce. Although it does not pretend to be

representative of any particular operational scenario, it has

some relationship with both the LEO satellite scenario

considered in [14] and the Martian scenario recently

investigated in [25]. From the former it derives most contacts,

from the latter the presence of an additional node. The high

level of symmetry in this scenario is useful to test SABR ability

to find the best route in the presence of nearly equivalent

choices. Although simple, symmetry and the presence of nested

contacts make it challenging for SABR, i.e. very suitable for

testing the enhancements. To the same end, we considered

ideal, i.e. without losses, the environment, which is

instrumental to give a bundle by bundle description of the

enhancements, as tests results are deterministic without losses.

A. DTN layout

DTN layout (Figure 3: The DTN Layout used in this paper.

Continuous lines denote continuous terrestrial links, dashed

lines continuous space links, dotted lines intermittent space

links. The Orbiter node is present only in anti-loop tests.)

consists of 5 nodes, a Mission Control Centre (MCC), two

Ground Stations (GS1 and 2), one Orbiter and a Space Asset

(SA). Contacts between the space asset and GSs are

intermittent.

A. Reference scenario: DTN Layout and contact plan

Orbiter
141

GS1
201

GS2
202

Space
Asset
143

MCC
231

Figure 3: The DTN Layout used in this paper. Continuous lines denote

continuous terrestrial links, dashed lines continuous space links, dotted lines
intermittent space links. The Orbiter node is present only in anti-loop tests.

B. Reference Contact Plan

We used the same reference contact plan in all tests (Table

I), with the exception of Orbiter contacts, present only in anti-

loop tests. In the Table:

 Contacts are listed in ascending order of sender and receiver

EIDs, as in ION internal structures.

 Times are expressed differentially with respect to a

reference time (ION startup).

 In the absence of a specific notation, continuous contacts are

declared as very long contacts; all have the same high Tx

rate and corresponding large volumes.

 A bi-directional contact is represented by a pair of

unidirectional contacts, as in ION. For simplicity, all

contacts here are symmetric, i.e. for each contact in one

direction there is a corresponding contact in the opposite

direction.

 The only intermittent contacts are between the Space Asset

and the Ground Stations. To GS1 there is only one contact

(3), short but fast. It is nested in the first contact to GS2 (4),

which is longer but also 4 times slower. There is a second

contact to GS2 (5), which makes CGR’s task a bit more

complex. It should not be used if CGR took the right

decisions.

 For the sake of simplicity, all “range” delays are set to 1s,

therefore they are not included in table

7

TABLE I. Reference Contact plan (ION format).

Cont. Sender

(IPN)

Rec.

(IPN)

Start

Time

[diff](s)

End

Time

[diff](s)

Data

Rate

(byte/s)

1 141 201 +0 +36000 1250000

2 141 202 +0 +36000 1250000

3 143 201 +60 +85 64000

4 143 202 +30 +100 16000

5 143 202 +120 +140 16000

6 201 141 +0 +36000 1250000

7 201 143 +60 +85 64000

8 201 231 +0 +36000 1250000

9 202 141 +0 +36000 1250000

10 202 143 +30 +100 16000

11 202 143 +120 +140 16000

12 202 231 +0 +36000 1250000

13 231 201 +0 +36000 1250000

14 231 202 +0 +36000 1250000

B. ION CGR and Unibo-CGR

All enhancements (but the anti-loop proactive mechanism)

were first introduced in an experimental version of ION CGR

(i.e. by modifying the original “libcgr.c” file). This was a

development step towards the independent Unibo-CGR

implementation of SABR, used in tests. A specific interface

isolates the Unibo-CGR core from the ION environment,

preserving full compatibility with it. All enhancements (and

other features) can be selectively enabled, by means of “define”

switches in the code. When they are off, Unibo-CGR behaves

as ION CGR, except for the anticipatory fragmentation

mechanism, which is not implemented. Unibo-CGR is aligned

with the latest ION release (4.0.0), including the support for the

new version of the bundle protocol, bpv7 [5]. Unibo-CGR is

compatible with both the new and the old BP versions.

