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Abstract. In this paper, we propose a complete framework, namely Mercury, that 

combines Computer Vision and Deep Learning algorithms to continuously mon-

itor the driver during the driving activity. The proposed solution complies to the 

requirements imposed by the challenging automotive context: the light invari-

ance, in order to have a system able to work regardless of the time of day and the 

weather conditions. Therefore, infrared-based images, i.e. depth maps (in which 

each pixel corresponds to the distance between the sensor and that point in the 

scene), have been exploited in conjunction with traditional intensity images. 

Second, the non-invasivity of the system is required, since driver’s movements 

must not be impeded during the driving activity: in this context, the use of cam-

eras and vision-based algorithms is one of the best solutions. Finally, real-time 

performance is needed since a monitoring system must immediately react as soon 

as a situation of potential danger is detected.  

 

Keywords: Driver Monitoring · Human-Car Interaction · Computer Vision · 

Deep Learning · Convolutional Neural Networks · Depth Maps 

1 Introduction 

 

The loss of vehicle control is a common problem, due to driving distractions, also 

linked to driver’s stress, fatigue and poor psycho-physical conditions. Indeed, humans 

are easily distractible, struggling to keep a constant concentration level and showing 

signs of drowsiness just after a few hours of driving [1].  

Furthermore, the future arrival of (semi-)autonomous driving cars and the necessary 

transition period, characterized by the coexistence of traditional and autonomous vehi-

cles, is going to increase the already-high interest about driver attention monitoring 

systems, since for legal, moral and ethical implications driver must be ready to take the 

control of the (semi-)autonomous car [2].  

Therefore, in this paper, a driver monitoring system, here referred as Mercury, based 

on Computer Vision and Deep Learning algorithms, is proposed.  

From a technical point of view, Mercury framework is composed of different stages.  



Given an input depth map, in the first step the head center is automatically detected, 

according to which a bounding box containing the driver’s head and a minor part of the 

background is extracted.  

Then, this crop is fed into a system that estimates the 3D pose of the head, in terms of 

yaw, pitch and roll angles. On the same head crop, a facial landmark localization algo-

rithm is applied, in order to identify the salient areas that belong to the face and are 

visible in both the depth and the intensity frame.  

We believe that head pose information could be useful in terms of driver monitoring, 

to understand where the driver is looking (e.g. inside or outside the car cabin) and for 

the infotainment systems, in order to make new systems for the Human-Car Interaction  

more intuitive and user-friendly and to improve the velocity of operations conducted by 

the driver inside the cockpit [3].  

Finally, driver’s eyes, detected through the facial landmark system mentioned above, 

are analyzed to estimate the level of driver drowsiness. Specifically, PERCLOS, a 

drowsiness detection measure, is exploited.  

2 Mercury 

The whole architecture of the system is represented in Figure 1. The system has been 

set up in a modular way, since it is able to work only with RGB data, depth data or both. 

The functions available for each type of data are different and are described in the fol-

lowing paragraphs.  

 

 

Fig. 1. Overall architecture of the proposed framework. Blue blocks represent algo-

rithms applied on RGB or gray-level frames, while in the green ones are reported the 

solutions for the depth maps. Finally, orange boxes represent the computed measures 

for the Driver Monitoring task. 

2.1 Acquisition Device 

The Microsoft Kinect One sensor has been exploited as acquisition device. Although 

more recent depth sensors are available on the market, with more suitable factor forms 

for the automotive field, this device has been preferred due to the availability and rela-

tive simplicity of the proprietary SDK that is compatible with the Python programming 



language1, as well as the simultaneous presence of an excellent color camera and a 

depth sensor with a good spatial resolution and a low noise level. Moreover, the mini-

mum range for data acquisition allows its use on the automotive context, since in our 

case the device is placed in front of the driver, near the car dashboard.  

In the following, technical specifications of the device are reported: 

• Full HD RGB camera: the spatial resolution is 1920 × 1080. The device 

is able to acquire up to 30 frame per second; 

• Depth sensor: the spatial resolution is 512 × 424. This sensor provides 

depth information as a two-dimensional array of pixels, namely depth map, 

similar to a gray-level image. Since each pixel represents the distance in 

millimeters from the camera, depth images are coded in 16 bits; 

• Infrared emitter: this device is based on the Time-of-Flight (ToF) technol-

ogy and its range starts from 0.5 up to 7 meters; 

• Microphone array: in this device is present an array of microphones. Audio 

data are sampled at 16 kHz and coded with 16 bits. It is used to pick up the 

voice commands, for the calibration of the peripheral and the suppression 

of white noise. Microphones are not used in this project. 

2.2 Head Extraction 

The first step of the framework is the automatic head extraction from the acquired 

frames. It is assumed that within the acquired scene there is no more than one person, 

i.e. the driver, sitting in front of the acquisition device, about 1 meter away. 

For the part of head detection on RGB frames, the well-known object detection 

framework of Viola & Jones [4] has been exploited: despite the presence of more recent 

deep learning-based algorithms, is still a valid choice for its effectiveness and good 

speed performance. Moreover, in this regard, we note that many car companies still use 

derivative versions of the algorithm in question.  

Head detection on depth maps is conducted through the Fully Convolutional Net-

work proposed in [5]: the limited depth of the network preserves and balances detection 

accuracy and speed performance. 

The output of RGB and depth head detection modules consists of the head crop, 

which is a bounding box containing the driver's face with minimal background portions. 

