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Blind Wireless Network Topology Inference
Enrico Testi, Student Member, IEEE, and Andrea Giorgetti, Senior Member, IEEE

Abstract— This work proposes a framework to discover the
topology of a non-collaborative packet-based wireless network us-
ing radio-frequency (RF) sensors. The methodology developed is
blind, allowing topology sensing of a network whose key features
(i.e., number of nodes, physical layer signals, and medium access
control (MAC) and routing protocols) are unknown. Because
of the wireless medium, over-the-air signals captured by the
sensors are mixed; therefore, blind source separation (BSS) and
measurement association are used to separate traffic patterns.
Then, to infer the topology, we detect directed data flows among
nodes by identifying causal relationships between the separated
transmitted patterns. We propose causal inference methods such
as Granger causality (GC), transfer entropy (TE), and conditional
transfer entropy (CTE) that use the times series of traffic profiles,
and a solution based on a neural network (NN) that exploits
distilled time-based features. The framework is validated on an
ad-hoc wireless network accounting for MAC protocol, packet
collisions, nodes mobility, the spatial density of sensors, and
channel impairments, such as path-loss, shadowing, and noise.
Numerical results reveal that the proposed approach reaches a
high probability of link detection and a moderate false alarm
rate in mild shadowing regimes and low to moderate network
nodes mobility.

Index Terms—Topology inference, blind source separation, in-
dependent component analysis, link detection, Granger causality,
transfer entropy, neural network.

I. INTRODUCTION

The importance of networks is massively growing in
modern-day society thanks to unprecedented communi-

cation capabilities offered by technology. A group of users
in a social network, a sensor network deployed to collect
environmental data, or a tactical network aiming to exchange
information between soldiers, are only a few examples of
networks widely diffused today.

In this scenario of ultra-densely connected objects, topol-
ogy discovery is an essential aspect that can help predict
traffic flow, infer communications between nodes, estimate
the network connectivity, detect communities, help network
maintenance, and performs optimization and orchestration.
Moreover, in defense applications, understanding the struc-
ture of an adversary’s network may considerably help avoid
dangerous situations, make predictions, and design decision-
making strategies. Focusing on wireless networks, the rapidly
growing demand for radio services by billions of devices
makes the radio spectrum an increasingly valuable resource.
From this perspective, while the current cognitive radio (CR)
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paradigm is grounded on spectrum sensing, more in-depth
knowledge of how a network uses the wireless medium and,
thus, the structure of the network itself, may contribute to
the development of much effective spectrum sharing strategies
[1]–[5].

For this reason, there has been a rising interest in the
possibility of reconstructing a network’s structure from few
observed quantities at some nodes (or at the edges) with little,
if not zero, prior knowledge [6]–[9]. If the problem appears
rather complicated for a wired network, it can be even more
challenging in a wireless scenario because of interference,
path-loss, shadowing, fading, and the so-called hidden terminal
problem. While connectivity between the nodes could be
inferred based upon the distance between them, since many
nodes can be within the range of many others, inferring which
ones are communicating might better rely on their activity
patterns.

A. Existing works

There are different approaches and methodologies for net-
work topology inference proposed in the literature. Some of
them rely on access to the packet’s content, which is not
always feasible and may increment the network overhead
[6], [7]. In [10], a path inference approach that exploits
routing information within packets is proposed. Others fall
into the network tomography category, which requires access
to information at endpoints [8], [9]. For example, in [11], a
low-complexity inference algorithm based on the Kullback-
Leibler (KL) divergence that requires a link rate estimation is
developed. Without accessing the packet content, the solution
proposed in [12] exploits spectral coherence based on the
Lomb-Scargle periodogram as a measure of causality between
two signals. Such an approach relies upon the notion of
correlation, which, in principle, does not necessarily imply
causation. In [13], a Bayesian nonparametric model to learn
the topology of an unknown ad-hoc network is proposed; the
solution is based on Hidden Semi-Markov model (HSMM) for
segmenting nodes transmission activity.