C. Virtual testbed, ION settings and generation tools

Tests were carried out on a GNU/Linux virtual testbed

created with Virtualbricks [26]. It consists of five Virtual

Machines (VMs), one for each DTN node, connected by virtual

switches and channel emulators. A propagation delay of 1s is

inserted on all links and all links are assumed error free. In tests

we used ION 4.0.0, with bpv7. At convergence layer, we have

TCP and LTP on terrestrial and space links, respectively. To

generate bundles and collect status reports [3] we used the

DTNperf_3 tool [27]. Figures were obtained by plotting bundle

status reports, but the analysis is largely supported by the new,

very informative logs provided by Unibo-CGR. These proved

essential in order to understand the rationale of SABR decisions

in the most complex cases.

VI. TESTS

In the following, we examine the three enhancements one-

by-one. In all tests, layout and contacts are the same, but the

Orbiter is present only in anti-loop tests. There is always only

one traffic flow, consisting of 20 bundles of 100kB each,

generated at the beginning of each experiment, either by the

Space Asset or the MCC.

A. “One-route-per-neighbor”

To evaluate the first enhancement, we consider the downlink

case (SA as a source and MCC as a destination) and start from

the SABR case (Figure 4). Bundles are routed as soon as

generated (generated time series in the figure). In particular,

phase 1 is performed immediately after the generation of the

first bundle, at +17s, and stops once the first route (route A in

the following) is computed by Dijkstra; this route is via GS2,

consisting of contacts 4 (SA-GS2, starting at +30, see the

figure) and 11 (GS2-MCC, not plotted as continuous). Route A

is then verified in phase 2 and eventually selected in phase 3.

Even though this is the sole candidate route, it is actually the

best for the first bundle. Once the second bundle is generated,

SABR is called again, but this time phase 1 is skipped (to save

computational time). Route A is checked for the second bundle

and selected as before, and this goes on until the residual

volume available on contact number 4 becomes too small to

accommodate a further bundle, which happens for bundle 11.

After route A has failed, there are no more routes and phase 1

is re-entered, leading to the computation of route B, via GS1.

Route B consists of contacts number 3 (the only SA-GS1

contact, starting at +60, see the figure) and 8 (GS1-MCC,

continuous). Route B is then verified and selected for this and

all remaining bundles. Summarizing, SABR (as implemented

in ION) always keeps the first route selected until it fails, which

may lead to suboptimal results, as proved here (unnecessary

delayed delivery of many bundles, such as the last delivered via

202, disordered delivery, unbalanced load, early exhaustion of

the SA-GS2 contact). Note that, although ordered bundle

delivery is not an RFC requirement, it is always preferable from

an operational point of view, as for UDP in Internet, to limit the

degree of disorder as much as possible.

0

5

10

15

20

25

0 20 40 60 80 100 120

B
u

n
d

le
 n

u
m

b
e

r

Time elapsed (s)

Generated

Dlv via 201

Dlv via 202

Space Ass.-GS1

Space Ass.-GS2

Figure 4: Downlink (SA to MCC), no Orbiter, SABR. Generated and delivered

(Dlv) time series. The first 10 bundles are routed via GS2, the last 10 via GS1.

Better performance, in primis a faster delivery of all bundles,

can be obtained by introducing some path diversity, in order to

have multiple candidate routes in phase 3. The previous test is

thus repeated by enabling the one-route-per-neighbor

enhancement. The difference is now that when route A is passed

to phase 2, phase 1 is immediately re-entered to find an alternate

route via a different neighbor. This is accomplished by

removing all contacts leading to GS2 before the second Dijkstra

search. This way, route B, via GS1, is now computed before the

8

failure of route A. As there are no more neighbors, phase 2 goes

on and validates both routes by calculating PBAT (i.e. the

expected delivery time) of the current bundle for each route. A

third route, consisting of contacts number 5 (the second SA-

GS2 contact) and 11 would be possible, but as there is already

a candidate route for each neighbor, it is not considered. This

differs from pre-SABR versions of CGR, which computed one

route for each contact departing from the source node, with

huge computational effort. In phase 3, route A is then selected,

as it offers a shorter PBAT than route B, for the first bundle.

The same happens for all bundles, but the choice alternates

between Routes A and B, depending on the queuing delay on

the first hop, given by the ETO variable. This eventually leads

to a more efficient concurrent use of both routes, as shown in

Figure 5. There are three clear advantages: bundle delivery is

much more ordered (very close to optimal); all bundles are

delivered before the end of the nested contact; both space

contacts still have enough residual volume to accommodate

possible further bundles, should they ever be generated.

