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A B S T R A C T   

The present paper describes a numerical model that has been developed in order to analyse the long-term 
behaviour of beams built in different stages under serviceability loads, considering the effect of delayed de-
formations due to creep and shrinkage. The rheological model for concrete creep is based on a modified version 
of the solidification theory while the cross section behaviour is described by means of a fibre model. The paper 
discusses the performances of the model in simulating the behaviour of two fullscale beams tested by the authors.   

1. Introduction 

Long term deformations may be extremely significant for reinforced 
concrete structures, in particular under serviceability conditions and for 
some particular classes of structures, e.g. very long span bridges, may 
even lead to structural collapse [1,2]. 

Many simple models are available for the analysis of creep and 
shrinkage deformations of reinforced concrete beams and frames with 
normal-length spans [3–7] but these models are not suitable for 
analyzing beams built in different stages in which there are concretes 
cast at different times which exhibit different delayed deformations. The 
analysis of the structural behaviour of such systems requires specific 
analytical models, which must be able to take different construction 
stages into account. In fact, due to the different ageing of the materials 
involved, the long-term behaviour of such structural elements can 
significantly differ from the predictions provided by conventional 
analytical methods such as AAEM, EM, etc. [5,7]. The study of the stress 
and deformation states of the beams may be complex, especially as far as 
serviceability limit states are concerned. In fact, the superposition 
principle cannot be used [8], neither to estimate the behaviour under 
service loadings nor to evaluate the ultimate bearing capacity, therefore 
time incremental formulations are required in order to obtain reliable 
results. 

The present paper describes a numerical model that has been 
developed by the authors in order to analyse the long-term behaviour of 
beams built in different stages under serviceability loads, considering 

the effect of delayed deformations due to creep and shrinkage. The 
model is an extension of the nonlinear creep damage model, based on a 
modified version of the solidification theory [9], proposed by Mazzotti 
and Savoia [10], for concrete under uniaxial compression. The main 
improvements are: (i) the definition of a fibre based model for the 
analysis of cross sections; (ii) the inclusion of shrinkage effects at the 
cross section level; (iii) the ability to simulate the global behaviour of 
beams; and (iv) tension stiffening effects. An earlier version of the pre-
sent model, which included the fibre-based cross section model only (i), 
was described in Refs. [11,12]. These former versions of the model were 
never validated against experimental data on the behaviour of structural 
elements. 

In the model proposed part of the fibres are considered active only 
after a given time interval, in order to reproduce the different con-
struction phases of the beams. Numerical simulations are carried out by 
calculating the curvature at the sectional level first and then evaluating 
the overall behaviour of the structural elements taking into account also 
tension stiffening. An incremental algorithm is formulated in order to 
describe the stress redistribution occurring when the portion of the 
concrete section cast in a subsequent step becomes effective. More 
complex structures such as very long span bridges are behind the scope 
of the present model and would require more complex approaches [1,2, 
13–16]. 

In particular, the model was used in order to simulate the results of 
an experimental campaign on the flexural behaviour of two beams built 
in two different stages. These beams are part of a construction system in 
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which partially pre-fabricated beams and columns are assembled and 
completed in order to obtain moment resisting frames, with the cast in- 
place of the beam column joints, the beam top parts, and the slabs 
[17–21]. In the following, phase-1 and phase-2 will indicate the states 
before and after the cast in place, respectively. 

The test duration was about two months, at the end of which the 
beams were loaded up to failure. In the experimental tests, a loading 
protocol representative of the various construction phases was adopted, 
in particular, during each phase the loading was kept constant for 
several days, in order to study the effects of the delayed deformation of 
the two concretes used for the precast beam and the in situ cast. Some 
cylindrical specimens were also prepared and used for long–term tests, i. 
e., to evaluate the rheological properties of the concretes and to perform 
tests at different ages, with measures of strength and stiffness 
characteristics. 

The fibre-based numerical model was applied and validated using 
the results of the experimental campaign. In particular, the results of the 
test on the cylindrical specimens were used in order to calibrate the 
parameter of the rheological models adopted. The so calibrated model 
was then used to simulate the behaviour of the two beams under long- 
term serviceability loads. The model showed good accuracy in the pre-
diction of the experimental moment-curvature diagrams, of the beams 
deflection, and also of the strains in the rebars. 

2. The numerical model 

The evaluation of the long-term deflection of a structural element 
under flexure requires the consider different issues at different scales: 
the material behaviour (creep of concrete), the cross-section behaviour 
(interaction with steel reinforcement), and the structural behaviour 
(presence of cracks). 

In the following, each aspect is considered and introduced, leading to 
the proposed numerical model. 

2.1. The creep model 

In order to evaluate the long-term behaviour of concrete under 
variable stresses over time without solving a convolution problem, the 
viscoelastic model for the creep of concrete in compression is written 
following the incremental form [10]: 

σ̇ =Eeff ε̇el
, (1)  

where ε̇el is the elastic strain rate and Eeff is the effective modulus which 
increases over time because of concrete ageing. The total strain rate is 
defined as the sum of two different contributions: 

ε̇= ε̇el
+ ε̇v (2)  

where ε̇v is the viscous strain rate. The strain splitting assumption (2) is 
adopted in several formulations in the framework of infinitesimal de-
formations [10,22]. Combining Eq. (1) and Eq. (2) it is possible to write: 

σ̇ =Eeff (ε̇ − ε̇v
). (3) 

The stress rate σ̇ is now defined making use of a modified version of 
the solidification theory [10]. According to this theory, originally pro-
posed by Bažant [9] for linear viscoelasticity, the age-dependent 
behaviour of concrete is described by threating the solidifying mate-
rial (the hydrating cement paste in this case) as a varying composite, the 
components of which are characterized by age-independent mechanical 
properties. The ageing process is modelled as a change of concentration 
of solidified matter, whose volume is described by a function ν(t), with 
0 < ν(t) ≤ 1[23,24]. This simple mechanical model aims at describing, 
empirically, many different physical/chemical phenomena occurring 
during concrete ageing; the growth of mass of the cement hydration 
products per unit volume being the main physical mechanism. In 

addition, during concrete hardening, the relaxation of localized high 
stress concentrations in the microstructure of the cement gel also occurs, 
as described by the microprestress-solidification theory [25,26]. This 
phenomenon is not considered in the present formulation. 