A different research field that contributes to topology infer-
ence is represented by graph signal processing (GSP) applied
to networks. Graph learning as an edge subset selection
problem or a neighborhood-based sparse linear regression is
proposed in [14]. In [15], non-linear structural equation models
for detecting the topology of a graph from the observations
of a process propagating through it are investigated. In [16], a
novel method based on an elastic net solver [17], that performs
well even in scenarios where the data are highly correlated, is
presented. However, topology inference in GSP assumes that
the network is subject to a diffusion process, i.e., there is a
piece of information propagating among all the nodes.
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The task of network topology inference can be seen as
learning temporal causal structures among multiple time series.
This has roots in the causal inference problem described by
Pearl [18] and Granger [19]–[21]. In particular, the Granger
test based on a auto-regressive (AR) model introduced in [19]
has become the basis for the development of further causal
analysis and topology inference methods. An approach for
causal inference on networks involving a specific formulation
of Granger causality (GC), named asymmetric Granger causal-
ity (AGC), is exploited in [22], where the parametric tests are
carried out over groups of time series. Hawkes point processes
are a statistical tool to model causal relationships, and recently
their connection with GC has been investigated [23]. The
use of multivariate Hawkes processes for topology inference
through causal analysis between time series is exploited in
[24], [25]. Another well-known tool for causal inference is
based on the information-theoretic measure, named transfer
entropy (TE), proposed in [26]. In [27], the authors propose
a TE-based topology inference approach and evaluate its
robustness with respect to GC. To overcome some limits of TE,
[28] proposes causation entropy (CE), an approach for causal
inference on networks that is optimum under certain Marko-
vian assumptions. A non-parametric learning method related to
GC and TE that measure the impact of one node activity over
another is developed in [29]. An interesting feature of this
approach is that prior knowledge of the underlying network
protocol is not needed.

B. Our contribution

Previous contributions on wireless network topology infer-
ence assume that the temporal profiles of packets sent by
each node are perfectly known, which presumes the absence
of noise, interference, and channel impairments. In a realistic
scenario, this is possible only if sensors are in close proximity
to the nodes, which in turn require that every node is physically
accessible and that the number of sensors is the same as
the number of nodes. To overcome such limitations, in this
work, we propose a new framework for topology inference of
a non-collaborative wireless network where the observations
of over-the-air signals are carried out by sensors randomly
distributed in the network landscape, as depicted in Fig. 1.
The contributions of this work are the following.
• Assuming that most of the network’s features are un-

known (the number of nodes, their exact position, the
traffic type, the communication protocol), we aim to
learn as much information as possible about its structure
observing it from the outside. We estimate the number of
sources (network nodes) and separate the traffic patterns
at the sensors by combining techniques for blind source
separation (BSS) and a novel solution for the measure-
ment association.

• We propose a new approach for topology inference based
on machine learning (ML) and the extraction of time-
related features from the observed data, turning the prob-
lem of identifying causal relations to binary classification.
Such an approach applies to statistical time-division mul-
tiplexing (STDM) based networks, which encompasses a

variety of multiple access algorithms (e.g., CSMA/CA),
and appear to be lightweight than known methods, espe-
cially when considering networks with many nodes.

• Our analysis accounts for noise, propagation impairments
(i.e., path-loss and shadowing), and mobility of network
nodes. In particular, we investigate how shadowing affects
the quality of the reconstructed traffic patterns, hence the
accuracy of the topology discovered.

C. System architecture and applications

The proposed framework aims to infer the topology of a
non-collaborative network, either because it is competing for
the spectrum usage, or it is private, encrypted, and hence
cannot be accessed. Thus, the BSS and the topology inference
are performed from the outside. In particular, for the sake of
clarity, two specific application scenarios are the following:
• Defense: in this scenario, a network of radio-frequency

(RF) sensors can be deployed in an unknown environment
to detect and extract information about an adversarial
network’s structure. The sensors collect over-the-air re-
ceived power profiles and send them to a fusion center
(FC), which can be either one of the sensors or a specific
device. The FC performs the BSS and then infers the
topology of the adversarial network. Since the sensors
can continuously monitor the received power, if the time
spent to send the data to the FC is negligible, the topology
inference can be performed online.

• Spectrum awareness in CR: in this scenario, a primary
wireless network wishes to know if another network uses
the same spectrum (legitimately or not). In this case, the
wireless nodes schedule a periodic sensing phase to sense
the RF medium [3], [30], [31]. While in conventional
periodic sensing nodes try to detect a transmission, in our
setting, nodes collect power samples for the FC. The FC
then detects the adversarial network and performs BSS
and topology inference. Once the topology is inferred, the
wireless network can make decisions about the spectrum
usage, perform communication optimization based on the
adversarial network’s behavior, or notify spectrum regu-
lators about violations by nonlegitimate communications.
In this scenario, the time spent to sense the spectrum
reduces the primary network’s throughput while gaining
insight into the spectrum usage.

