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A B S T R A C T

During the last three decades, ensemble modelling has switched the focus from deterministic to probabilistic 
outcomes after its successful application in meteorological forecasting. This work involves the application of 
Ensemble Prediction System (EPS)-based results as forcing for a coastal EWS employing the morphodynamic 
model XBeach in a so-called (semi-)probabilistic way. First, calibration following the GLUE approach is per
formed for a profile in Cesenatico (Emilia-Romagna coast, Italy), while the (semi-)probabilistic system is 
implemented subsequently for two nearby locations. Ensemble mean and standard deviation from the Trans
national Multi-Model Ensemble (TMES) forecasting system are combined in varied ways and used to force 
XBeach. A testing period of two months is analyzed (March and April 2020) together with the already operational 
deterministic implementation with one specific day of high sea conditions being used to assess the performance 
of the system. The deterministic results present higher outcome variability compared to the usage of the TMES 
mean and mean plus/minus one standard deviation (SD). Adding two SDs to the TMES mean results in higher 
variability than the deterministic approach. The (semi-)probabilistic system shows high potential as it provides 
more information on possible outcomes. However, its implementation has to be carefully designed as the 
application of the TMES mean plus SDs might result in false threshold exceedance and unproportionate 
responses.   

1. Introduction

Among the 37 megacities (with 10 million inhabitants or more)
distributed over the globe, 24 are located in coastal zones (Blumberg and 
Bruno, 2018) adequately symbolizing the worldwide increase of 
seaside communities in the last decades. Estimations indicate the 
trend will continue (e.g. Neumann et al., 2015) accompanied by rising 
sea levels and higher frequency and magnitude of coastal related 
hazards (Oppenheimer et al., 2019). Among the most recurrent 
perils, storm surges figure on the top of the list and can be defined as 
“oscillations of the water level in a coastal or inland body of water in 
the time range of a few minutes to a few days, resulting from forcing 
from atmospheric weather systems” (WMO, 2011). Loss and damage of 
infrastructure as well as casualties under more extreme conditions are 
regularly associ-ated with these abnormally high-water levels. 

On this basis, the development and implementation of Early 
Warning Systems (EWSs) are decisive as they allow for timely measures 
prior to the arrival of the flooding waters. According to Basher (2006), 
EWSs can be divided in four main elements: risk knowledge; 
monitoring and warning service; dissemination and communication; 
and response capability. Operational forecasting, substantiated by 
consolidated knowledge of the involved processes, is normally 
conducted by environmental and meteorological agencies globally 
mainly through numerical modelling. Forecasting outcomes supply 
decision-makers at local, regional, or national levels with relevant 
information and comprise an essential part of monitoring and warning 
procedures. 

Still nowadays, many short to medium range operational forecasting 
systems follow a deterministic approach, meaning a single simulation 
used to produce a short-term prediction. For instance, in the northwest 
Adriatic sea, several environmental and civil protection agencies have 
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been applied in the region (Adriatic basin) and possibly in the world (as 
far as the authors are aware). 

Investigating the aforementioned uncertainties strongly involves 
identifying the best model setting for local applications. Hence, the 
GLUE methodology (explored in section 3) is followed using model 
parameters known to strongly affect local XBeach applications as 
means to achieve a trustworthy combination. 

The structure of the paper comprehends the presentation of the 
study area in Section 2 followed by the methodology in Section 3. 
Results and discussion are shown in Section 4 while section 5 
presents the conclusions. 

2. Study area

The Emilia-Romagna coastline extends for 130 km between the Po
Delta (Northern boundary) and the Cattolica town (Southern) (Harley 
et al., 2016). Tourism activities in the area are economically important 
mostly during summertime and enhance the necessity of structural and 
non-structural measures to mitigate storm surge damaging effects. An-
thropic structures are found along the coast, protecting more than 50% 
of the shoreline in specific locations (Perini et al., 2008). Moreover, 
winter dunes are built parallel to the coast (around September–
October) to protect beach establishments and nearby houses during the 
stormy season after which the dunes are destroyed and the sand 
restored to its “normal” placement. The study area is shown in Fig. 1. 

Two wind patterns over the Adriatic sea during colder periods are the 
most recurrent in the region: Bora and Sirocco (Pandžić and Likso, 
2005). Sirocco conditions are observed when southerly winds 
originating from low-pressure synoptic systems in Northern Africa 
advance towards the boreal Adriatic. As they blow over the longer axis 
of the Adriatic Sea, Sirocco produces long waves and piles up water in 
the north of the basin. Most devastating incoming waves tend to 
arrive from the Northeast, caused by Bora storms, as strong winds 
funnel and increase their velocity downhill in the mountainous 
Croatian coast forming high, steep, rela-tively short period waves over 
the shorter Adriatic axis. More energetic waves are related to the latter, 
while higher surges are associated with Sirocco (Harley et al., 2016). 

Local hydrodynamic conditions involve a microtidal regime 
(varying between 30 and 80 cm between neap and spring tides, 
respectively) with strong diurnal and semidiurnal components. 
Waves normally arrive from the East with 91% of the cases below 
1.25m as a consequence of a restricted fetch (Armaroli et al., 2012). 

In the region, profiles in three coastal localities covered by the 
aforementioned regional coastal EWS have been used in the present 
work: Cesenatico for calibration, and Marina Romea and Marina di 
Ravenna for the (semi-)probabilistic implementation (Fig. 1). 

2.1. The operational Early Warning System in Emilia-Romagna (Italy) 

Hierarchically coming first in the operational chain is the 
Numerical Weather Prediction (NWP) model which follows one of the 
Consortium for Small-Scale Modeling (COSMO) implementations in 
Italy (Steppeler et al., 2003) – referred as COSMO-I. Two domains 
are currently addressed by COSMO-I: one covering the whole 
Mediterranean with a horizontal resolution of 5 km (COSMO-5M) and 
one covering only the Italian territory with a higher resolution of 2.2 
km (COSMO-2I). COSMO outputs are used as atmospheric forcing for 
the sea-state and for the oceanographic forecasting systems 
operationally implemented and maintained by Arpae-SIMC. 

Simulating Waves Nearshore (SWAN) is the third-generation wave 
action model, which focuses on wave propagation in coastal waters 
(Booij et al., 1999; Ris et al., 1999), used for sea-state forecasting. A 
coarser grid over the whole Mediterranean (horizontal resolution of 
about 25 km–1/4◦ on Earth spherical coordinates) with two nested, 
finer ones around the Italian territory (8 km) and in specific regions 
(0.8 km), like Emilia-Romagna, comprise this part of the chain. More 
information 

developed and maintain storm surge operational forecasting systems 
based on hydrodynamic modelling mostly deterministically (e.g. Bajo 
and Umgiesser, 2010; Ferrarin et al., 2013; Mariani et al., 2015; Russo 
et al., 2013). 

However, due to the highly variable, complex behavior of the at-
mosphere and the oceans (mostly nearshore processes), several sources 
of uncertainty arise which are not addressed by an individual run. 
Hence, in the early 1990s, probabilistic frameworks have been devel-
oped and firstly implemented for meteorological applications (Buizza, 
2019) through Ensemble Prediction Systems (EPSs). They can be 
applied differently depending on the available structure, covered 
spatial scale, type of prediction, sources of uncertainties, and on the 
reliability of available observations (Cloke and Pappenberger, 2009). 
The most common ensemble generation mechanisms are the single 
system (based on the perturbation of initial conditions), the multi-
model (based on the usage of results from different models), and the 
lagged averaged en-sembles (results from the same model but from 
different runs) (Dietrich et al., 2008). 

After meteorology, several other natural/Earth science fields began 
to implement EPS-based operational forecasting systems around the 
planet. Hydrology (e.g. Davolio et al., 2008; Jasper et al., 2002) and 
oceanography (e.g. Lenartz et al., 2010) are among the sciences that 
currently benefit from EPSs with the Northwest Adriatic Sea recently 
being the target of an operational multi-model ensemble system that 
combines the outputs of several regional hydrodynamic models (Fer-
rarin et al., 2020). 