According to the solidification theory, the subsequent deposited 
layers of solidified constituent are assumed to be coupled in parallel and 
subject to the same macroscopic strain increment dε, when contributing 
in equilibrating the compressive stress. The layers of cement gel already 
solidified carry a finite stress s, while those not yet solidified are 
assumed stress free (s = 0). 

The solidifying constituent is considered as a non-ageing viscoelastic 
material characterized by the micro-relaxation function Ψ(ξ), where ξ =

t − t′ , being t′ the time at which the load is applied. Indicating by ν(τ) the 
volume of solidified matter at the general time τ, the stress s at age t > τ 
in the solidifying layer dν(t) is: 

s(τ, t)=
∫ t

τ
Ψ(t − t′ )dε(t′ ) (4)  

where the limits of integration reflect the assumption that a layer is 
stress free prior to solidification, i.e. before the time τ. Making use of Eq. 
(4), it is possible to write an equilibrium equation between the macro-
scopic stress σ and the micro stresses s[ν(t)] at general layers as: 

σ(t) =
∫ t

t′ =0
Ψ(t − t′ )ν(t′ )dε(t′ ) (5) 

Then, the relaxation function, R(t,t′ ), is the product of two functions: 
the function ν(t′ ) depending on the concrete age at the time of loading t′ , 
and the function Ψ(t − t′ ) depending on load duration, t − t′ : 

R(t, t′ ) =Ψ(t − t
′

)ν(t′ ) (6) 

Adopting a Dirichlet series expansion for the micro-relaxation 
function Ψ(t − t′ ) [27]: 

Ψ(t − t′ ) =E⋅e− (t− t′ )/τ (7) 

Eq. (5) can be rewritten in differential form as: 

σ̇(t) + σ(t)
τ = E⋅ν(t)⋅ε̇(t) (8) 

corresponding to the differential equation governing a Maxwell unit 
with ageing modulus E(t) = ν(t)⋅E and constant dashpot viscosity η =

τE, where τ is the characteristic relaxation time. 
Bazant and Prasannan [23,24] proposed a more general solidifica-

tion theory based on n different solidification processes characterized by 
different volume increments dνμ(t

′

) (μ = 1,…,n). Under this assumption 
the following system of first-order differential equations is obtained: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ(t) =
∑n

μ=1
σμ(t)

σ̇μ(t) +
σμ(t)

τμ
= Eμ⋅νμ(t)⋅ε̇(t) μ = 1,…, n

(9) 

corresponding to and ageing Maxwell chain of n units with n constant 
relaxation times τμ. For a general Maxwell chain the identification 
problem of a set of elastic ageing moduli Eμ(t) = Eμνμ(t) is ill conditioned 
[23,24], because of the high deviation and the very short observation 
time of experimental data normally available. Therefore, it is preferable 
to adopt at most two different solidification functions: ν1(t) and νn(t). 
The former describes the ageing of the first n – 1 Mx units and the latter 
modulates the last unit. 

In the present model the last unit is a degenerated unit consisting of 
an elastic spring of modulus νn(t)En in order to ensure an asymptotic 
creep strain. 

Starting from Eq. (9) the stress rate can be expressed in the following 
form: 
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σ̇(t)=
∑n

μ=1
σ̇μ(t) =

∑n

μ=1
Eμ ⋅ νμ(t)⋅

[

ε̇(t) − σμ(t)
Eμ⋅νμ(t)⋅τμ

]

(10) 

It is worthy noticed that, being based on an incremental formulation, 
the solidification theory does not require storage of the whole stress 
history. 

2.2. Incremental formulation of the creep model 

As previously discussed, a rate-type formulation of the creep problem 
is convenient because it does not require the solution of a convolution 
problem. In the present study a modified version of the exponential al-
gorithm, originally proposed by Zienkiewicz and Watson [28], and 
Bažant and Wu [29], and already presented in Mazzotti and Savoia [10], 
is adopted. 

This model admits time steps of variable amplitude without nu-
merical stability problems [10], because it is based on the integration of 
Eq. (10) over the time step, under particular assumptions. The key idea 
of the exponential algorithm is to integrate the differential Eq. (10) 
exactly, under the assumption that quantities independent form the 
stress are constant over the time step. In particular, the interval of time 
under consideration is divided into N time intervals Δtr = tr − tr− 1 (r =

1,…,N). 
Multiplying Eq. (9) by the integration function: 

fμ(t)= e
∫ t

tr − 1
dt
′

τμ (11) 

it is possible to write: 

∂
∂t
[
σμ(t)efμ(t)

]
=Eμνμ(t)ε̇(t)fμ(t) (12) 

Integrating Eq. (12) over the general time step, the following 
expression is obtained: 

σμ(tr)= e− fμ(tr)
[

σμ,r− 1 +

∫ tr

tr− 1

Eμνμ(t
′

)e− fμ(tr)dε(t′ )
]

(13)  

where σμ,r− 1 indicates the value of the state variable at the step r-1. The 
parameters at the right member of Eq. (13) can be assumed constant 
either when the time steps are sufficiently small or when there are small 
variations of the ageing functions νμ(t). In this case, setting t = tr, the 
following relationship is obtained: 