Finally, let us note that the other two enhancements would

make no difference here, because queuing delays on second

hops (terrestrial) are negligible. This would also make loops

impossible, should the Orbiter be added (results would be

exactly the same as here).

0

5

10

15

20

25

0 20 40 60 80 100 120

B
u

n
d

le
 n

u
m

b
er

Time elapsed (s)

Generated

Dlv via 201

Dlv via 202

Space Ass.-GS1

Space Ass.-GS2

Figure 5: Downlink (SA to MCC), no Orbiter, SABR with one-route per

neighbor. Generated and delivered (Dlv) time series. Bundles are routed via

GS1 and GS2 concurrently thanks to the enhancement.

B. “Queue-delay”

To demonstrate the utility of the second enhancement, it is

necessary to reverse direction and examine the uplink case

(MCC as a source and SA as a destination). The Orbiter is still

temporarily absent, and we start as before from the SABR case

(Figure 6). Looking at the figure, we can see that the results are

actually the same as in the downlink case (Figure 4). The

difference is that now the routes consist of the opposite-

direction contacts: route A, via GS2, of contacts number 14 and

10; route B, via GS1, of contacts 13 and 7.

Now, if the one-route-per-neighbor enhancement was

enabled alone, as in the downlink case, here the results would

not improve, because what really matters is the expected

queuing delay on intermittent contacts, which are now on the

second hop, and not on the first as before, thus neglected here

by the ETO variable. To include them in the PBAT calculation

it is thus necessary to enable the “queue-delay” enhancement as

well. Thanks to the more accurate PBAT calculation that

follows, delivery results (Figure 7) are now qualitatively the

same as those obtained in the downlink case (Figure 5) and with

the same advantages.

0

5

10

15

20

25

0 20 40 60 80 100 120

B
u

n
d

le
 n

u
m

b
er

Time elapsed (s)

Generated

Dlv via 202

Dlv via 201

GS1-Space Ass.

GS2-Space Ass.

Figure 6: Uplink (MCC to SA), no Orbiter, SABR. Generated and delivered

(Dlv) time series. The first 10 bundles are routed via GS2, the last 10 via GS1.

Results are the same as in downlink (Figure 4).

0

5

10

15

20

25

0 20 40 60 80 100 120

B
u

n
d

le
 n

u
m

b
er

Time elapsed (s)

Generated

Dlv via 201

Dlv via 202

GS1-Space Ass.

GS2-Space Ass.

Figure 7: Uplink (MCC to SA), no Orbiter, SABR with one-route per neighbor

and queue-delay. Generated and delivered (Dlv) time series. Bundles are routed
via GS1 and GS2 concurrently, as in downlink (Figure 5).

C. “Anti-loop” enhancement

Loops in SABR are unavoidable. Their chances are increased

by the presence of a high level of symmetry in the layout and

by connectivity restrictions, more common in uplinks. By

adding the Orbiter here, with continuous contacts, we

deliberately make the uplink scenario unstable. In detail, when

bundles routed by MCC arrive either at GS1 or GS2, the path

to destination is recalculated from scratch. As each ground

station is aware solely of the traffic processed locally, GS1 can

think that the “grass is greener”, i.e. that the better path is

actually via GS2, and vice versa. This was true in previous

queue-delay tests too, without the Orbiter, but forwarding a

bundle to the other GS was then possible only via the MCC, i.e.

going back, which was prevented by the anti-ping-pong feature.

The insertion of the Orbiter now makes a second (continuous)

path between GS1 and GS2 available. This makes the anti-ping-

pong mechanism useless, and facilitates loops (MCC-GS1-

Orbiter-GS2-MCC or vice versa). Conversely, we can say that

in the absence of this second path, GS1 and GS2 can only

confirm the route chosen by the source, which explains why we

neglected routing on ground stations in all previous

9

experiments.