Even though calibrated and validated hydrodynamic models 
provide consistent information on total water levels and can be 
checked with predefined alert thresholds, these models do not consider 
morphological-hydrodynamical interactions. Thus, for sandy beaches 
where the geological/geomorphological characteristics strongly 
interact with hydrodynamic components, the application of 
morphodynamic models (e.g. XBeach - Roelvink et al. (2009)) better 
represent nearshore processes and tend to result in more reliable 
predictions. 

For the Emilia-Romagna coastline (Northwest Adriatic Sea), the 
current deterministic beach forecast produced by the Hydro-Meteo- 
Climate Service of the Regional Agency for Protection, Environment 
and Energy (Arpae-SIMC) uses outputs of hydrodynamic and wave 
forecasting systems to run XBeach and calculate maximum water levels 
for each time step. The results are then checked against predefined 
thresholds, that vary from natural and urbanized shores, and 
thoroughly used as a Decision Supporting System (DSS) by regional 
authorities on the decision-making process. The methodology applied 
is described in Harley et al. (2016). 

Before the implementation of any numerical model, calibration is 
essential to correctly address the relevant processes strongly impacting 
the accuracy and skill of the outputs. Several methodologies are prone 
to be followed including a manual one-at-a-time testing of parameters 
to which the model is known to be sensitive for. However, in some 
cases the models have many parameterizations and this task turns into 
a time consuming practice. Moreover, in the aftermath it is difficult to 
under-stand how the interrelation of the parameters physically affect 
the final product and an implementation with parameter values 
coming from different runs might end up uncertain in many aspects. 
Recent appli-cations of generalized uncertainty estimations through 
hundreds or even thousands of parameter combinations provide a final 
parameter set that has been tested and resulted in the best model 
performance (e.g. Sim-mons et al., 2017a). 

The objective of the present paper is to investigate the application 
of the recent multi-model ensemble (Ferrarin et al., 2020) results as 
forcing to an XBeach-based coastal EWS system. As the work of 
Ferrarin et al. (2020) does not include the further morphodynamic 
model application, the difference between deterministic and 
(semi-)probabilistic ap-proaches at the very end of the modelling 
chain are yet to be fully un-derstood. Additionally, this innovative 
operational suite that results in a morphodynamic model providing 
(semi-)probabilistic forecasts has not 



Fig. 1. A) Emilia-Romagna coastline location. B) in-situ measured cross-shore transects and Cesenatico wave buoy location. C, D, and E) Gridded profiles of Marina 
Romea, Punta Marina and Cesenatico, respectively (entire cross-shore profile on the left, and submerged and emerged beach profile zoomed in). Cesenatico topo- 
bathymetric data was collected in 2016 as described in Unguendoli (2018). Bathymetric datasets for Punta Marina and Marina Romea are from surveys conducted 
in July 2019 while the subaerial measurements were conducted in early 2020. 



3. Methodology

Topo-bathymetric data collection, the XBeach morphodynamic
model, calibration, and the usage of the multi-model ensemble variables 
were part of the implementation procedures and are presented in the 
next subsections. 

3.1. Topographic and bathymetric data 

Topo-bathymetric data for the Cesenatico transect was collected in 
2016, as reported by Unguendoli (2018), and it has been used in the 
present work for calibration purposes only. For Marina Romea and 
Marina di Ravenna, where the (semi-)probabilistic approach was 
implemented, topographic surveys were carried out in February 2020 
using a real-time kinematic differential global positioning system (RTK 
DGPS), while bathymetric data was collected in July 2019 with a 
single-beam bathymetric device. The elevation measurements were 
converted into orthometric height based on the geoid undulation re-
ported in the monographs of Arpae Coastal Geodesic Network for 
topographic and bathymetric monitoring (benchmark PCG0100 for 
Marina Romea profile, and benchmark SAPC0700 for Punta Marina 
profile). 

The decision to combine a topographic profile from a different period 
with respect to the bathymetric measurements arose from the need to 
have an updated subaerial representation. As the bathymetric profile 
had not been highly altered and it could be combined adequately with 
the new topographic measurements, it has been decided to keep the 
most up to date values. Furthermore, the application of the EWS 
approach presented here has in the backshore and foreshore zones 
fundamental components in terms of maximum vertical excursion of 
water and how critical the situation might be for nearby infrastructure/ 
natural areas. 

The in-situ measured data was used to generate mono-dimensional 
computational grids with a resolution of about 20m (offshore) 
decreasing to a minimum of 1m (onshore). Varying the grid resolution 
allows for a decrease in computational effort, optimizing the simula-
tions. Figure 1(c-e) shows the final grids used in the simulations. 

It is important to emphasize that XBeach has its abilities limited to 
short-term responses to specific events. One of the contributing factors is 
that most morphodynamic models misrepresent post-storm recovery 
both in timescale and processes themselves (van Rijn et al., 2003). For 
this reason, the (semi-)probabilistic implementation follows the 

deterministic as the forecasts were conducted using always the same 
initial topo-bathymetric conditions. 

Even though this approach has its limitations, the obtention of daily 
topo-bathymetric profiles in order to feed the system is still extremely 
difficult to accomplish. Presently, the implemented deterministic EWS 
runs with summer and winter profiles following the building up of the 
winter dunes as previously explained. Besides waiting for the winter 
dunes construction/destruction (for summer activities), the measure-
ment campaigns also depend on funding availability, sea-state condi-
tions, authorization from the responsible authorities, and several logistic 
and staff constraints. 

3.2. XBeach 

XBeach is based on the approach proposed by Sallenger (2000) and 
it was first developed to model the impacts of hurricanes on sandy 
barrier islands. In order to understand the behavior of sandy shorelines 
hit by storms, the model attempts to accurately reproduce the 
morphodynamic processes during intense events combining subaerial 
and subaqueous processes (Roelvink et al., 2015). 

Many improvements in the model have been observed since its first 
version and applications have increased substantially as the model ca-
pabilities allow its use in different coastal settings. As examples of 
different applications, it is possible to include: hurricane impacts on 
barrier islands (e.g. Lindemer et al., 2010; van der Lugt et al., 2019; 
McCall et al., 2010; Smallegan et al., 2016; van Verseveld et al., 2015); 
storms on sandy beaches (e.g. Armaroli et al., 2013; Harley et al., 2011, 
2016; Harley and Ciavola, 2013; Pender and Karunarathna, 2013; 
Unguendoli, 2018); mega cusp formation (e.g. Orzech et al., 2011); tidal 
inlet evolution (e.g. Pacheco et al., 2011); macro-tidal areas with large 
dune fields (e.g. Dissanayake et al., 2014, 2015); synthetic storms on 
sandy beaches (e.g. Schambach et al., 2018); reef environments (e.g. 
Lashley et al., 2018; Ortiz and Ashton, 2019; Osorio-Cano et al., 2019); 
and wave-vegetation interaction (e.g. Phan et al., 2014; van Rooijen 
et al., 2016). 

XBeachX, implemented in surfbeat mode (non-stationary), was the 
version used in this work. This mode is indicated when focus on swash 
zone processes is needed as it solves the short-wave envelope on the 
scale of wave groups by resolving wave- and wind-driven (when 
applied) currents, swash runup and rundown, and infragravity waves 
using non-linear shallow water equations. For details regarding the 
model equations and general technical aspects, the reader can refer to 
Roelvink et al. (2009), Roelvink et al. (2015) as well as the XBeachX 
manual (Deltares, 2018) and references thereafter. 

3.3. XBeach calibration 

Model calibration followed the Generalized Likelihood Uncertainty 
Estimation (GLUE) (Beven and Binley, 1992) as applied to XBeach by 
Simmons et al. (2017a). This approach is divided in four main steps: (1) 
selection of the parameters (as well as their ranges) to be tested; (2) 
generation of a large number of combinations (e.g. 10,000) using the 
chosen parameters, with (3) the model being run for each of the com-
binations. Finally, (4) the likelihood score for each resulting simulation 
was calculated. 

Data availability and similar geomorphological characteristics rela-
tive to Marina Romea and Marina di Ravenna drove the selection of 
Cesenatico to be the calibration site. A storm that hit the region’s 
coastline in 2016 has been picked to calibrate the profile with the 
incoming wave and sea level conditions presented in the following 
subsection. After, each of the calibration steps are described. 