Throughout the paper, capital boldface letters denote matrices,
lowercase bold letters denote vectors, (·)T stands for transpo-
sition, || · ||p is the lp-norm, | · | is the module operator, �
stands for the element-wise product. With vi,j , vi,:, and v:,j ,
we represent, respectively, the element, the ith row, and the jth
column of the matrix V (when unambiguous, the ith row of V
is vi), and with vi,j:k we select the elements between the jth
and the kth entry of the ith row of V, extremes included. We
use N (µ, σ2) to denote a real Gaussian distribution with mean
µ and variance σ2, U(a, b) to denote a uniform distribution
between a and b, E{·} to denote the expectation operator, and
〈·〉 to indicate the sample mean operator.

The remainder of this paper is organized as follows. In
Section II, we introduce the scenario and system model.
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Fig. 1. A cloud of randomly distributed RF sensors (in blue) across the
wireless network landscape (in orange).

Section III provides an overview of the blind source separation
problem and describes the proposed solutions. In Section IV,
the state-of-the-art methods for topology inference are pre-
sented, and our novel solution is introduced. Numerical results
are given in Section V. Conclusions are drawn in Section VI.

II. SYSTEM OVERVIEW AND PROBLEM SETUP

Let us consider a scenario with a non-collaborative wireless
network of N nodes (the network in the following) and a net-
work of M RF sensors (the sensors in the following) randomly
deployed on a two-dimensional landscape at known positions.1

We assume that the technical specifications of the network
(i.e., number of nodes, physical layer signals, and medium
access control (MAC) and routing protocols) are unknown.
The topology of the network is represented by a directed graph
and its associated adjacency matrix A ∈ {0, 1}N×N where

ai,j =

®
1 if information flows from node i to j
0 otherwise.

For example, with reference to Fig. 1, a12,3 = 1, a3,12 = 0,
and a3,2 = a2,3 = 1.

The goal is to find an estimate of the adjacency matrix, “A,
of the wireless network from raw RF measurements carried
out by sensors within an observation window of duration Tob.
Since no interaction is expected between the observed network
and the sensors, all the subsequent tasks, summarized in Fig. 2,
are performed without demodulating the received signals, so
that a simple energy detector (ED) receiver suffices [31], [34],
[35].

A. Data acquisition and channel model
Let us consider the equivalent low-pass representation of

the signal received by the mth sensor

rm(t) =

N∑
n=1

qn(t)gm,n + νm(t) (1)

1Network nodes localization can be performed by the sensor network in
a phase preceding topology inference [32], [33]. As will be clarified in
Section V, only a coarse estimate of nodes position is required. Without
loss of generality, the numerical results are derived considering the posi-
tion (xm, ym) of the mth sensor uniformly distributed, i.e., xm, ym ∼
U(−L/2, L/2), where L is the side length of a squared landscape.

where qn(t) is the signal transmitted by node n, gm,n is the
channel gain between node n and sensor m, and νm(t) is
the additive white Gaussian noise (AWGN) with independent,
identically distributed (i.i.d.) real and imaginary parts, each
with two-sided power spectral density N0.

For the sake of topology inference we seek to collect
the transmitted power profiles for each node. Let us define
such profile at node n as a vector of K samples pn =
(pn,1, pn,2, . . . , pn,K)

T, whose elements

pn,k =
1

Tb

∫ kTb

(k−1)Tb

|qn(t)|2dt k = 1, . . . ,K (2)

correspond to the transmitted power calculated over short
intervals of duration Tb such that Tob = KTb. Then, let us
collect the transmitted power profiles in the matrix

P = (p1,p2, . . . ,pN )
T ∈ RN×K . (3)

Similarly, the output of the RF sensor m is a vector, xm =
(xm,1, xm,2, . . . , xm,K)

T, whose samples correspond to the
received power within Tb, i.e.,

xm,k =
1

Tb

∫ kTb

(k−1)Tb

|rm(t)|2dt k = 1, . . . ,K. (4)