σμ,r(t)= σμ,r− 1e−
Δtr
τμ + Eμνμ,r− 1/2⋅λμ,rΔεr (14)  

where: 

λμ,r =

⎛

⎝1 − e− Δt
t

⎞

⎠ τμ

Δtr
(15) 

and 

νμ,r− 1/2 =
1
2
(
νμ,r− 1 + νμ,r

)
(16) 

Combining Eq. (14) and Eq. (9) it is finally possible to derive an 
incremental pseudo-elastic formulation: 

Δεr =
1

E′′
r

Δσr + Δε′′r (17)  

where 

E′′
r =

∑N

μ=1
λμ,r⋅Eμ⋅νμ,r− 1/2 (18) 

and 

Δε′′r =
1

E′′
r

∑N

μ=1

⎛

⎜
⎝1 − e−

Δtr
τμ

⎞

⎟
⎠σμ,r− 1 (19) 

This formulation, allowing the usage of variable time steps, is 
computationally efficient and preserves accuracy and stability. Further 
details are available in Mazzotti and Savoia [10]. 

2.3. Cross-section fibre model 

The viscoelastic model of concrete described in the previous Section 
has been implemented in a cross-section fibre model for RC members. 
For given axial loads and bending moments applied to the cross-section 
at a given time, the stress-strain distributions in the concrete and in the 
rebar are obtained by the two-step iterative procedure described in the 
following. 

The cross section is first divided into a number of layers, named fi-
bres (see Fig. 1). The assumption of plain strain profile is also intro-
duced. For a prescribed value of curvature, an initial trial position of 
neutral axis is set; accordingly, a strain profile is assumed. For each fibre, 
using the proper constitutive relationships, the stresses are calculated. 
The internal resultant axial force, N, is then compared with the external 
applied load; if the equilibrium condition is not fulfilled, a new neutral 
axis position will be chosen maintaining the same curvature Φ = 1/ρ, 
where ρ is the radius of curvature. The iterative procedure stops when 
the internal axial force equals the external axial force. 

The value of bending moment can now be evaluated from the stress 
distribution over the cross section and compared with the corresponding 
prescribed external bending moment. If the difference between the two 
values exceeds a given tolerance, the curvature is increased and the 
whole procedure starts again. According to this procedure when a 
constant external bending moment is applied, the curvature increases 
over time because of the viscosity term in Equation (8). In the end, the 
two-steps iterative procedure leads to the curvature evolution with time 
given a general history of external bending moment and axial force 
applied to the general cross-section. 

2.4. Effect of shrinkage 

Concrete not only exhibits long-term deformations due to loads 
(creep strain), but also shows load-independent deformations over time 
(shrinkage strains). This second contribution has been also introduced 
into the material model described in Section 2.1 by adding the corre-
sponding shrinkage strain rate, ε̇s, to Eq. (2): 

ε̇= ε̇el + ε̇v + ε̇s (20) 

In real applications, the percentage of shrinkage strain occurring 
before the beginning of the long-term tests produces self-balanced in-
ternal stresses inside the general cross-section since the steel rebars are 
perfectly bonded to the concrete and they can be considered as made of a 
perfectly elastic material (at least under serviceability conditions). This 
self-equilibrated stress distribution over the cross-section may reduce 
the external bending moment required to produce cracking, and there-
fore must be taken into account in the numerical model. To do so, the 
procedure proposed by Ghali and Favre [4] was used in the present 
work. In particular, the bending moment increment due to this early 
shrinkage was estimated as 

ΔMsh = εsh⋅B⋅
Ec

1 + χφ
(21)  

where εsh is the shrinkage strain occurred before the beginning of the 
tests, B is the section modulus of the steel bars only, Ec is the concrete 
elastic modulus, χ is the ageing coefficient and φ is the creep coefficient. 

Finally, it is worth noticing that shrinkage in the early days also af-
fects the tension stiffening model, in fact it shifts the moment curvature 
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diagram by ΔΦcs = 1/ρ2,sh which can be evaluated as [30]: 

1
ρ2,sh

= kcs2
|εsh|

d
(22)  

where d is the cross section effective depth, and kcs2 is a function of the 
reinforcement ratio and of the ratio of the steel elastic modulus over the 
concrete modulus. These specific effects of early shrinkage will be 
applied later to the case studies. The shrinkage gradient between the 
core and the surface of cross sections was not considered, as in typical 
design approaches. 

2.5. Tension stiffening 

Moving from the cross-section to the entire element, cracking has to 
be taken into account. In this perspective, the local curvature value has 
been modified in order to introduce the tension stiffening effect and thus 
becoming a mean curvature value. This effect has been considered in the 
numerical model according to the formulation proposed by the Model 
Code 2010 [3]. In particular, the average curvature of a cross section can 
be evaluated as: 

Φm = γ ⋅ Φuc + (1 − γ)Φc (23)  

where Φuc and Φc are the un-cracked and fully cracked curvatures, 
respectively. The coefficient γ is defined as: 

γ =
(

Mcr

M

)α

(24)  

where Mcr is the cracking bending moment, M is the applied bending 
moment, and α is a parameter that is assumed equal to 2 in the present 
paper [3]. 

When considering beams cast in different phases, it is important to 
notice that the cracking bending moment changes from phase-1 to 
phase-2, because of the cross-section enlargement. Therefore, the cross 
section may crack in phase-1 and remain cracked even if the bending 
moment in phase-2 is smaller than the corresponding cracking bending 
moment. For this reason, the simple model in Eq. (23) has been modified 
considering incremental approach for the behaviour in phase-2: 
⎧
⎨

⎩

Φm(ti) = Φuc(ti)γ1 + Φc(ti)(1 − γ1)  in  phase  1
Φm(ti) = Φm(ti− 1) + [Φuc(ti) − Φuc(ti− 1)]γ2+

+[Φc(ti) − Φc(ti− 1)](1 − γ2)  in  phase  2
 (25)  

where γ1 and γ2 indicate the values of the tension stiffening coefficient in 
phase-1 and phase-2, respectively. A different cracking moment was 
used for the calculation of γ1 and γ2, i.e. the cracking moment for the 
phase-1 cross section in the first case and the cracking moment for the 
phase-2 cross section in the second. 