1) SABR

As usual, we study the SABR case first (Figure 8). The MCC

selects route A for the first ten bundles and starts selecting route

B for the others, as before. When the first ten arrive at GS2, the

route is recomputed and the MCC choice confirmed, as the

alternative, via Orbiter and GS1 is less appealing than direct

delivery. Therefore, the bundles are enqueued to the Space

Asset to be delivered regularly when contact 7 (GS2-SA) starts

at +30. The problems arise when the remaining bundles are

received and rerouted by GS1, starting from bundle 11. In fact,

SABR on GS1 erroneously thinks that waiting here for the start

of contact number 7 (GS1-SA) at +60, is worse than moving to

GS2 to take contact 10 (GS2- SA) starting only at +30. This

contact, however, is already fully booked by the first ten

bundles (already arrived and processed at GS2 in the

meantime), but GS1 is unaware of this, as traffic processed by

other nodes is not visible. As a result, these bundles start being

sent to GS2 via the Orbiter, triggering a series of loops (shown

in the figure by the “Rcv 231”, i.e. received by 231, series). The

situation becomes chaotic when the first looping bundles arrive

on MCC, and in SABR mix with newly generated bundles,

starting from bundle 17. Unibo-CGR logs show what happens,

but a detailed explanation would be too long here. Suffice to

say that at the end of the day, two bundles loop twice (bundles

11 and 12) and five once (13-17) before being delivered. The

most unlucky bundle (18), however, is never delivered. When

it reaches MCC after the first loop (Rcv 231 marker at 37s) it is

blocked, as SABR is no longer able to identify any candidate

route for it, since the volume allocated by MCC on space

contacts (7, 9 and 11) is never reintegrated if not used, as for

looping bundles. When bundle 18 arrives on MCC, the MTVs

of all space contacts appear exhausted by previously routed

bundles, including the looping ones. However, we can see from

Figure 9, the GS1-SA contact is still largely unused (only 5

bundles use it).

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160

B
u

n
d

le
 n

u
m

b
e

r

Time elapsed (s)

Generated Rcv 231 (loop) Delivered

GS1-Space Ass. GS2-Space Ass.

Figure 8: Uplink (MCC to SA) with Orbiter, SABR. Generated, received by

231 (loop indicator), and delivered time series. Bundles 1-10 are initially
forwarded to GS2, bundle 11-19 to GS1, 20 to GS2. Of the 9 sent to GS1, two

loop twice (11-12) and six once (13-18) (Rcv-231 series), before being

delivered. One (18) is blocked on MCC and never delivered.

2) Anti-loop proactive mechanism

To solve the loop problem, it is necessary to add the anti-loop

enhancement. Therefore we repeated the experiment with all

enhancements enabled (Figure 9). From the logs we can fully

understand what happens and why. Here, we can summarize

saying that MCC routes the first ten bundles to GS2 (route A,

contacts 14 and 10) and the others to GS1 (route B; contacts 13

and 7). Once on the ground stations, the bundles are rerouted

and some are directly enqueued to the Space Asset (either with

contact 7 or 10) while the others are sent to the opposite ground

station via the Orbiter (Rcv-141 series). The proactive

mechanism of the anti-loop enhancement proves to be effective

and the bundles passed to the alternate ground stations are

stopped, to prevent any loops. The results are much better than

before: no loops, more ordered delivery (although much worse

than in the analogous tests without the Orbiter), all bundles but

one delivered in the first two contacts to SA (7 and 10), and

only bundle 17 needs to wait for the start of the second GS2-SA

contact (11).

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160

B
u

n
d

le
 n

u
m

b
er

Time elapsed (s)

Generated Rcv 141 Delivered

GS1-Space Ass. GS2-Space Ass.

Figure 9: Uplink (MCC to SA) with Orbiter, SABR with one-route-per

neighbour, queue-delay and anti-loop enhancements. Generated, received by
141 and delivered time series. The first 10 bundles are initially forwarded to

GS2, the last 10 to GS1. Although many are swapped between GS1 and GS2

via the Orbiter (Rcv-141 series), the proactive anti-loop succeeds in preventing
any loops. Only one bundle (17) needs the second GS2-SA contact to be

delivered and none is deleted.

3) Anti-loop reactive mechanism

In the previous experiment, the proactive mechanism proved

so successful that it prevented us from testing the reactive

mechanism, for which the occurrence of a loop is obviously

necessary. To test it and gain a better insight, we repeated the

same experiment but disabled the proactive mechanism (Figure

10). Although some loops are present again (bundles 5, 7, 8, 9,

12 and 17), consecutive loops of the same bundle are avoided,

as hoped. What is unexpected, is that now all bundles are

delivered in the first two contacts to SA (contacts 7 and 10).