2.3 Head Pose Estimation 

The obtained head crop is used to produce three different inputs for the Head Pose 

Estimation module. The first input is represented by the raw depth map, while the sec-

ond is a Motion Image, obtained running the Optical Flow algorithm (Farneback im-

plementation) on a sequence of depth images. The third input is generated by a network 

called Face-from-Depth [6], that is able to reconstructs gray-level face images starting 

from the related depth images. All these three inputs are then processed by a regressive 

Convolutional Neural Network (CNN) [7] that finally outputs the value of the yaw, 

pitch and roll 3D angles expressed as continuous values. 

 
1 https://github.com/Kinect/PyKinect2 

https://github.com/Kinect/PyKinect2


2.4 Facial Landmark Estimation 

The goal of this module is a reliable estimation of the facial landmark coordinates, 

i.e. salient regions of the face, like eyes, eyebrows, mouth, nose and jawline. Due to the 

limited spatial resolution of available depth images, we focus on a selection of five 

facial landmarks: eye pupils, mouth corners and the nose tip.  Accordingly, the system 

outputs 10 image coordinates, i.e., the x and y values for each facial landmark.  

The core of the method is a CNN [8] that works in regression and receives a stream 

of depth images as input. The ground truth annotation of the landmark positions is re-

quired during the network training step and is used as a comparison during the test.  

The developed system has real-time performance and it is more reliable than state-

of- art competitors in presence of poor illumination and light changes, thanks to the use 

of depth images as input. The extraction of the facial landmarks allows obtaining the 

bounding box of the driver's right and left eye: these images are then analyzed by a 

CNN to determine if the eye is open or closed. 

2.5 Driver Monitoring 

The analysis of the attention and the level of fatigue of the driver is done through the 

indicator called PERCLOS (PERcentage of eyelid CLOSure), introduced in 1994 in [9]. 

This measure aims to express the percentage of time in a minute in which the eye re-

mains closed from 80% to 100%.  

In general, the computation of the PERCLOS measurement yields a numerical value 

that can be analyzed to determine the driver's fatigue level. Blinking beats, identifiable 

as almost instantaneous closures of the eye, are excluded in its computation, since only 

the prolonged and slow closures, usually called droops, are maintained. 

The level of driver attention is then classified through three thresholds: 

• Alert (PERCLOS < 0:3): good level of attention, optimal driver conditions; 

• Drowsy (0.3 < PERCLOS < 0.7): first signs of carelessness and fatigue, the 

driver is not in optimal conditions and that introduces some risks; 

• Unfocused (PERCLOS > 0.7): complete lack of attention of the driver who 

is in poor physical condition or is sleeping;  

3 Implementation 

In the following paragraphs, details about the hardware and the software implemen-

tation of Mercury are reported and discussed. 

3.1 Hardware Implementation 

The Mercury framework has been implemented and tested on a computer equipped 

with an Intel Core i7-7700K processor, 32 GB of RAM and a Nvidia 1080Ti GPU.  



The various components belonging to the deep learning tools have been implemented 

with the Keras2 framework with Tensorflow3 as backend.  

Finally, a graphic interface has been created through the Qt Libraries4 and it is detailed 

in the following paragraph. 

Being aware that the aforementioned hardware equipment is not suitable for the auto-

motive context, due to reasons related to the costs and power consumption, we have 

started to implement these systems on embedded boards. The Nvidia TX2 board has 

been chosen, since it is equipped with an embedded GPU suitable for deep learning-

based algorithms. 

3.2 Graphical User Interface 

The Graphical User Interface (GUI), shown in Figure 2, has been created using the 

Qt libraries 4 and Python programming language. It has been divided into four vertical 

sections: 1. Input Visualization, 2. Head Detection, 3. Head Pose Estimation and Facial 

Landmark Detection and 4. Driver Attention Analysis.  

From the left, the first part contains the RGB and depth frames captured by the Kinect 

One device, for visualization and debugging purposes. The side column is dedicated to 

display the output of the head detection modules. In particular, the localized bounding 

boxes are shown in green on the frames.  

The central part is dedicated to the driver's face analysis, and it is divided into several 

horizontal sections. Starting from the top, the head pose is displayed either through a 

3D cube or with bars, centered on the zero angle. The yaw angle is shown in blue, the 

roll angle in green and the pitch in red.  

Further down, the facial landmarks found on the RGB frame are shown through red 

dots. Thanks to these facial landmarks, the bounding boxes containing the right eye, the 

left eye, all displayed at the bottom, are extracted to compute the PERCLOS measure.  

At the extreme right, the information regarding the analysis of driver attention are 

reported. The PERCLOS measure is indicated by its percentage value and, according 

to the established thresholds, the term alert, drowsy or unfocused is highlighted.  The 

head pose is instead indicated with the representation of the possible positions of the 

gaze on a given object.  

An image of a generic car interior has been then used to graphically convey the concept 

of Human-Car Interaction, highlighting with the red color the object inside the passen-

ger compartment. Some common areas have been chosen as target for the interaction: 

the right, central and left rear mirrors, the area of the steering wheel, the gearbox and 

the part of the infotainment.  

Finally, in the bottom part of the GUI, the buttons that allow the user to select the 

stream of data on which the framework must work, i.e. RGB, depth or both streams, are 

placed. Moreover, the measure of the frame per second for each part of the system is 

shown. 

 

 
2 https://keras.io/ 
3 https://www.tensorflow.org/ 
4 https://www.qt.io/ 

https://keras.io/
https://www.tensorflow.org/
https://www.qt.io/


 

Fig. 2. The Graphical User Interface developed for the Mercury framework. 

4 Conclusions 

In this paper, Mercury, a framework for automatic Driver Monitoring, has been in-

troduced. Input data is represented by both RGB images and depth maps, in order to 

improve the light invariance of the system. Future work will include the implementation 

of the framework in real embedded boards, suitable for the automotive context. 
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