The samples (4) are obtained by an ED composed of a
bandpass zonal filter with bandwidth W (the same of the
transmitted signals), followed by a square-law device and an
integrator with finite integration time Tb [31], [34]. Collecting
the measured powers of all sensors in the matrix

X = (x1,x2, . . . ,xM )
T ∈ RM×K

it is possible to relate X with P by

X = HP + N (5)

where H ∈ RM×N is the matrix of power gains hm,n =
|gm,n|2, and N ∈ RM×K is the matrix of noise power samples
at the output of the ED, nm,k = 1

Tb

∫ kTb

(k−1)Tb
|νm(t)|2dt. The

elements of N are i.i.d. central chi-squared random variables
(r.v.s) with a number of degrees of freedom NDOF = 2WTb
[34].2 If NDOF is large enough, by the central limit theorem,
we can approximate the distribution of the elements of N
as nm,k ∼ N (σ2

N, 2σ
4
N/NDOF), where σ2

N = 2N0W [31],
[34]. The channel gain consists of two components hm,n =
h′m,ne

σSsm,n , where h′m,n is the path gain, and sm,n ∼ N (0, 1)
are i.i.d. Gaussian r.v.s to model log-normal shadowing with
intensity σS [36].3 In deriving (5) we consider that the signals
emitted by the network nodes are mutually uncorrelated and
uncorrelated with the noise.

B. Blind source separation

Topology inference requires the temporal characterization of
the transmitted packets for each node of the wireless network.
Therefore, a reconstruction of the temporal traffic profiles, P,
as if they were measured at each node, is needed. However,

2The intervals duration, Tb, is chosen such that NDOF = 2WTb is integer.
3The shadowing parameter is usually expressed as the standard deviation

of the channel loss in deciBel by σS(dB) = 10
ln 10

σS.
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Fig. 2. Block scheme of the wireless network topology inference: sensor network, data pre-processing and inference.

because of the wireless medium, sensors observe a mixture
of the signals emitted by the nodes, (5), and an unmixing
operation is required to extract P [37], [38].

In literature, various methods for separating mixed signals
have been proposed, e.g., matrix factorization [39] and tensor
decomposition [40], [41], to name a few. In this work, we
adopt an approach based on the combination of principal
component analysis (PCA) and Fast-independent component
analysis (ICA) techniques [42], and we compare it with a
simpler approach named spatial filtering (SF). We then propose
a novel solution to the measurement association problem.
Since the unmixing operation is not perfect because of the
presence of noise and shadowing, the output Y of BSS
contains residual transmitted power profiles from other nodes
(crosstalk) which is removed by an excision filter.

C. Excision filter

The topology inference algorithms presented in Section IV
are based on the temporal characterization of the packet flows
exchanged by the nodes. To extract temporal features, it is
necessary to process the time series in Y to obtain sequences
of 0s and 1s; this is carried out by an excision filter that forces
to zero power samples due to crosstalk. The output of the filter
is the matrix Z with elements

zn,k =

®
1 if yn,k ≥ λn
0 otherwise

where the threshold λn is set as a fraction q ∈ [0, 1] of the
maximum of yn,:, i.e.,

λn = q ·max
k
{yn,k}, n = 1, . . . , N. (6)

D. Topology inference

Topology inference aims to estimate the adjacency matrix,“A, exploiting relations (causality) between the traffic streams
contained in the matrix Z.

A first issue in testing the presence of information flow
(packet exchange) between two nodes occurs when they are
not communicating with each other, but their distance does
not guarantee the absence of collisions. In such a case, the
causality between the transmitted power profiles might not be
zero, leading to false link detection. An opposite phenomenon
is link misdetection, because of an unfavorable placement of
the sensors in the landscape that degrade BSS performance.
In this case, imperfect unmixing may lead to crosstalk, and
detection of a causal relationship difficult. Another challenge

is the time-varying nature of network topology. In these
scenarios, the complexity is an important aspect that has to be
taken into account when designing the inference algorithm.4

In Section IV we present two state-of-the-art methods and our
novel strategy for topology inference, based on GC, TE, and
neural network (NN), respectively.

III. BLIND SOURCE SEPARATION

BSS recovers the source signals P in (5), from a set of
observed quantities X, when the mixing matrix H is unknown
[37]. Here we assume M ≥ N , i.e., more sensors than sources;
in this setting, the problem is named overdetermined.