This positive but counterintuitive result, however, cannot be

generalized, depending on the peculiar situation of bundle 17,

which actually benefits from the first loop. Instead of being

stored on GS2 waiting for the second GS2-SA contact (11,

starting at +120) as in the previous test (Figure 9), it is sent to

MCC (closing the first loop) which in turn forwards it to GS1

(there is no other choice, as going back is prevented by the anti-

ping-pong feature). When the bundle reaches GS1 for the

second time, the reactive anti-loop forces it to be enqueued to

the Space Asset instead to the Orbiter, which is (and was) the

10

right choice. Bundle 17 is eventually delivered on the GS1-SA

contact (7), at about +80, i.e. much earlier than in the previous

test, by what seems pure chance.

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160

B
u

n
d

le
 n

u
m

b
e

r

Time elapsed (s)

Generated Rcv 231 (loop) Delivered

GS1-Space Ass. GS2-Space Ass.

Figure 10: Uplink (MCC to SA) with Orbiter, SABR with one-route-per
neighbour, queue-delay and anti-loop (reactive only) enhancement. Generated,

received by 231 (loop indicator) and delivered time series. The first 10 bundles

are initially forwarded to GS2, the last 10 to GS1. Many are swapped between
GS1 and GS2 and often start looping (Rcv-231 series), but only once, as further

loops are prevented by the reactive anti-loop mechanism. All bundles are

eventually delivered in the first two contacts.

VII. CONCLUSIONS

The paper focuses on the SABR version of CGR. The

analysis in the first part of the paper illustrates the details of the

algorithm and discusses conditions for optimality; these are not

generally met, as SABR is a trade-off between optimality and

computational complexity. In brief, SABR is a best-effort

algorithm, based on some heuristics, a fact that is often

misunderstood by inexpert users. The SABR analysis paves the

way to the introduction of three enhancements, presented in the

second part of the paper. The first two aim to improve the

accuracy of SABR predictions, the last to counteract loops. All

enhancements were included in Unibo-CGR, an independent

SABR implementation developed by the authors, fully

compatible with ION. Numerical results, achieved on a

GNU/Linux testbed running the latest version of ION and

Unibo-CGR, confirm the validity of the enhancements

proposed.

ACKNOWLEDGEMENTS

The authors would like to thank Scott Burleigh of NASA-

JPL for his continuous support on ION and all the many

valuable discussions on SABR.

REFERENCES

[1] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst and K.
Scott, “Delay-tolerant networking: An approach to interplanetary
internet", IEEE Commun. Mag., vol. 41, no. 6, pp. 128–136, Jun. 2003.

[2] V. Cerf , A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, H. Weiss
“Delay-Tolerant Networking Architecture”, Internet RFC 4838, Apr.
2007.

[3] K. Scott, S. Burleigh, “Bundle Protocol Specification”, Internet RFC
5050, November 2007, http://tools.ietf.org/html/rfc5050.

[4] IETF DTN web site: https://datatracker.ietf.org/group/dtn/about/

[5] S. Burleigh, K. Fall, E. Birrane, “Bundle Protocol Version 7”, IETF Draft,
May 2020, https://datatracker.ietf.org/doc/draft-ietf-dtn-bpbis/

[6] CCSDS 734.0-G-1 “Rationale, Scenarios, and Requirements for DTN in
Space.” CCSDS Green Book, Issue 1, Aug. 2010.
https://public.ccsds.org/Pubs/734x0g1e1.pdf

[7] CCSDS 734.2-B-1 “CCSDS Bundle Protcol Specificatons” CCSDS Blue
Book, Issue 1, Sept.2015. https://public.ccsds.org/Pubs/734x2b1.pdf

[8] A. Schlesinger, B. M. Willman, L. Pitts, S. R. Davidson and W. A.
Pohlchuck, “Delay/Disruption Tolerant Networking for the International
Space Station (ISS),” 2017 IEEE Aerospace Conference, Big Sky, MT,
2017, pp. 1-14.

[9] S. Jain, K. Fall, and R. Patra, Routing in a delay tolerant network, in Proc.
ACM SIGCOMM Portland, Aug./Sep. 2004, pp. 145–157.