3.3.1. Storm data 
On the 28th of February 2016, strong weather resulted in higher 

wave height and period conditions, reaching the peak in the evening 
between the 28th and the 29th (Fig. 2). During the storm, the maximum 

about the sea-state forecasting system (called MEDITARE) can be found 
in the work of Valentini et al. (2007). 

Adriatic Sea hydrodynamic forecasting follows an Italian imple-
mentation of the Regional Ocean Modeling System (ROMS) (Shche-
petkin and McWilliams, 2005) referred to as AdriaROMS (Chiggiato 
and Oddo, 2008). The latest AdriaROMS version has been 
implemented and developed by Arpae in collaboration with the 
Marche Polytechnic Uni-versity (Russo et al., 2013). AdriaROMS runs 
in a curvilinear orthogonal grid regularly spaced in 2 km, with 20 
vertical terrain-following levels. The variables used as atmospheric 
forcing are from the COSMO-5M. Open sea boundary conditions 
(temperature, salinity, and current ve-locity) are obtained from the 
Copernicus CMEMS Mediterranean Ocean Model (Clementi et al., 
2019). Additionally, four tidal components are derived from the 
Oregon State University (OSU) model (Egbert and Erofeeva, 2002) 
and used in the domain. 

Dedicated sub-models use the hydrodynamic and wave outputs as 
boundary and/or forcing conditions. This is the case of XBeach, which 
has been operationally implemented together with the University of 
Ferrara and the Geological, Seismic and Soil Survey of Emilia-
Romagna during the EU-FP7 MICORE project and is maintained by 
Arpae. By the time this work was developed, the system covered eight 
sites for 22 cross-shore profiles, providing 72-h deterministic forecasts 
displayed in a WebGIS platform. 



observed wave height was 2.30m and the maximum sea-level reached 
0.81m. Between 8.30pm of the 28th until around 5.00am of the 29th, 
waves higher than 2 m were recorded concurrently to surge elevations 
higher than 0.5m. 

Peak wave direction (Dp) remained from the Eastern quadrant 
varying between 78.8◦ and 88.6◦ (with a mean value of 83.6◦). Peak 
wave period (Tp) varied between 7.14s and 10.0s (mean value of 9.0s). 
Wave and sea level measurements presented in this subsection were 
collected by the Cesenatico wave buoy (Fig. 1) and by a tide gauge 
installed in Rimini, respectively, and subsequently used in the 
calibration. 

3.3.2. Parameter selection and generation of combinations 
As an initial step, previous XBeach applications for the Emilia- 

Romagna coastal areas were assessed to verify the parameters to 
which the model had shown a higher sensitivity (Table 1). Values 
associated with better performances specifically for Cesenatico were 
given preference, resulting in the selection of facua, gamma, fw, bed-
friccoef, and smax for the first GLUE attempt (Table 2). 

Facua influences sediment transport varying wave asymmetry and 
skewness; the higher the value, the more sediment is transported 
onshore. Gamma is the breaker parameter in the wave formulations 
(Baldock or Roelvink) with lower values inducing earlier breaking. Fw 
and bedfriccoef refer to the short-wave and bed-friction coefficients, 
respectively, with lower values inducing more friction and less erosion 
for the latter. Smax refers to the maximum Shields parameter for equi-
librium sediment concentration (Deltares, 2018). 

Based on the first GLUE results (10,000 simulations) using the 
Tested Range (1st GLUE), a second set of 10,000 simulations was 
conducted with narrower parameter ranges. Additionally, smax was 
replaced by dryslp, which refers to the critical bed slope for dry areas, 
in the Tested Range (2nd GLUE) as shown in Table 2. The replacement 
occurred as XBeach showed a very low sensitivity to smax during 
the first GLUE application (Fig. 5E). 

3.3.3. Likelihood score attribution 
The Brier Skill Score (BSS), as proposed by van Rijn et al. (2003), 

was used to quantify the model skill for each run. The BSS is given by: 

BSS 1
Σ(|z0 zm|)

2

Σ(|z0 zb|)
2 , (1)  

where zo is the post-storm measured elevation, zm is the final modeled 
elevation, and zb is the pre-storm measured elevation. BSS values reflect 
the model skill on reproducing morphological evolution and can be 
divided into five categories as shown in Table 3. 

Two BSS values were calculated for each run: one for the whole 
profile and one for the subaerial portion only (zb > 0). The subaerial 
BSS calculation followed the results obtained by Armaroli et al. (2013) 
in which the authors showed differences between the BSS for the 
whole profile and for the subaerial beach alone associated to varying 
model performances on the subaerial and subaqueous domains. 

Following the GLUE steps, the definition of a BSS threshold is 
needed to divide the simulations in behavioral and non-behavioral. The 
latter refers to the simulations in which the parameter set shows “no skill 
when used in the model" (Simmons et al., 2017a). Hence, the modeler 
has to decide on a threshold above which the simulations better agree 
with the in-situ topo-bathymetric measurements considering the purpose 
of the intended modelling application. 

Meaningful classes are already provided by the BSS scale (Table 3) 
and can, therefore, be used to delimit the threshold. For instance, if one 
wants simulations with a minimum of reasonable qualification, the 
threshold can be set as 0.3. Values higher than the threshold imply that 
a given simulation is behavioral, while values lower than the threshold 
determine a non-behavioral run and the likelihood value is set to zero. 

As seen later in the results, two thresholds were considered in the 
present work: 0.3 for the whole profile and 0.7 for the subaerial portion 
alone. This reflects general XBeach performances differing between the 
underwater and emerged areas as well as our own preliminary results 
showing a much better skill for the subaerial beach alone. 

After the skill assessment and the definition of behavioral and non- 

Fig. 2. Measured Hs, Tp, Dp, and sea-level during the storm that hit the Emilia-Romagna coast at the end of February/beginning of March of 2016. Wave data was 
measured every 30 min by a buoy deployed just offshore of Cesenatico (buoy location shown in Fig. 1B). Sea level data was obtained every 10 min by a tide gauge 
located in the Municipality of Rimini. 



behavioral simulations, the BSS for each run was divided by the total 
sum of the BSSs, providing a likelihood measure as follows: 

LBSS
BSSi

∑
i
n 

1BSSi,
(2)  

where n is the total number of simulations. With the likelihood values 
and the distinction between behavioral and non-behavioral runs, it was 
possible to proceed with parameter optimization, sensitivity, and un-
certainty analyses as shown next. 

3.3.4. Sensitivity analysis, parameter optimization, and uncertainty 
estimation 

For parameter optimization and sensitivity analysis, the range of 
values for a given parameter was divided in bins. The LBSS of every 
simulation was added to the nearest bin. Each resulting bin contained 
the sum of the weighted likelihood values around it, with the total sum 
for all the bins being equal to the total likelihood sum (equals to one). 
Both parameter optimization and sensitivity analyses were performed 
for each tested parameter. 

For the sensitivity analysis, the weighted density was transformed 
into a cumulative likelihood curve for both the behavioral and non- 
behavioral simulations. The Kolmogorov-Smirnov (K-S) D statistic 
(Dstat) (Simmons et al., 2017a; Thorndahl et al., 2008) was then calcu-
lated based on the maximum vertical distance between the behavioral 

Table 1 
XBeach applications assessed for the Emilia-Romagna coastline. The table also depicts the specific location of the application, type of calibration performed, pa-
rameters tested, as well as their ranges, and the total number of runs. Refer to the text for parameter descriptions.  