Once the curvature diagram is defined, the deflection at mid-span 
can be computed using the general formula: 

δ=
∫ l/2

0
Φ(x)⋅x⋅dx (26)  

where x indicates the distance from one of the supports and l the total 
length of the beam. In the present study the mid-point integration rule 
was used to solve Eq. (26). In particular the beam was divided into an 
even number, Ns, of segments and for each of them the average curva-
ture was computed considering the tension stiffening model in Eq. (25). 
Taking advantage of the symmetry of the problem, the mid-span 
deflection at time ti was computed as: 

δ(ti)=
∑Ns/2

j=1
Φj

m(ti)Δz2
j (27)  

where Φj
m(ti) andΔzj are the average curvature and the length of the 

segment j, respectively. This procedure can be used only when dealing 
with statically determined structural elements. The definition of the 
deflection of statically redundant cracked elements under long-term 
loads is out of the scope of the present paper. 

3. The experimental campaign 

3.1. Overview 

3.2. The beams tested 
Both beams tested were 9350 mm long, but had different cross sec-

tions (Fig. 2 and Fig. 3). The first beam, beam-1 in the following, had an 
overall 800 × 750 mm (width x height) cross section while the second 
beam, beam-2 in the following, had an overall 800 × 650 (width x 
height) mm cross section (Fig. 3). In particular, the cross sections of 
beam-1 at mid-span and at the supports are reported in Fig. 3a. In Phase 
1, the precast concrete cross-section is 550 mm deep, whereas after the 
in situ cast the depth increases to 750 mm. In the two end portions of the 
beam the precast cross-section is hollow, in order to allow the placing of 
the steel rebars necessary to resist the hogging bending moment and to 
allow a more effective detailing of beam–column nodes in multi–storey 
structures. The cross-sections of the Beam-2 are reported in Fig. 3d–f. Its 
general their features are similar to Beam-1, the main differences being 
the cross section depth and the number of steel bars. The cross-section 
sizes of the two beams considered are among the most widely used in 
the construction system considered. The longitudinal arrangement of 
the steel reinforcement for the two beams is reported in Fig. 2, with a 
simplified indication also of the positions of instruments. Fig. 3 shows 
with more detail the transverse steel reinforcement which is composed 
by a truss system with vertical and inclined bars in the central portion of 
the beam and by stirrups in the lateral portions. The difference between 
beams being the overall height and the position of some instruments. 

3.3. Experimental set-up 
The beams were loaded using a four-point scheme, by means of two 

hydraulic jacks that were supported by two reaction frames connected to 

Fig. 1. Fibre-based model adopted in the present paper.  
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Fig. 2. Longitudinal sections of beam-1 (a) and beam-2 (b) showing the layout of the rebars and the positions of the LVDT and strain gages (SG) used in the present 
work as reference for the numerical model. The pre-fabricated parts of the beam are in dark grey and the cast-in-place parts in light grey. Length units are mm. 

Fig. 3. Cross-sections of beam-1 (a, b, c) and beam-2 (d, e, f). Figures (a) and (d) illustrate the longitudinal reinforcement in the central portion of the beam. 
Figures (b) and (e) illustrate the pre-fabricated (dark grey) and the cast-in-place (light grey) parts in the central portion of the beams (cross-section B-B in Fig. 2) 
while Figures (c) and (f) illustrate the pre-fabricated (dark grey) and the cast-in-place (light grey) parts at the supports (cross-section A-A in Fig. 2). Length units 
are mm. 

Fig. 4. Beam-2 during the failure test.  
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the strong floor of the laboratory (see Fig. 4). A specific hydraulic system 
was used able to keep the load level constant with time; tests were 
performed under load control. 

Fig. 2 shows some of the sensors adopted during the long-term tests, 
i.e. only those used in the present paper as reference for the numerical 
model. Two horizontal LVDTs were placed, on each cross-section, at the 
upper and lower faces of the beam; the horizontal distance between the 
centres of the two LVDTs is 50 cm. The LVDTs on the upper face of the 
precast beams (LVDT-3,4 in Fig. 2) were removed before casting of 
phase 2 and subsequently moved on the new upper face, after the 
hardening of the new cast in-situ concrete (LVDT-3′,4’ in Fig. 2). Five 
LVDTs in the vertical direction –not indicated in the figures– were 
placed along the beam to measure deflections of the bearing supports, of 
loading points and at mid-span. Strain gages were glued to the steel bars 
in the tensile and compression zone. 

3.4. Loading protocol 
In order to reproduce the construction phases of the beams, loads 

were applied and maintained constant during various time intervals. 
Fig. 5a shows the sequence of the loading steps for the beam-1. Force P is 
intended as the one applied by each hydraulic jack. 