[10] C. Caini, H. Cruickshank, S. Farrell, M. Marchese, “Delay- and
Disruption-Tolerant Networking (DTN): An Alternative Solution for
Future Satellite Networking Applications”, Proceedings of IEEE, Vol. 99,
N. 11, pp.1980-1997, November 2011.

[11] E.Birrane, S.Burleigh and N. Kasch, “Analysis of the contact graph
routing algorithm: Bounding interplanetary paths”, Acta Astronautica,
Vol. 75, pp. 108-119, June-July 2012

[12] N. Bezirgiannidis, F. Tsapeli, S. Diamantopoulos, V. Tsaoussidis,
“Towards Flexibility and Accuracy in Space DTN Communications”, in
Proc. of of the 8th ACM MobiCom workshop on Challenged networks
(ACM CHANTS 2013), Miami, FL, USA, Sept. 2013, pp1-7.

[13] G. Araniti, N. Bezirgiannidis, E. Birrane, I. Bisio, S. Burleigh, C. Caini,
M. Feldmann, M. Marchese, J. Segui, K. Suzuki. “Contact Graph Routing
in DTN Space Networks: Overview, Enhancements and Performance”,
IEEE Commun. Mag., Vol.53, No.3, pp.38-46, March 2015.

[14] N. Bezirgiannidis C. Caini,V. Tsaoussidis, “Analysis of contact graph
routing enhancements for DTN in space”, International Journal of
Satellite Commun. and Networking, pp.695-709, No.34, Sept./Oct. 2016,
DOI: 10.1002/sat.1138.

[15] S. Burleigh, C. Caini, J. J. Messina, M. Rodolfi, “Toward a Unified
Routing Framework for Delay-Tolerant Networking”, in Proc. of IEEE
WiSEE 2016, Aachen, Germany, Sept. 2016, pp. 82 - 86, DOI:
10.1109/WiSEE.2016.7877309

[16] S. Burleigh, "Interplanetary Overlay Network (ION) an Implementation
of the DTN Bundle Protocol, In the Proc. of 4th IEEE Consumer
Commun. and Networking Conference, 2007, pp. 222-226.

[17] ION code and manual: http://sourceforge.net/projects/ion-dtn/.

[18] CCSDS 734.3-B-1 “Schedule-Aware Bundle Routing”, recommended
standard, Blue Book, July 2019,
https://public.ccsds.org/Pubs/734x3b1.pdf

[19] M. Ramadas, S. Burleigh and S. Farrell, “Licklider Transmission Protocol
– Motivation”, Internet RFC 5326, Sept. 2008.

[20] M. Ramadas, S. Burleigh and S. Farrell, “Licklider Transmission Protocol
– Specification”, Internet RFC 5326, Sept. 2008.

[21] S. Burleigh “Bundle Protocol Extended Class Of Service (ECOS)”, IETF
Draft, July 2013, https://tools.ietf.org/html/draft-irtf-dtnrg-ecos-05

[22] G.M. De Cola, “Contact Graph Routing Enhancements in ION 3.7.0”,
Bachelor’s thesis, University of Bologna, Fabruary 2020 (available on
request)

[23] Jin Y. Yen, “Finding the K Shortest Loopless Paths in a Network”,
Management Science, Vol. 17, No. 11, pp. 712-716, Theory Series (Jul.
1971).

[24] E. Birrane “Contact Graph Routing Extension Block”, IETF Draft,
October 2013, https://tools.ietf.org/html/draft-irtf-dtnrg-cgreb-00

[25] N. Alessi, C. Caini, T. de Cola, S. Martin, J. Pierce Mayer, “DTN
Performance Analysis of Multi-Asset Mars Earth Communications”,
International Journal of Satellite Commun. and Networking, Aug. 2019;
doi: 10.1002/sat.1326; Open access.

[26] P. Apollonio, C. Caini, M. Giusti and D. Lacamera, "Virtualbricks for
DTN satellite communications research and education”, in Proc. of
PSATS 2014, Genoa, Italy, July 2014, pp. 1-14.

[27] C. Caini, A. d’Amico and M. Rodolfi, “DTNperf_3: a Further Enhanced
Tool for Delay-/Disruption- Tolerant Networking Performance
Evaluation”, in Proc. of IEEE Globecom 2013, Atlanta, USA, December
2013, pp. 3009 - 3015.

http://tools.ietf.org/html/rfc5050
https://public.ccsds.org/Pubs/734x3b1.pdf