Publication Location Calibration 
Procedure 

Parameter 
Tested 

Parameter Range Number of Runs 

Harley et al. (2011) 
Lido di Dante/Lido di 
Classe One at a time 

dryslp 0.5 and 2.0 
6 wetslp 0.1 and 0.5 

gammax 0.5 and 5.0 

Armaroli et al. (2013) 
Lido di Classe/Bevano 
Area One at a time 

dryslp 0.5 and 2.0 
56 wetslp 0.1 and 0.5 

gammax 0.5 and 5.0 

Simmons et al. (2015) Lido di Classe GLUE 

eps 0.001 to 0.1 

15,000 

facua 0 to 1.0 
gamma 0.4 to 0.9 
gammax 0.4 to 5.0 
smax − 1.0 to 3.0 
wetslp 0.1 to 1.0 

Harley et al. (2016) Lido di Classe One at a time 

smax 0.8 

352 (32 model runs for 11 profiles) 

gamma 0.42 
gammax 1.5 
eps 0.01 and 0.1 
wetslp 0.5 
facua 0.15 

Simmons et al. (2017a) Lido di Classe GLUE 

eps 0.001 to 0.1 

330,000 (twice 15,000 for each of 
11 profiles) 

facua 0 to 1.0 
gamma 0.4 to 0.9 
gammax 0.4 to 5.0 
smax − 1.0 to 3.0 
wetslp 0.1 to 1.0 

Unguendoli (2018) Cesenatico One at a time 

cmax 

not specified in the work 

smax 
Lws 
facua 
break 

gamma 
turb 
fw 
delta 
eps 
umin 
bedfriccoef 
wetslp 
dryslp 

0 to 1.0 
−  1.0 to 3.0 
0 to 1.0 
0 to 1.0 
roelvinck1, Baldock, roelvink2, 
roelvink_daly, janssen 
0.4 to 0.9 
none, wave_average, bore_averaged 
0 to 1.0 
0 to 1.0 
0.001 to 0.1 
0 to 0.2 
3.5E-5 to 0.9 
0.1 to 1.0 
0.1 to 2.0  

Table 2 
Parameters tested with the total range covered in the first and second GLUE 
applications. The table also shows the default XBeach values for each tested 
parameter.  

Parameter 
Tested 

Tested Range (1st 
GLUE) 

Tested Range (2nd 
GLUE) 

Default Value 
(Default Range) 

facua 0.1 to 0.5 0.1 to 0.3 0.1 (0.0–1.0) 
gamma 0.2 to 0.5 0.3 to 0.5 0.55 (0.4–0.9) 
fw 0.1 to 0.7 0.1 to 0.5 0 (0–1.0) 
bedfriccoef 30 to 50 40 to 55 55 (–)a 

smax − 0.5 to 1.0 – − 1.0 (−  1.0 to 3.0) 
dryslp – 0.8 to 1.5 1.0 (0.1–2.0)  
a No minimum or maximum values for the Chezy coefficient (bedfriccoef) 

have been found. 

Table 3 
BSS scores and model quality.  

Qualification BSS Value 

Excellent 1.0–0.8 
Good 0.8–0.6 
Reasonable/Fair 0.6–0.3 
Poor 0.3–0.0 
Bad <0.0  



following: 

SCW(t) Xdf Xwl(t), (3)  

BWD(t) Xb Xwl(t), (4)  

where Xdf is the surveyed cross-shore position of the dune foot, Xwl is 
the modeled cross-shore position of the water line, and Xb is the cross-
shore position of the seaward edge of the building. For each time 
step, the respective SII is calculated based on the maximum water level 
forecasted value and the reference building/dune foot of the profile. 

3.5. Coastal EWS-EPS implementation 

As part of the EU ADRION I-STORMS (Integrated Sea Storm Man-
agement Strategies) project (https://istorms.adrioninterreg.eu/), the 
outputs of the Transnational Multi-Model Ensemble System (TMES) 
were made available as one of the six Integrated Web System (IWS) 
components (Ferrarin et al., 2020). Currently, the TMES combines five 
wave- and six sea level-forecasting systems interpolated to a common 
regular latitude-longitude grid with a resolution of 0.02◦ for the Adriatic 

Fig. 3. Scheme of TMES forecast retrieval converted to files that are subsequently used as boundary conditions to run XBeach. Each output consists of two files: one 
for the wave parameters and one for sea level. 

and non-behavioral cumulative curves, providing a value between zero 
and one. The larger the K-S D statistic, the higher the model sensitivity to 
that parameter. 

As a final step and to provide a second model performance evalua-
tion, the subaerial eroded volume (SEV) was calculated as the difference 
between the subaerial profiles before and after the storm (or simula-
tion). Assuming a 1m profile width allowed for the extrapolation from 
m2 to m3/m. 

3.4. Coastal storm impact index (SII) 

Definitions for the Safe Corridor Width (SCW) and Building- 
Waterline Distance (BWC) must be introduced as they are the SIIs used 
by Arpae-SIMC. As defined by Harley et al. (2016) the SCW is “a 
measure of the amount of dry beach available between the dune foot and 
waterline for safe passage by users’’, while the BWD is “the amount of 
dry beach available between the seaward edge of a building and the 
model-derived waterline”. SCW is used in natural areas with frontal 
dunes, while the BWC implementation covers anthropized beaches (with 
man made structures such as beach bars). The SIIs are calculated as 



4. Results and discussion

In this section the results are divided in two main branches: the
calibration outputs and the results of the (semi-)probabilistic imple-
mentation using TMES as forcing. 

4.1. XBeach calibration 

An initial analysis of the first GLUE application results indicated a 
better model performance for the subaerial portion of the profile 
relative to when the whole profile was analyzed. Hence and as 
forecasting ap-plications require high skill modelling practices, BSSs 
values of 0.3 and 0.7 were chosen to be the behavioral/non-behavioral 
thresholds for the whole profile and for the subaerial part only, 
respectively. The former (0.3) determines that a minimum of 
reasonable qualification is neces-sary for a run to be considered 
behavioral, while the latter (0.7) lies within the good qualification 
range (Table 3). 

In terms of general results, for the first GLUE application most of 
the runs (64.73%) for the whole profile remained under the 0.3 
BSS threshold indicating a poor model performance (Fig. 4 - top left 
panel). When only the subaerial portion was considered (0.7 BSS 
threshold), the non-behavioral runs represented 62.23% of the total 
(Fig. 4 - bottom left panel). Still in the first GLUE application, the mean 
BSS was 0.25 with a SD of 0.10, with the best model performance 
reaching 0.44, while the worst reached 0.44. The scenario improved 
when only the subaerial profile was considered, with a mean BSS of 
0.58 and values fluctuating between 1.28 and 0.88. The mean value 
indicated the model perfor-mance of being reasonable but a higher SD 
(0.22) was observed when compared to the whole profile. 

For the second GLUE application, with narrower parameter ranges 
and dryslp instead of smax, the whole profile mean BSS increased to 
0.37 (Fig. 4 - top right panel). Still for the whole profile, a decrease in 
the SD was observed (0.04) with the best model performance score 
being 0.44 and the worst performance valuing 0.03. Similar to the 
first GLUE application, the mean BSS value for the subaerial beach 
overcame the BSS for the whole profile, reaching 0.75 (Fig. 4 - bottom 
right panel). The SD valued 0.09 with the best and worst performances 
scoring 0.87 and 0.24, respectively. 

For the second GLUE application and keeping the thresholds, a 
substantial decrease in the number of non-behavioral simulations was 
observed, representing 5.12% for the whole profile and 15.54% for the 
subaerial portion. Accordingly, the number of behavioral simulations 

drastically increased, reaching 94.88% for the whole profile and 84.46% 
for the emerged beach. 

4.1.1. Sensitivity analysis 
Dstat results calculated as the maximum vertical distance between 

behavioral and non-behavioral curves were used to assess model sensi-
tivity to each tested parameter. The results are presented in Fig. 5. Even 
though the main objective of the cumulative likelihood analysis was not 
parameter optimization, higher behavioral curve slopes provided a first 
idea around which value better model performances were observed. 

The facua parameter presented higher Dstat results in the first GLUE 
application valuing 0.44 and 0.43 for the whole profile and the emerged 
beach, respectively (Fig. 5A). Still in the first GLUE, higher slopes for 
facua values between 0.1 and 0.3 indicated better model performances. 
The non-behavioral runs presented higher slopes for values between 0.3 
and 0.5 (poorer model performance within this range). A very low model 
sensitivity was observed in the second GLUE application with facua 
ranging between 0.1 and 0.3 (Fig. 5B). Table 4 summarizes the sensi-
tivity analysis results. 