The precast part of beam-1 was transported to the Structural Testing 
Laboratory 19 days after casting, lifted-up and placed in the testing 
configuration. At this stage the only load on the beam was its own self- 

weight (not included in Fig. 5a); during this procedure the strains were 
monitored. The stresses due to self-weight were small (M = 110 kNm at 
mid-span), and no cracks in the beam were visible. The corresponding 
strains were about 50 με in the concrete in compression and 40 με in the 
tensile steel bars. This loading phase is not reported in the diagrams 
showed in the following sections. Subsequently, a force increment ΔP =
127 kN was applied by using the hydraulic jacks in order to obtain a 
bending moment at mid-span corresponding to the one theoretically 
produced by the weight of all the precast slab elements, which are 
simply supported by the beam. Due to some technical reasons, in this 
first phase the weight of the concrete cast to complete the slabs in the 
prefabrication system under consideration was also applied, even if 
theoretically this is not completely consistent with real construction 
process. In fact, only after further 7 days the beam was completed with 
the in-situ cast. Therefore, the load increment indicated in Fig. 5a at day 
26 refers only to the force equivalent to the weight of the real cast in 
place concrete used to complete the beam, that would produce the same 
bending moment at mid-span. After 27 days under these loads a further 
load increment (phase-2 load), ΔP = 50 kN, was applied, corresponding 
to the effect of all permanent loads and of a fraction (30%) of the var-
iable loads. This level of loading corresponds to the quasi-permanent 
load combination. After further 17 days under constant load, the beam 
was loaded up to failure. 

The loading protocol for the beam-2 was similar but not identical, 
and is depicted in Fig. 5b. In this case, the test started 51 days after the 
cast of the precast part of the beam. The phase 1 load, 69.0 kN, corre-
sponds to the weight of all the precast slab elements. The force was 
increased to 94.6 kN 19 days after the beginning of the tests, in order to 
simulate the weight of the cast-in-place concrete –used to complete the 
slabs. The phase-2 increment, ΔP = 55.9 kN, was applied 34 days after 
the beginning of the test and kept constant for 23 days. Finally, 57 days 
after the beginning of the test the beam-2 was loaded up to failure. 

The load values adopted were derived from case study structures, 
used as multi-storey car-parking. In fact, these latter are a kind of 
structure in which the building technology under investigation is most 
commonly used. 

3.5. Material properties 

3.5.1. Short-term properties. Table 1 shows the mix design of the con-
cretes used to build the precast beams (Phase-1) and the completion of 
the cross-section (Phase-2). Values of strength and elastic modulus ob-
tained for the two concretes are reported, as a function of the number of 
days from casting, in Table 2 and Table 3 for beam-1 and beam-2, 
respectively. Concerning cast in place concrete for beam-1 34 days are 
the age at the time of phase-2 loading, while 51 represent that at the 
time of the failure test. As for beam-2 3 days are earliest age at which the 
cast in place concrete could be tested, while 38 days are its age at the 
time of the failure test. The strength and stiffness characteristics were 
obtained from compression tests at different times on cylindrical spec-
imens obtained from the same concrete batches used to realize each 

Fig. 5. Loading protocol for beam-1(a) and beam-2 (b). The origin of the time 
axis corresponds to the cast of the prefabricated portion of the beams. 

Table 1 
Concrete admixtures used for the two beams.  

Component Unit Phase-1 concrete Phase-2 concrete 

Beam-1 Beam-2 Beam-1 Beam-2 

Cement 52.5 R kg/m3 380 377 -  
Cement 32.5 kg/m3 - - 405 391 
Filler Plastofill HSC kg/m3 19.5 3 -  
Sand (fine) kg/m3 933 864 845 135 
Sand (gross) kg/m3 -   569 
Gravel 6–12 mm kg/m3 910 898 - - 
Gravel 5–15 mm kg/m3 -  925 627 
Gravel 12–20 mm kg/m3 -   450 
Water l/m3 150 177 195 199 
Superplasticizer l/m3 2.8 3.01 4.13 4.59  
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beam tested. The tests have been conducted at the times of application of 
the loads to the beam or at the time of realization of the completion cast 
of the beams. The mean yielding stress of the steel bars, obtained from 
tensile tests on samples extracted from the rebars, is fym = 490 MPa. The 
rebars used in the two beams were from the same batch therefore no 
significant differences were observed in their yielding strengths. 

3.5.2. Long-term properties. Cylindrical specimens were used to mea-
sure the shrinkage and creep strains of the considered concretes. The 
creep tests started at the same time of loading of the beams. A loading 
protocol as similar as possible to that of the concretes in the compression 
zone of the beams was adopted. Fig. 6a shows the instantaneous creep 
(C) and shrinkage (S) strains development over time for the concretes 
used for the beam-1. The shrinkage strain measurement on the precast 
concrete started at the same time of first loading while on the cast-in- 
place concrete shrinkage strains were measured starting from 5 days 
after casting; in this way, the first part of the shrinkage (from hardening 
to 5 days) was not measured. As for the creep behaviour, on the precast 
concrete (I) an initial stress equal to 12.9 MPa was applied 19 days after 
casting and was increased to 14.5 MPa after 33 days. For the cast-in- 
place concrete (II), the initial applied stress was 3.2 MPa and the test 
started 33 days after the first loading. The delay between the real casting 
of the concrete and the starting of the creep test was due to technical 
problems but did not affected (as will be described in the following) the 
validity of the test. Fig. 6b shows the delayed deformations measured on 
the cylindrical specimens cast using the concretes used form the beam-2. 
In this case a stress equal to 6.9 MPa was applied 51 days after casting 
and increased by 4.0 MPa after 19 days in order to simulate the effect of 
the weight of the cast-in-place concrete. The stress was increased by 2.3 
MPa after further 15 days to simulate the phase-2 loads. The test of the 
cast-in-place concrete started with a stress equal to 3.5 MPa which was 
applied three days after casting and was increased by 2.6 MPa after 12 
days to simulate the effect of phase-2 loads. 

3.6. Test results 
The following sections will describe the behaviour of the two beams 

tested. Corresponding results will be presented independently because 
dimensions of the beams cross-sections and applied forces are different 
and therefore a direct comparison would not be meaningful. Not all the 
available results will be presented here, but only those that will be 
compared with the predictions coming from the described numerical 
model in the next Section. 

3.6.1. Beam-1. This Section describes the instantaneous and long-term 
behaviour of beam-1 in terms of force – mid-span deflections. Further 
details on the delayed strains of concrete and steel rebars measured 
during the test are available elsewhere [21]. 