A. PCA whitening and estimation of the number of sources
Signal separation can be effective if a pre-processing stage

manipulates the data so that there are N mixtures centered
and whitened at its output [37]. Since the number of network
nodes N is unknown, this stage has to estimate the number
of sources.

Firstly, we center the mixtures subtracting the row-wise
mean from X. Then, we apply PCA, a linear transformation to
the observations so that their components become uncorrelated
(whitening) with unit variance. Starting from the sample co-
variance matrix of the observations Σ = 1

KXXT, we perform
the eigenvalue decomposition Σ = UΛUT, where U is the
orthogonal matrix containing the eigenvectors, and Λ is a
diagonal matrix of the eigenvalues, Λi, with i = 1, . . . ,M ,
sorted in descending order. Thus, the whitening matrix is

Q = Λ−
1
2 UT. (7)

To estimate the number of sources N̂ generating the mixture,
we use model order selection based on minimum description
length (MDL) criteria [43], [44]

N̂ = arg min
n∈{1,..,M}

{MDL(n)} (8)

with

MDL(n) =− log

(∏M
i=n+1 Λ

1/(M−n)
i

1
M−n

∑M
i=n+1 Λi

)(M−n)K

+
1

2
n(2M − n) logK

4In this regard, although it would be desirable to infer the entire network’s
topology simultaneously (i.e., through a multivariate method) to account for all
the possible causal relationships among nodes, we test all the possible pairs of
nodes separately. This does not imply that the pair under test is independent
of the rest of the network, because the effects of the whole network, e.g.,
due to the collision avoidance mechanism, affect the features extracted. The
advantage of this approach lies in a much computationally lighter approach
[20].
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Algorithm 1: Fast-ICA for BSS

Input : Whitened signals X̃, εt > 0, N̂
Output: Unmixing matrix W

1 ε←∞
2 W← random initialization such that ||W||1 = 1

3 W̃←W

4 for n from 1 to N̂ do
5 while ε ≥ εt do
6 wi,n←4

〈
x̃i,:�(w̃T

:,nX̃)3
〉
−3w̃i,n, ∀i=1, .., N̂

7 w:,n ← w:,n −
∑n−1
i=1 (wT

:,nw:,i)w:,i

8 w:,n ← w:,n

||w:,n||2
9 ε =

∑N̂
m=1 |wm,n − w̃m,n|

10 w̃:,n ← w:,n

11 end
12 end

where n is the unknown model order. Once the number of
sources is estimated, we project the mixture onto the subspace
spanned by the eigenvectors corresponding to the N̂ largest
eigenvalues, reducing the dimensionality from M to N̂ . This
is accomplished by a projection matrix Q̃ obtained from the
first N̂ rows of Q, so that the whitened mixture is

X̃ = Q̃X. (9)

B. Independent Component Analysis

ICA is a data processing method that finds statistically
independent and non-Gaussian components from data. In our
setting, ICA is applied to X̃ to reconstruct the transmitted
power profiles P in (5). Its output is an unmixing matrix
W ∈ RN̂×N̂ such that

Ỹ = WTX̃ (10)

where Ỹ ∈ RN̂×K is the matrix of the separated components.
We propose Fast-ICA, an iterative algorithm with kurtosis as
a measure of non-Gaussianity, and decorrelation based on the
Gram-Schmidt orthonormalization [42], [45]. In particular, the
update rule to calculate the unmixing matrix is [42, eq. 20]

w:,n ← 4

Ñ 〈x̃1,: � (w̃T
:,nX̃)3〉

. . .

〈x̃N̂,: � (w̃T
:,nX̃)3〉

é
− 3w̃:,n. (11)

The complete iterative method is reported in Algorithm 1,
where εt is the termination parameter.

However, the order of recovered signals is not preserved;
thus P could be obtained from Ỹ through a permutation of
the rows. In the next section, a novel solution to this issue,
tailored for our scenario is proposed.