Gamma Dstat results reached 0.34 (whole profile) and 0.32 (subaerial 
portion) for the first GLUE (Fig. 5C). Higher behavioral curve slopes 
between 0.35 and 0.5 indicated better model performances, while 
poorer performances occurred when gamma values ranged between 0.2 
and 0.35. Similarly to facua, model sensitivity decreased considerably for 
the second GLUE application (Fig. 5D), reaching 0.22 for the sub-aerial 
beach and 0.18 for the whole profile. 

Model sensitivity to fw resulting from the first GLUE (Fig. 5E) 
reached 0.17 for the whole profile, while the subaerial beach resulted in 
a Dstat 0.04. A considerable increase in Dstat results was observed in the 
second GLUE application (Fig. 5F), reaching 0.63 and 0.61 for the whole 
and subaerial profiles, respectively. 

For the whole profile, bedfriccoef Dstat values of 0.33 and 0.07 
resulted from the first (Fig. 5G) and second GLUE approaches (Fig. 5H), 
respectively, while the subaerial beach resulted in Dstat values of 0.34 
and 0.17. In general, a higher variation of Dstat values was observed in 
the whole profile analysis. As in the first GLUE application the model 
sensitivity to smax was very low (Fig. 5I), dryslp was chosen to replace 
the previous parameter (Fig. 5J). However, the overall sensitivity to 
both parameters was similar, with Dstat results below 0.05. 

4.1.2. Parameter optimization 
The results presented in Fig. 6 show the parameter values associated 

with the best subaerial (red dashed vertical lines) and the best whole 
profile (blue dashed vertical lines) model performances. Also, the higher 
weighted densities represent the parameter range with which the model 
has achieved better results. 

For facua, better model performances were achieved with values 
between 0.1 and 0.3 in the first GLUE application (Fig. 6A), while a more 
evenly distributed histogram was seen for the second GLUE (Fig. 6B) 
with a slight density increment around 0.2. The best whole domain 
model performance occurred with a facua value of 0.13, while the best 
subaerial result happened with facua equals 0.11 for the first GLUE. The 
second GLUE application showed facua values of 0.11 and 0.20 related 
to the best simulations for the whole and subaerial profiles, respectively. 

Gamma weighted histograms for the first GLUE application show a 
better model performance for values between 0.3 and 0.5 (with a peak 
between 0.44 and 0.47), with the best whole profile and subaerial beach 
BSS performances being associated with gamma values of 0.48 and 0.41, 
respectively (Fig. 6C). The second GLUE application resulted in a more 
evenly distributed histogram similarly to facua. Gamma values of 0.37 
and 0.38 (Fig. 6D) were associated with the best BSS model perfor-
mances for the whole and subaerial profiles, respectively. 

The parameter fw in the first GLUE application had higher densities 
distributed to lower values for the whole profile with the best model 
performance being associated with a value of 0.16 (Fig. 6E). Considering 
only the subaerial beach, the best model performance was with an fw of 

Sea. Based on the different forecasts, +48 h ensemble mean and stan-
dard deviation (SD) are calculated with the output variation estimated 
by adding/subtracting the SD to/from the ensemble mean. 

In the present work, four TMES combinations were used as 
boundary conditions to the operational XBeach as schematized in Fig. 
3. The (semi-)probabilistic implementation comprehended the TMES
mean, the TMES mean minus one SD, plus one SD and plus two SDs.
Whenever mean plus or minus a SD is mentioned hereinafter, it
implies that the addition or subtraction of SDs has been performed to
the sea level and the three wave parameters used: significant wave
height (Hs), mean wave period (Tm), and mean wave direction (Dm).

With the XBeach outputs forced by TMES it was possible to assess 
minimum and maximum forecasted water levels for each time step. 
For both profiles where this approach was implemented (Marina di 
Ravenna and Marina Romea), the BWD estimated the distance 
between the maximum water level and the local reference building 
following the already operational deterministic system. 

The already implemented deterministic approach (that follows the 
hierarchical framework previously presented and provides +72 h of 
forecast) was analyzed together with the (semi-)probabilistic results as 
means to have a better picture on the improvements given by the new 
framework. Two months of daily forecasts were evaluated and are pre-
sented in this study: March and April 2020. 



Fig. 4. Calculated BSS for every simulation. The panels on the left side show the results obtained during the first GLUE application, while the panels on the right 
present the second application results. 



Fig. 5. Cumulative Likelihood for each parameter tested during the first (left) and second (right) GLUE applications. The indicated Dstat refers to the Kolmorgorov- 
Smirnov D statistic used to quantify the model sensitivity to that parameter. The full and dashed lines represent the results for the whole profile and only for the 
subaerial section, respectively. Subfigures A) and B) refer to facua, C) and D) to gamma, E) and F) to fw, G) and H) to bedfriccoef, and I) and J) to smax and dryslp, 
respectively. 



0.20 and a small shift in general behavior: higher density values asso-
ciated to slightly higher fw values. For the second GLUE application 
(Fig. 6F), higher densities were observed with fw ranging between 0.26 
and 0.5, while the best subaerial performance was related to a fw of 0.29. 
A value of 0.18 was associated with the best whole profile performance 
and a higher density concentration was observed between 0.26 and 
0.34. 

Beddfriccoef results for the first GLUE approach (Fig. 6G) indicated 
a trend of higher densities associated with increasing values, reaching 
the peak between 48 and 50. Although the general trend indicated 
higher densities increasing with higher parameter values, the best 
whole profile simulation was associated with a bedfriccoef value of 
31.79 and the best subaerial run happened with a bedfriccoef of 31.37. 
For the second GLUE application (Fig. 6H), befriccoef values of 40.13 
and 50.03 were associ-ated with the best run for the whole and 
subaerial profiles, respectively. The results of the second approach also 
show a more evenly distributed histogram with higher densities 
concentrated between 43 and 47. 

Smax and dryslp histograms show an evenly distribution of densities 
across the whole range of tested values. In the first approach, the best 
performance for the whole profile happened with a smax value of 
0.18 (Fig. 6I), while the best behavioral emerged beach evaluation 
happened with a value of 0.03. After smax was replaced by dryslp for 
the second GLUE application, the best whole and emerged profile 
simulations occurred with values of 0.97 and 1.15 (Fig. 6J), 
respectively. A summary of the results is shown in Table 5. 

4.1.3. Uncertainty analysis 
In order to assess the uncertainties related to the implemented cali-

bration approach, the pre- and post-storm observed profiles were 
plotted together with the best-modeled results. Additionally, weighted 
density histograms were built using the behavioral runs to analyze the 
model performance relative to the SEVs and are all shown in Fig. 7. 

The final observed SEV, based on the pre- and post-storm measured 
topo-bathymetric data, was 2.08m3/m. In terms of profile alterations 
caused by the storm, the berm erosion characterized the main 
morphological change in the subaerial profile (Fig. 7A, 7B, 7C, and 
7D). Still in the emerged beach, it was possible to observe sediment 
accu-mulation near the dune toe, represented by an increase in 
elevation on the post-storm measured profile (black dashed lines). 
Underwater offshore bar migration occurred in the subaqueous profile 
(Fig. 7B and 7D between 2000 and 2150m cross-shore distance). 

Using the default model configuration (green dashed lines in Fig. 
7A and 7C), part of the frontal dune was eroded following a general 
rec-tilinization trend for the entire profile with a resulting SEV of 
27.45m3/ m. Hence, it is important to emphasize the necessity of 
thorough cali-bration to avoid erosion overestimation.

The simulation that resulted in the best subaerial BSS for the first 
GLUE application (blue dashed line in Fig. 7A - 0.88 excellent perfor-
mance) accurately represented the berm erosion. However, a SEV 
overestimation occurred, reaching 3.70m3/m against the observed 
2.08m3/m. The simulation that better reproduced the SEV (red dashed 
line in Fig. 7A), reaching the exact 2.08m3/m, scored 0.71 in the BSS 
evaluation. It is possible to see in Fig. 7A that the best SEV simulation 
did not fully represent the berm erosion, counter-balancing the misfit 
relative to sediment accumulation near the dune toe. In the underwater 

domain, the bar migration was not accurately reproduced with the 
modeled results following the pre-storm measurements. 