Fig. 7 shows the applied force P versus the mid–span deflection and 
the evolution over time of the mid–span deflection, respectively. In 

particular, from Fig. 7a the applied loading sequence can be observed 
until final failure, performed at the end of the long-term loading. In this 
figure, horizontal lines indicate deflection increases under constant 
loads. In the first part of the curve the tension–stiffening effect may also 
be noticed. The stiffness increase for P > 127 kN is due to the completion 
of the beam with the cast–in place concrete. 

Approaching failure, the last part of the curve, a non–linear behav-
iour can be noticed. The tensile rebars yielded at about 600 kN and the 
post yielding branch of the curve led to the concrete compression failure 
that was observed for P = 640 kN. 

The evolution of the deflection with time, reported in Fig. 7b, shows 
the behaviour of the beam under serviceability conditions (see Fig. 5a 
for the loading protocol). It is worth noticing that at the early stages after 
casting of the cast–in situ concrete, an increase of the delayed deflection 
rate was observed, due to the increase of load without a corresponding 
increase of mechanical properties (concrete very young). Subsequently, 
when the concrete gained mechanical strength and stiffness and the 
beam cross section progressively reached its final configuration, the 
deflection rate became steady. 

3.6.2. Beam-2. Fig. 8a–b shows the applied force P versus the mid–span 
deflection and the evolution with time of the mid–span deflection, 
respectively. Similarly to what discussed for beam-1, the long-terms test 
was carried out by applying the loading increments indicated in Fig. 5b, 
and was completed by loading until failure. 

Table 2 
Mechanical properties of the concretes of beam-1 at different ages.   

Unit Concrete for prefabrication Cast-in-place concrete 

Age Days 19 53 70 34 51 
fcm MPa 51 58 59 30 32 
E MPa 36022 - 39017 26545 26029  

Table 3 
Mechanical properties of the concretes of beam-2 at different ages.   

Unit Concrete for prefabrication Cast-in-place concrete 

Age Days 51 70 108 3 38 
fcm MPa 66 67 68 14 25 
E MPa 32600 34016 38012 17520 24250  

Fig. 6. Shrinkage (S) and compression creep strains (C) measured on the cy-
lindrical specimens of the concretes used for the prefabrication (I) and the cast- 
in-place (II) of beam-1 (a) and beam-2 (b). 
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In particular, from Fig. 8a the stiffness increase due to the ageing of 
the cast-in-place concrete is clearly visible. The first cracks opened 
during the application of the phase-1 load. During the failure test the 
tensile rebar yielded at about 740 kN and the beam showed a limited 
hardening behaviour. Failure (760 kN), as previous case, was due to 
concrete crushing. 

Fig. 8b shows that delayed deflection rate after each load increment 
decreases due to both the concrete ageing and the cross-section 
completion. 

4. Calibration of the rheological models 

This section describes the calibration process of the rheological 
models, introduced in Section 2.2, that were used in order to simulate 
the long-term experimental behaviour of the concrete of the beams. 

4.1. Shrinkage 

The shrinkage of the concretes used in the tests was described using a 
model similar to the one proposed by Model Code 2010 [3]: 

εs(t)=C0

(
t

C1 + t

)C2

(28)  

whose unknown regression parameters, C0, C1, and C2, were determined 

by least square regression starting from the shrinkage strains measured 
from the cylindrical specimens described in Section 3.5.2. 

4.2. Relaxation functions 

The model described in Section 2.2 requires the definition of the 
micro relaxation functions Ψμ for the concretes adopted and therefore 
the definition of the pseudo elastic parameters Eμ, τμ, and of the ageing 
functions νμ. The strain measured on the cylindrical specimens tested for 
compression creep and described in Section 3.5.2 were used to this 
purpose. It is worth noticing that the creep tests were characterized by 
some discrete stress increments, in order to investigate the ageing effects 
also. In fact, since the stress increments were applied at different times, 
it is possible to derive from a single test multiple creep curves, after 
isolating the deformations produced by each stress increment. Calibra-
tion of the ageing functions, together with the pseudo elastic co-
efficients, becomes straightforward. 

4.2.1. Definition of the creep curves for each stress increment 
Using the creep curves from the cylindrical specimens the de-

formations related to the different stress increments were determined as 
described in the following. Starting from the initial stress application, 
the first branch of the creep curve (up to the following stress increment) 
was interpolated using the function: 

Fig. 7. Beam-1: load-deflection curve (a) and development over time of the 
deflection (b). Fig. 8. Beam-2: load-deflection curve (a) and development over time of the 

deflection (b). 
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ε(t) = ε0 +
∑7

i=1
Ai

(

1 − e
− t
τi

)

(29)  

in which ε0 and Ai are unknown regression coefficients and τ =

[0.001 0.01 0.1 1 10 100 1000], in days. The curve described 
by Eq. (29) provides a good description of typical creep (see Section 
3.5.2). Once calibrated, Eq. (29) was extrapolated and subtracted from 
the following branch of the creep curve, in order to isolate contributions 
of the subsequent stress increment. The procedure was repeated for all 
the stress increments. As an example, the results of the method are 
illustrated in Fig. 9, with reference to the creep curves coming from the 
concrete used in the prefabricated part of beam-2. 

4.2.2. Definition of the relaxation curves 
In order to define the governing parameters of Eq. (9), the most 

simple way is to consider multiple relaxation problems triggered by unit 
deformation imposed at different times: 

σ(t, t0)= ε(t, t0)R(t, t0) (30) 

In fact, the Maxwell chain described by Eq. (9), has a closed form 
solution for the relaxation problem which has the form: 

R(t, t0)=
∑N

μ=1
νμ(t0)Eμe−

(t− t0)
τμ (31) 

This result can be conveniently adopted in order to estimate the 
pseudo elastic coefficients Eμ starting form experimental data, as 
described in the following. 