C. Unmixed signals association

We propose an iterative method to associate the recon-
structed sequences to the nodes of the network and measure the
correctness of this matching. On this purpose, let us define the
matrix D ∈ RM×N̂ , whose elements dm,n are the distances

Algorithm 2: Unmixed signals association

Input : Unmixed signal Ỹ, N̂ , D
Output: Aligned unmixed signal Y

1 for n from 1 to N̂ do
2 i ←arg minm

{
dm,n

}
3 for j from 1 to length of ỹ:,1 do
4 peaksj ←max

{
corr(ỹj,:; xi,:)

}†
5 end
6 k ←arg maxj

{
peaks

}
7 Yn,: ← ỹk,:

8 Ỹ ← Ỹ/ỹk,:
‡

9 end
† corr(a;b) operator returns the cross-correlation between vectors a and b.
‡ A/ak,: operator removes the kth row from the matrix A.

between sensor m and node n. First, we select a node n from
a list of all the nodes of the network and find its nearest RF
sensor m. Then, we correlate the sequence measured at sensor
m with all the unmixed sequences (rows of Ỹ) separately.
The row ỹj,: that shows the highest positive correlation is
associated with n and, thus, is copied into the nth row of Y.
Then, we remove node n from the list, delete the jth sequence
from Ỹ and iterate the algorithm. The method is detailed in
Algorithm 2. Its complexity is O(N̂ log N̂), acceptable also
when dealing with large networks.

D. Spatial filtering

As a benchmark, we consider the alternative to BSS pro-
posed in [46], where a path-loss law is used to weight the
sensors measurements and reconstruct the source signals via
linear filtering. The estimation of the number of sources, N̂ , is
obtained via the MDL criteria (9). Then, we build the matrix
α ∈ RM×N̂ of weights inversely proportional to the path-loss
between sensor m and node n as αm,n = (dm,n)−η , where η
is the filtering parameter. The matrix Y ∈ RN̂×K containing
the temporal power profiles reconstructed for all the N̂ nodes
is given by

Y = αTX.

As a result, the traffic profiles due to distant nodes are filtered
out, to some extent, by the weights αm,n. This approach
is simpler than the BSS algorithm based on ICA, but it
requires the choice of a filtering parameter η that has to
be tuned depending on the specific propagation scenario and
sensor and nodes deployment. Furthermore, its performance is
strongly influenced by the presence of shadowing, as shown
in Section V.

IV. TOPOLOGY INFERENCE MODELS AND TESTS

In this section, GC and TE based approaches are presented
as performance benchmark, and a novel solution based on NN
is introduced.
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A. Granger causality

GC test methods are based on linear L-order AR models. In
particular, considering a pair of time series zi and zj (i.e., two
rows of Z that correspond to the transmitted power profiles of
nodes i and j, respectively) two models (hypotheses) can be
formulated

H1 : zj,k =

L∑
l=1

βlzj,k−l +

L∑
l=1

γlzi,k−l + εk (12)

H0 : zj,k =

L∑
l=1

δlzj,k−l + ωk (13)

where {βl}Ll=1, {γl}Ll=1, and {δl}Ll=1 are the regression co-
efficients, and εk, ωk, are samples of independent AWGN.
The model (12) corresponds to hypothesis H1 and considers
the possibility of a causal relationship between the two time
series, while (13) is the null hypothesis H0 and excludes the
contribution of the past values of zi in the prediction of zj .
Note that (13) can be seen as a particular case of (12) where
γl = 0, l = 1, . . . , L. This means that if zi Granger causes zj
the prediction error of model (12) is less than the one of (13).
On the other hand, if zi has no causal influence on zj the
errors are approximately equal. In [20], [21] a GC test based
on squared sum of residuals is proposed

GCi→j =

∑T
t=1 |ωt|

2 −∑T
t=1 |εt|

2∑T
t=1 |εt|

2
· T − 2K − 1

K

H1

≷
H0

θ

(14)
where T = K−L and K is the length of the time series. Since
both εk and ωk are Gaussian distributed, the sum of squared
residuals follows a central chi-squared distribution and the test
(14) is then the ratio of chi-squared r.v.’s which results in a
F-distribution [20]

GCi→j ∼ F(L, T − 2L− 1).

The threshold θ for the test can be set fixing the false alarm
probability. Alternatively, in [47] a useful tool for quantifying
the degree of connectivity between two nodes i and j, named
causal magnitude, is defined as

Fi→j = log

Å
V(ω)

V(ε)

ã
(15)

where ω = (ω1, . . . , ωT ), ε = (ε1, . . . , εT ) and V(·) is the
unbiased estimator of the variance.