For the second GLUE application (Fig. 7C and 7D), a similar scenario 
was observed in what refers to the poor representation of the sediment 
accumulation near the dune toe. Once again, the berm was fully eroded 
in the best subaerial BSS simulation (blue dashed line in Fig. 7C - 
reaching 0.87) and partially eroded in the best SEV run (reaching 0.72 
in the BSS evaluation). Like what happened during the first GLUE appli-
cation, the underwater bar migration was also misrepresented. The SEV 
for the best subaerial BSS run was of 3.69m3/m, and the best eroded 
value simulation reached exactly the observed amount of 2.08m3/m. 

Minimum and maximum values for each grid point were also 
extracted and are shown as the upper and lower limits of the shaded 
blue areas in Fig. 7B and 7D. Higher variations were observed in the 
berm area and towards the upper beach/dune toe. A higher variation 
was observed in the first GLUE compared to the second, but the pattern 
was very much alike: higher variation around the berm area and 
its surroundings. 

The density weighted histograms in Fig. 7E and 7F present the SEV 
distribution of the emerged beach behavioral runs. For the first GLUE 
application, most of the behavioral runs had SEVs between 1.5 and 
3.5m3/m, with the highest density concentrated between 2.0 and 
2.5m3/m. A more normal-shaped distribution centered around 3.5m3/m 
resulted from the second GLUE application, with the highest density 
ranging between 3.0 and 3.5m3/m. Table 5 summarizes both GLUE 
applications and the values obtained by XBeach default configuration 
run. 

The parameter values associated with the best subaerial BSS simu-
lation (shadowed blue row in Table 5) of the second GLUE were used 
for the operational (semi-)probabilistic testing on the profiles of 
Marina Romea and Punta Marina. The selection of this specific model 
configu-ration followed the correct representation of the berm erosion 
that made possible for the water level to be accurately reproduced as 
the storm surge strengthened. 

4.1.4. Calibration discussion 
The first and second GLUE applications present differences in the BSS 

values (Fig. 4). A wider distribution of results was observed for the first 
GLUE, with a larger difference between minimum and maximum values 
as well as larger SDs. As for the second GLUE application the parameter 
ranges were narrower, a lower number of physical interactions was 
reproduced resulting in a more limited output distribution. 

Furthermore, Fig. 4 strongly evidences a disparity between BSS 
values for the whole profile relative to the subaerial portion only. As 
seen in the calibration profile (Cesenatico – Fig. 7), two submerged bars 
were observed before and after the storm, with the latter presenting an 
offshore migration relative to the original position. Higher energetic 
conditions during the storm were responsible for the offshore migration 
which was poorly represented by XBeach. Still in Fig. 4 but considering 
the subaerial profile only, the berm erosion represents the most signif-
icant variation observed in the post-storm profile. This process was also 
misrepresented by the model as shown by the blue shaded area in Fig. 
7. Misfits on both underwater and the emerged beach account for the
lower skill observed in the whole profile relative to the subaerial
beach. Armaroli et al. (2013) also showed divergences in model skill
when subdividing the profile.

Parameter calibration plays a major role in representing (or mis-
representing) the aforementioned processes. Thus, finding an optimized 
parameter set through calibration is fundamental. For instance, the 
simulations with the default configuration led to subaerial erosion 
overestimation and a very low model skill (Table 5). A rectilinization of 
the profile was observed with full erosion of both the berm and sub-
merged bars (Fig. 7 - Default Config green profile). Other authors (e.g. 
Elsayed and Oumeraci, 2017; Simmons et al., 2017a; Splinter and 
Palmsten, 2012) have also found that running XBeach with the default 
configuration tends to overestimate erosion and straighten the active 

facua gamma fw bedfriccoef smax dryslp 

GLUE 1 
Whole Profile 0.44 0.34 0.17 0.33 0.02 – 
Subaerial 0.43 0.32 0.04 0.34 0.02 – 
GLUE 2 
Whole Profile 0.07 0.18 0.63 0.07 – 0.04 
Subaerial 0.08 0.22 0.61 0.17 – 0.03

Table 4 
Summary of model sensitivity based on Dstat for both GLUE applications sub-
divided in beach compartments.   



Fig. 6. Weighted density histograms for each parameter tested during the first (left) and second (right) GLUE applications. The blue and red bars represent the 
values for the whole profile and for the subaerial section only, respectively. Blue dashed vertical lines represent the parameter value associated with the best 
whole profile BSS evaluation, while the red dashed vertical lines refer to the best subaerial BSS simulation. Subfigures A) to J) follow the same pattern as in Fig. 5. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 



profile. 
It is important to stress that the BSS evaluation is not fully correlated 

to the subaerial volume erosion (Fig. 7E and 7F). The best SEV simula-
tions were the ones balancing the misrepresentation of the dune toe 
sediment accumulation and the berm erosion. In contrast, the best 
subaerial BSS simulations fully eroded the berm but also poorly repre-
sented the dune toe sediment accumulation, resulting in erosion over-
estimation. Hence, using more than one method to estimate model skill 
and accuracy is a valid approach to better address uncertainties and 
understand how the physical processes were represented in the 
simulations. 

During calibration, the role played by the selection of behavioral 
threshold values strongly influenced the sensitivity evaluation. Higher 
threshold values tend to narrow the amount of results to be used in the 
weighted density analysis (Fig. 6 and subfigures). For instance, if for the 
second GLUE application the subaerial BSS threshold was set as 0.8, 
there would be fewer behavioral simulations. In that scenario, one of the 
possible outcomes would be weighted density histograms with narrower 
ranges of parameter values associated with higher densities. As for the 
purpose of the present work the results obtained with the second GLUE 
application already provided a good agreement with the in-situ mea-
surements, it was decided not to further explore possible outcomes by 
altering the threshold values. 

Through parameter optimization, the GLUE approach helped in 
decreasing parameter-related uncertainty. Hence, the selection of pa-
rameters to be tested has to be carefully conducted (e.g. based on pre-
vious studies that have addressed model sensitivity in the area of 
interest). However, through testing a given parameter set generated by 
randomly combining the values, it becomes difficult (and time 
consuming) to individualize the effects of each parameter in the simu-
lations. Following a one parameter at a time approach (Armaroli et al., 
2013; Dissanayake et al., 2014; Harley et al., 2016; Unguendoli, 2018; 
Vousdoukas et al., 2012) makes it simpler to distinguish how a given 
parameter influences the simulations and it might be used as an 
important initial step to choose parameters prone to be tested in a 
“GLUE-like” procedure. 

If XBeach shows a high sensitivity to more than one parameter in a 
given region, the one-at-the-time approach might not be the best option. 
In this case, applying a “GLUE-like” procedure in which several impor-
tant parameters are combined differently by means of a randomized 
scheme tends to provide the modeler a solid final set to be used. Even 
though this procedure does not consider parameter interrelation, many 
combinations help on reaching substantial conclusions. 

Among the cons of a generalized estimation following thousands of 
combinations are the time consumption and storage space. The former 
can be minimized through automating the procedure as much as 

possible and running the simulations in parallel among different pro-
cessors. When such a facility is not available, the modeler might try 
other calibration strategies that require less computer power. Further-
more, the storage space to absorb the amount of data generated might 
not be at one’s disposal in regular processing computers creating man-
agement difficulties. However, as shown in the present work, a GLUE- 
like calibration indeed provides a more extensive outlook when it 
comes to testing several parameters that the model has already shown 
sensitivity to for a given area. 

Also for brevity, the specific details on each parameter behavior 
during the calibration steps are not discussed here. 

4.2. EWS-EPS implementation 

The (semi-)probabilistic implementation results from March 1 until 
April 30 of 2020 are presented in this subsection. XBeach-based fore-
casts were run using four combinations of TMES outputs as previously 
described. Results from the already implemented deterministic forecast 
were also assessed for a total of five +48 h h forecasts (Fig. 8). 