The reference relaxation functions, R (t, t0i), were defined starting 
from the individual experimental creep function using the Volterra-type 
relationship between compliance functions J and relaxation functions R 
[33]: 

1=R(t0, t0)J(t, t0) −

∫ t

t0
J(t, τ)dR(τ, t0) (32) 

Starting from the experimental compliance functions, J(t, t0) = 1+
φ(t, t0), based upon the creep coefficient φ(t, t0) computed form creep 
strains defined in the previous section, Eq. (32) was numerically solved. 
The so obtained relaxation functions where then interpolated using a 
model defined as in Eq. (31), setting N = 7 and τμ =

[0.001 0.01 0.1 1 10 100 1000000 ], in days. It is worth 
noticing that, in this case E7, being associated to τμ = 1000000, repre-
sents a degenerated Maxwell unit and therefore it is the elastic modulus 

for t→∞. The interpolation of the relaxation curves is very complex, in 
fact the variability of the estimates of the parameters is extremely high 
because of the limited amount of experimental data. In particular, the 
number of relaxation curves for different loading ages is small and 
therefore the ageing parameters are extremely uncertain. For this reason 
only one ageing function, ν(t0) was used in the interpolation process. It 
was defined according to the literature as [33]: 

ν(t0)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
es1(1− (28/t0)s2 )

√
(33) 

in which s1 and s2 are unknown regression parameters. 
The values of the pseudo elastic coefficients obtained from the pro-

cedure described above were validated by simulating the compression 
creep tests on the cylindrical specimens. The model described in Section 
2 was used considering a single fibre, describing the behaviour of the 
cylindrical specimen. Fig. 10 shows a comparison, for concretes of beam 
2, between the experimental and the numerical results which confirms 
the accuracy of the calibration procedure and of the model. 

5. Simulation of the experimental results 

This section presents a comparison between the results of the nu-
merical model and the test data. Only the behaviour of the beams under 
serviceability loads will be considered – i.e., excluding the failure test – 
because the prediction of the beams ultimate bearing loads has already 
been discussed in Ref. [21] and is out of the capability of the present 
linear model. 

It is worth noticing that the self-weight of the pre-fabricated part of 
the beam was taken into account in the numerical simulations, in fact 
this load is not included in the force P reported in Figs. 7 and 8. 
Therefore, the experimental results were modified in order to take into 
account the bending moment and the deflection at mid-span produced 
by the self-weight by considering the uncracked flexural stiffness of the 
prefabricated part of the beam only. 

Table 4 and Table 5 report the values used for the parameters in Eq. 
(21) and Eq. (22) Those parameters were defined according to the 
guidelines provided by CEB Bulletin 158-E [30]. 

The general cross-section was divided in 150 concrete fibres and one 
single fibre was considered for each specific layer of rebars. Each fibre 
was characterized by the corresponding constitutive law, as described in 
the previous sections. 

Fig. 9. Interpolation of the experimental creep curves, in order to estimate the 
creep related to the loads at different ages, for the cylindrical specimens related 
to the concrete used for the prefabricated part of beam-2. 

Fig. 10. Comparison of the creep curves predicted by the rheological model 
with those measured on the cylindrical specimens related to the concretes used 
for beam-2. 
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5.1. Moment-curvature diagrams 

The models described in Section 2 were used in order to simulate the 
moment-curvature diagrams of the general cross section in the un- 
cracked and fully-cracked states. At the same time, the experimentally 
derived moment-curvature curve was computed form the experimental 
data. In particular the curvatures were calculated using the horizontal 
LVDTs at the top and at the bottom of the mid-span cross section of the 
beam (LVDT-1,2 and LVDT-3,4 in Fig. 2). 

5.1.1. Comparison with the experimental results 
Fig. 11a, shows the numerical moment-curvature diagrams related to 

the un-cracked (UC), fully-cracked (C) cross sections and to the adopted 
tension stiffening model (TS) for beam-1, together with the experimental 
curve. The model is able to simulate with very good accuracy the initial 
un-cracked behaviour and the onset of cracking but it shows a lower 
accuracy between 250 kNm and 400 kNm, due to the shape of the ten-
sion stiffening curve. The accuracy of the model increases at the end on 
the phase-1 loading and during the long-term loading phase. In the 
phase-2 loading, the model tends to overestimate the curvature. In fact, 
in phase 2 the model predicts a slightly smaller stiffness that the one 
computed from the experimental results. Fig. 11b shows the time 
development of the numerical and experimental curvatures. During time 
also, the accuracy of the prediction is satisfactory, even though some 
differences can be found mainly due to the instantaneous behaviour. 

In Fig. 12a, the comparison between experimental and numerical 
moment curvature diagrams from beam-2 is reported. In this case the 
model provides for results in very good agreement with the experi-
mental data, across all the different stages of the tests. The time devel-
opment of the curvature, plotted in Fig. 12b, is also accurately predicted 
by the numerical model. The reduced accuracy observed in predicting 
the moment-curvature diagram for beam-1 (Fig. 11a) is most likely 
related to the tension stiffening model adopted and to an inaccurate 
estimation of the tensile strength of concrete over the cross section. In 
fact, even if the cracking moment is correctly evaluated, right after 
cracking the numerical moment curvature curve has a more relevant 
stiffness reduction than the experimental curve, then for a curvature of 
2 × 10− 6 1/mm the two curves are consistent, because the beam is fully 
cracked. Later, after the application of the last load increment the model 
predicts a stiffness close to the state-2 value, while the experimental 
curve more similar to the state-1 behaviour. 