In Fig. 8, the minimum BWD reached by each of the five forecasts 
was plotted with the starting day of the simulation. Marina Romea 
(Marrom) presented BWD values lower than Punta Marina (Puntam). 
The average BWD, considering all days and forecasts, was 63.82m for 
Marina Romea and 83.22 for Punta Marina. During the analyzed time 
span, none of the forecasts reached neither the medium (orange line) 
nor the high (red orange) hazard thresholds. 

For both profiles, the maximum BWD values were associated with 
the forecasts using the ensemble mean minus one SD (green circles) 
followed by the ensemble mean forecasts (blue cross markers). The 
ensemble mean plus one SD (magenta circles) stayed between the pre-
vious two combinations and either the deterministic (brown cross 
markers) or the mean plus two SDs (red circles). Lower BWD values 
were related to the latter two combinations, which represented higher 
water levels arriving closer to the reference building of each profile. 

Throughout the investigated period, higher energetic conditions 
were observed between the 21st and the 27th of March (blue shaded 
area in Fig. 8). Among these dates, a slight convergence of the 
minimum BWD results towards lower values can be seen. In the next 
subsection, the forecast results of the 22nd are shown to exemplify the 
outcomes of the new (semi-)probabilistic implementation. Only the 
results for Marina Romea are presented both for brevity and as the 
outputs were very similar under non-stormy conditions. 

4.2.1. Forecast results for 22/03/2020 
Fig. 9 presents the deterministic run (green solid line), the TMES 

mean run (green dotted line) and the limits of the TMES based forecasts 

Table 5 
Results of both GLUE applications showing the best subaerial BSS simulation, best SEV simulation, best whole profile BSS simulation and the default run. For each 
simulation, the associated value of each parameter is also shown.   

FIRST GLUE APPLICATION  

facua gamma fw bedfriccoef smax BSS Value SEV (m3/m) 

Best Subaerial BSS simulation 0.11 0.41 0.20 31.37 − 0.03 0.88 3.70 
Best SEV Simulation 0.25 0.42 0.19 32.82 − 0.46 0.71 2.08 
Best whole profile BSS simulation 0.13 0.48 0.16 31.79 − 0.18 0.43 4.69 
Default 0.10 0.55 0.00 55.00 − 1.00 − 1.99 27.45      

Observed SEV 2.08m3/m  

SECOND GLUE APPLICATION   
facua gamma fw bedfriccoef dryslp BSS Value SEV (m3/m) 

Best Subaerial BSS simulation 0.20 0.38 0.29 50.03 1.15 0.87 3.69 
Best SEV Simulation 0.26 0.31 0.32 43.41 0.82 0.72 2.08 
Best whole profile BSS simulation 0.11 0.37 0.18 40.13 0.97 0.44 4.37 
Default 0.10 0.55 0.00 55.00 1.00 − 1.99 27.45      

Observed SEV 2.08m3/m  



Fig. 7. Subfigures A and C show the pre- 
(full black line) and post-storm (black 
dashed line) measured profiles, best BSS 
(blue dashed line) and SEV (red dashed 
line) modeled profiles, as well as the final 
modeled profile using the default XBeach 
configuration (green dashed line). Sub
figures B and D show the pre- (full black 
line) and post-storm (black dashed line) 
measured profiles with the mean profile of 
all the behavioral runs (red dashed line); 
the blue shaded area represents the final 
minimum and maximum elevation values 
reached by the behavioral simulations. 
Subfigures E and F represent the weighted 
densities for the behavioral runs relative 
to SEV. (For interpretation of the refer
ences to colour in this figure legend, the 
reader is referred to the Web version of 
this article.)   



using the mean minus one (upper limit of the green shaded area) and 
plus one (lower limit) SDs, respectively. Fig. 10 is different from Fig. 9 
as the simulation using the TMES mean plus two SDs (instead of 
one) represents the lower limit of the green shaded area. 

In Figs. 9 and 10 it is possible to see an oscillation in the BWD values 

with an approximate period of 24 h with two peaks and two troughs 
related to the semi-diurnal tidal characteristic of the region. Within the 
low frequency oscillation, higher frequency fluctuations can be 
observed. 

In the troughs of Fig. 9, the deterministic run presents values below 

Fig. 8. Minimum BWD reached by each 48h forecast plotted based on the starting day for Marina Romea (A - Marrom) and Punta Marina (B - Puntam). Blue and 
brown cross markers represent the simulations using the TMES mean and the deterministic approach, respectively. The green, magenta and red circles refer to the 
forecasts using the TMES mean minus one SD, plus one SD and plus two SDs, respectively. More intense sea conditions reached the study area between the 21st and 
the 27th (blue shaded area). High and medium hazard thresholds are shown as orange and red lines, respectively. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 

Fig. 9. Marina Romea (marrom) deterministic and 
(semi-)probabilistic forecast results for the 22/03/ 
2020. The lower green shaded limit is represented 
by the simulation using the TMES results plus one 
SD. As during the forecasted period the BWD has 
never overcome the medium and high thresholds, 
no continuous orange or red lines are seen in the 
graph (as they would only occur below 10m and 
0m, respectively). (For interpretation of the refer
ences to colour in this figure legend, the reader is 
referred to the Web version of this article.)   



the shaded area inferior limit (indicating higher water levels). In the 
peaks, the deterministic forecast remained mostly between the shaded 
area limits with an exception between 12pm and 18pm of the 23/03. 
Higher BWD values indicated lower water levels and the water line 
being further away from the reference building. 

When the forecast using the mean plus two SDs (Fig. 10) is consid-
ered, the inferior limit of the shaded area expanded towards lower 
values. The deterministic forecast remained within the shaded area 
limits during almost the entire forecast, with one exception between 
12am and 6m of the 22nd and one between 6am and 6pm of the 23rd. 
Using the TMES plus two SDs increased the amplitude of the shaded area 
limits and encompassed the deterministic forecast within its lower and 
upper boundaries. 

Table 6 summarizes the results of each forecast conducted for Marina 
Romea on the 22/03. The minimum forecasted BWD and the lower mean 
value throughout the 48-h forecast were reached by the simulation using 
the TMES mean plus two SDs. In terms of hazard levels, the hazard 
thresholds of 10m (orange solid line) and 0m (red solid line) were never 
exceeded. 

4.2.2. EWS-EPS discussion 
In order to analyze the (semi-)probabilistic results, the TMES and the 

applied methodology were examined. As the boundary conditions are 
from wave and sea level ensembles, the approach presented in this work 
differs from other probabilistic storm surge EWSs implemented world-
wide. For instance, in the UK and in the Netherlands there have been 
probabilistic approaches using hydrodynamic models forced by atmo-
spheric ensemble members (e.g. Flowerdew et al., 2010, 2013; de Vries, 
2009). Unlike those applications, the present work accounts for the 

morphologic-hydrodynamic interactions in shallow waters calculated 
by a local implementation of XBeach. Model optimization by means of 
calibration plays an important role to better represent simulations on 
sandy beaches presenting a complex morphodynamic behavior. 
Furthermore, here the results are not given in probabilistic terms, hence 
being called “(semi-)probabilistic” as its foundations come from prob-
abilistic outputs but the final answer is not yet fully probabilistic (e.g. 
probability of threshold exceedance). 

With the usage of SDs combined with the ensemble mean, the results 
provided a better indication of forecast uncertainty when compared to 
the deterministic approach alone (Figs. 9 and 10). However, in order to 
calculate the probability of threshold exceedance, a larger number of 
members would be necessary. This task can be accomplished by running 
the system merging the wave and sea level ensemble components in 
different ways. 

Nevertheless, using two SDs from the mean in every wave and sea 
level parameter should encompass the possible variations within this 
range. As an example, the results of TMES mean plus/minus one SD 
showed a very limited spread compared to the total variation of the 
deterministic forecast alone (Fig. 9). Using only one SD, the results of the 
spread rarely reached BWD values as low as the minimum achieved by 
the deterministic forecasts. By contrast, the forecasts using the TMES 
mean plus two SDs (Fig. 10) presented a higher spread with the lower 
limit being more similar to the deterministic simulations and encom-
passing a larger spectrum of scenarios that included the results of the 
simulations with one SD. 