5.2. Beams deflection 

In order to evaluate the long-term load-deflection curve of the 
considered beams, they were divided into 30 segments at the ends of 
which curvatures, rotations, and deflections where computed by 

integrating the curvature diagram with the mid-point rule, starting from 
the supports. The tension shift effect due to concrete cracking was also 
included in the simulations for all the cracked segments of the beams. 
Only the results of the tension stiffening model will be reported in this 
section. 

Fig. 13a shows a comparison between the experimental and the 
numerical moment vs. mid-span deflection diagrams for beam-1. The 
model accurately predicts the experimental results at the beginning and 
at the end of the test but shows a reduced accuracy during the devel-
opment of the cracking phase; this is due to the strongly non-linear shape 
of the tension stiffening effect, which cannot be properly followed by the 
equation adopted in the model. The time development of the mid-span 
deflection is plotted in Fig. 13b. The model provides a very good pre-
diction of the last part of the test while exhibits a reduced accuracy in the 
prediction of the early stage of the test. In particular, the largest 
discrepancy between the two curves can be found after about 26 days 
since the beginning of the test, the date at which the cast-in-place con-
crete was cast. Therefore, the lack of accuracy in the prediction most 
probably arose from the difficulties in modelling the behaviour of the 
cast-in-place concrete during the first hours/days after casting. 

Fig. 14a shows the moment vs. mid span deflection and the mid-span 
vs. time diagrams for beam-2. In this case the model provides results in 

Table 4 
Parameters used for estimating the bending moment produced by the shrinkage 
of the prefabricate part of the beam before the beginning of the 4-point bending 
test.   

B [mm3] Ec [MPa] εsh [με] Φ [− ] χ [− ] 

Beam-1 0.99 × 106 37520 550 2.5 0.8 
Beam-2 1.5 × 106 34016 450 2.5 0.8  

Table 5 
Parameters used for estimating the curvature increase in the cracked 
cross section due to the shrinkage deformations developed before the 
beginning of the 4-point bending test.   

εsh 

με 
kcs2 

Beam-1 450 0.72 
Beam-2 550 0.81  

Fig. 11. Beam-1. Comparison between the experimental results, in terms of 
moment-curvature diagrams, and the results of the numerical simulations for 
the uncracked (UC) cross section, the fully-cracked cross section (C) and the 
tension stiffening model (TS). 

C. Mazzotti and N. Buratti                                                                                                                                                                                                                   



Journal of Building Engineering 44 (2021) 103176

11

better agreement with the experimental data with respect to beam-1. In 
particular, as far as the moment-curvature diagram is concerned, the 
model shows a very good accuracy across all the different stages of the 
tests. As noticed for beam-1 the largest difference between the numerical 
and the experimental curves can be found in the second part of the 
phase-1 loading. 

The time development of the mid-span deflection, plotted in Fig. 14b, 
confirms the general effectiveness of the prediction of the model. 

5.3. Strains 

Being the model developed based on a fibre discretization of the 
cross section, it is very easy to analyse also the time development of the 
local strains. As an example, the present Section discusses the strain in 
the tensile rebar at the bottom of the mid-span cross section of the pre- 
fabricated part of the beam. During the experimental tests these strains 
were measured using the strain gages indicated in Fig. 2. 

Fig. 15 compares the strains predicted by the model for beam-1 (a) 
and beam-2 (b) with the experimental data. Only results of the tension- 
stiffening model are reported in the figures. The model shows good ac-
curacy also in this case, in particular regarding beam-1. So far as beam-2 
is concerned, the model tends to underestimated the experimental with 

errors as large as 50 με, which, to the authors, can be acceptable given 
the complexity of the problem under investigation and the local infor-
mation considered. 

6. Conclusions 

The present paper presented a design-oriented numerical model for 
the simulation of the long-term behaviour of reinforced concrete beams 
built in different phases. The rheological model adopted for concrete is 
based on a modified version of the solidification theory and takes into 
account concrete ageing, shrinkage and creep. This material model was 
implemented in a fibre based cross section model that allows defining 
cross sections built in different stages. The model also considers tension- 
stiffening effects in order to describe concrete cracking. 

In the present paper, the model was used in order to simulate the 
results of experimental tests performed on two RC beams built in two 
different stages. The parameters of the rheological model were cali-
brated using data form creep tests in compression. First the model was 
used in order to simulate the moment curvature relationship of the cross 
sections of the beams. The numerical simulations provided results in 
very good agreement with the experimental tests for one of the beams 
while for the other the accuracy was slightly lower, in particular in terms 
of prediction of the cracking moment and of the stiffness of the beam 
after the cast of cast in-place concrete. For both beams, the model 

Fig. 12. Beam-2. Comparison between the experimental results, in terms of 
moment-curvature diagrams, and the results of the numerical simulations for 
the uncracked (UC) cross section, the fully-cracked cross section (C) and the 
tension stiffening model (TS). 

Fig. 13. Comparison between the experimental and the numerical moment vs. 
mid-span deflection (a) and mid-span deflection vs. time (b) curves for Beam-1. 
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provided an accurate estimate of the ultimate moment. Moment- 
curvature diagrams were then obtained to simulate the mid-span 
deflection development over time, also in this case the accuracy of the 
model was very high for one of the beams and slightly lower for the 
other, with an over-estimation of the mid-span deflection in the first half 
of the test. This is clearly a consequence of the reduced accuracy in the 
prediction of the moment curvature diagram. Finally, the numerical 
model was used to simulate the strain evolution over time in the tension 
reinforcement at mid-span. Also in this case a good accuracy was 
observed, even if the model tends to slightly underestimate the strains. 

The model presented here can be effectively adopted to simulate the 
time-dependent behaviour of precast concrete beams completed with 
cast-in-place concrete. Further possible developments are related to the 
inclusion of thermal effects and of non-uniform shrinkage in the cross 
section. 
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