As a measure of dispersion, the more SDs, the higher the spread from 
the mean. If a normal distribution is considered, 68% of the data is 
contained around one SD from the mean, while a distance of two SDs 

Fig. 10. Marina Romea (marrom) deterministic and 
(semi-)probabilistic forecast results for the 22/03/ 
2020. The lower green shaded limit is represented 
by the simulation using the TMES results plus two 
SDs. As during the forecasted period the BWD has 
never overcome the medium and high thresholds, 
no continuous orange or red lines are seen in the 
graph (as they would only occur below 10m and 
0m, respectively). (For interpretation of the refer
ences to colour in this figure legend, the reader is 
referred to the Web version of this article.)   

Table 6 
Minimum, maximum, and mean BWD values calculated for each forcing condition. The results represent the forecast of 22/03 for the Marina Romea profile.   

TMES mean - 1SD TMES mean TMES mean + 1SD TMES mean + 2SD Deterministic 

min BWD (m) 78.00 69.00 50.00 45.00 52.00 
max BWD (m) 100.66 96.35 89.33 80.00 106.56 
mean BWD (m) 88.32 80.51 73.07 63.05 70.76  



be “too soft” even with different combinations of the mean and SD 
values. Hence, testing an XBeach-based forecast employing directly the 
outputs of the models used to build the TMES could provide even more 
information to the forecaster. As EWSs have to alert mainly about 
incoming extreme conditions, using the mean and SDs could smoother 
possible hazardous conditions. 

Considering the aforementioned limitations, it should be emphasized 
that the XBeach based EWS is the last step of an operational chain and its 
results alone are not the only sources of information to decision makers. 
Currently, two operational oceanographic models and nested SWAN 
implementations as well as a series of in situ measuring devices are also 
available during the decision-making step. Hence, all the recommen
dations and findings presented previously are valuable in improving 
similar systems. 

5. Conclusions

In a context of increasing magnitude and frequency of storms and
considering the recent increment in coastal communities, the present 
work enhances the importance of development and usage of storm surge 
EWSs. Based on current developments of probabilistic modelling ap
proaches, it is possible to develop more reliable uncertainty measures 
associated with the forecasting procedures. 

By using a morphodynamic model instead of a hydrodynamic model 
alone, it is possible to address the nearshore morphodynamic in
teractions that play a major role on sandy beaches presenting a complex 
bathymetry. In this sense, the application of XBeach, whether deter
ministically or probabilistically, tends to provide a better representation 
of flooding waters combining hydrodynamics and morphology. 

The importance of appropriately calibrating a model with as many 
parameters as XBeach is also stressed in this work. Following what has 
been widely reported in the literature, XBeach usage with the default 
configuration tends to overestimate erosion. The GLUE approach 
application proves to be a very useful tool to address parameter related 
uncertainty if the tested parameters are carefully chosen. However, its 
implementation demands powerful resources in the form of computer 
processing capacity, as well as hardware space. Hence, the GLUE 
approach might not be feasible for short term projects to be developed 
using “regular processing” computers. 

Still on the importance of calibration, the present work shows that 
using only one method of evaluation of the modeled outcomes might not 
fully address the complexities associated with morphodynamic model
ling. This conclusion is possible as the simulation with the higher BSS is 
not the same as the best simulation considering the SEV. Whenever 
possible, more than one skill and/or accuracy measures should be used 
to evaluate model performance. 

In terms of the (semi-)probabilistic implementation, the performance 
of this approach is very satisfactory even with all the differences relative 
to the already implemented deterministic system. By using the TMES 
outputs, more information is available to the modeler/forecaster in 
terms of water level vertical excursion ranges that might or might not be 
hazardous. The results enhance the multitude of possible operational 
applications associated with such a complex morphodynamic model 
being forced by wave and sea-level parameters. 

A longer TMES series should be gathered to provide a higher range of 
results reproducing distinct sea conditions. In this way, it will be 
possible to better evaluate an appropriate combination of the ensemble 
mean and SDs to be applied as means to provide reliable forecasts also 
under conditions that exceed the BWD flooding thresholds. Further
more, using a higher number of mean and SD combinations would allow 
for the generation of probabilistic outcomes in terms of threshold ex
ceedance. The latter proposition has to be thoroughly tested as there 
may not be an increment in the amount of information if compared to 
what is provided by the forecasts using the mean plus two SDs. 

As a final remark, collecting pre- and post-storm topo-bathymetric 
data for the profiles of Marina Romea and Marina di Ravenna would 

includes approximately 95% of the data. Thus, the combination of 
mean and more SDs could allow for more information, as well as an 
increased possibility to forecast worst-case scenarios. Notwithstanding, 
a problem arises as the higher the number of SDs, the higher the 
chances of false threshold exceedance. In this sense, analyzing a longer 
series of the EWS-EPS forecasting results is fundamental to define 
which combina-tion would perform better under flooding conditions. 

With a larger number of members it would be also possible to 
determine whether the distribution of the TMES results in terms of Hs 
and sea level fully follow a normal distribution. If the distribution is 
not normal, there is a partial devaluing of the whole meaningfulness 
behind the application proposed in this work and other 
implementation considering the real distribution could be 
developed. Future TMES- XBeach usage could evaluate if a larger 
number of combinations would provide additional information that is 
not covered by the TMES mean plus two SDs, as well as determine the 
most appropriate way to merge the wave and sea level boundary 
conditions. 

Heretofore, it seems conceivable an initial full-operational imple-
mentation involving two standard deviations. This approach could be 
useful to fully test the application of the EWS-EPS until more energetic 
sea storms hit the coast of Emilia-Romagna and more data is gathered. 
As up to now the results of the (semi-)probabilistic implementation 
have been compared to the deterministic approach, the system 
validation using in-situ water levels (maximum vertical excursion) 
should be a priority. As a means to overcome this difficulty, the 
implementation of georeferenced camera imagery (e.g. Dusek et al., 
2019) could be used to extract water levels during storms allowing for 
a performance evalua-tion of the deterministic and the 
(semi-)probabilistic forecasts. 

The results discussed in this and in the previous sections only 
involved combination and parameter related uncertainties, but they are 
not the only sources associated with the implemented procedure. Initial 
topo-bathymetric differences and the model setup also account for di-
vergences between the deterministic and the (semi-)probabilistic 
implementation. In the former, the optimal parameter set currently 
implemented (deterministic framework) followed a one parameter at-a- 
time calibration (Unguendoli, 2018) being different from the values 
found in the present work through the GLUE. Moreover, the final grid-
ded profiles used in the forecasts were slightly different mostly on their 
subaerial portion but built based on the same bathymetry. 

Another source of uncertainty prone to be tackled in future works 
refer to the parameter values applied to Marina Romea and Punta 
Marina. The optimized parameter set was obtained through the GLUE 
approach tested in Cesenatico and based on one storm only. Trans-
ferability of calibrated parameters has already been associated with 
poorer model performances, even for short distances (Bugajny et al., 
2013; Splinter and Palmsten, 2012), when compared to locally 
adjusted values. Also, using only one storm might not be sufficient to 
cover the total spectrum of storms and conditions reaching the area. 
Simmons et al. (2017b) have already shown the increase in model skill 
when more than one storm is used in the calibration phase and a 
strong recom-mendation is made in order to continuously update the 
parameter set. 

In what refers to the TMES, a distance-weighted average remapping 
of the nearest neighbors (Ferrarin et al., 2020) is used to combine the 
different models and generate the mean and standard deviation, so far 
not accounting for model weighting. For instance, if one of the models 
used in the ensemble tends to provide a better representation of sea 
level and wave conditions along the Adriatic, giving a higher weight to 
that model could imply a better representation by the ensemble of the 
real conditions. Another option could involve a geographical 
model weighting: models that better represent the conditions in the 
Southern or Northern Adriatic would be given a higher weight in the 
geographic location in which they tend to perform better. 

The (semi-)probabilistic implementation attempted here could be 
improved by the aforementioned adjustments both on TMES, as well as 
on the XBeach chain (e.g. calibration and topo-bathymetric initial con-
ditions). Nonetheless, the usage of the TMES ensemble as forcing might 
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