B. Transfer entropy

In [26], a model-independent method to measure the in-
formation flow between two random processes by a specific
type of conditional mutual information named TE is proposed.
Considering two time series zi and zj , modeled as random
processes, the TE from node i to node j can be expressed as

TEi→j(R,Q) = I(zj,k; zi,k−1:k−R, zj,k−1:k−Q)

= E
ß

log2

p(zj,k|zi,k−1:k−R, zj,k−1:k−Q)

p(zj,k|zj,k−1:k−Q)

™
(16)

where z−i and z−j denote the past samples of zi and zj up
to time instant k, respectively. In general, the evaluation of
conditional probability densities requires the knowledge of
infinite past samples of zi and zj . However, in this particular
application, TE is calculated considering only R and Q past
samples of zi and zj , respectively. The decision threshold θ
is obtained by the null distribution of the TE, estimated from
an appropriate manipulation of the time series [27], setting a
predefined false-alarm probability. Then, the test becomes

TEi→j
H1

≷
H0

θ. (17)

The flow of information from node i to node j might take
some time to generate a response, i.e., sending an acknowledg-
ment (ACK). To predict the causal interaction, the lags R and
Q should be very large and, thus, the algorithm’s complexity
gets overwhelming. Hence, an additional interaction delay
parameter, n0, to select the past values of the time series,
is proposed in [48]. The definition of TE is then modified as

TEi→j(R,Q, n0) = I(zj,k; zi,k−n0−1:k−n0−R, zj,k−1:k−Q).
(18)

Note that the interaction delay has been considered only on the
time series zi. This because the useful information on zj,k has
been extracted from its past zj,n−1:n−Q, and only the influence
of zi need to be investigated.

C. Conditional transfer entropy

TE is a simplified version of CE and, as shown in [46],
it tends to overestimate the number of inferred links. If for
a given node i, we evaluate TEi→j(R,Q, n0), j = 1, . . . , N
with j 6= i, and then apply the binary hypothesis test for
each pair {i, j}, we identify the set of possible neighbours of
node i. Then, to avoid the presence of spurious links, the set
of possible neighbors should be tested again with a variant
of TE called conditional transfer entropy (CTE), where the
effects of all the possible neighbors on the causal inference
are taken into account. CTE from node i to j is defined as

CTEi→j(R,Q, n0, g)

= I(zj,k; zi,k−n0−1:k−n0−R|zj,k−1:k−Q, zg,k−1:k−Q)
(19)

where g = 1, . . . , N with g 6= i, j. For a complete description
of the CTE algorithm and all its details, please refer to [27].

D. Neural network based method

The previously described methods compute a test based on
the entire time series. A different approach is to use time-
based features to infer the presence of causality via binary
classification [49]. Indeed, in case of traffic flow from node i
to node j, a packet-ACK time relation is expected to be found,
as depicted in Fig. 3.5 We indicate with τ i→j the time elapsed
between the end of a packet sent by node i and the beginning
of a packet from node j. If ai,j = 1 the packet transmitted by

5The method might also apply to protocols that do not support ACKs. In
that case, temporal features are extracted from the inter-transmission time
between the end of a packet sent by node i and the following transmission
from node j.
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ACK

z1,k

k

τ1→2

z2,k

z3,k
k

k

τ1→3

Fig. 3. An example of successful transmission of data packets between nodes
N1 and N2 is shown. In this case node N1 is connected to node N2 but not
to node N3. Notice how the time-to-ack τ1→2 and τ1→3 differ each other.

node j is likely to be an ACK. Denoting with Nta the number
of time-to-acks detected within the observation window, Tob,
there are three main relevant features which characterize the
statistic of the time-to-ack τ i→j :
• Sample mean

Mτ i→j =
1

Nta

Nta∑
p=1

τ i→jp (20)

• Sample variance

Vτ i→j =
1

Nta − 1

Nta∑
p=1

(τ i→jp −Mτ i→j )2 (21)

• Kurtosis

Kτ i→j =
mi→j

4

(mi→j
2 )2

(22)

where mi→j
4 and mi→j

2 are respectively the 4th and the
2nd order moments, estimated from samples as

mi→j
q =

1

Nta

Nta∑
p=1

(τ i→jp −Mτ i→j )q. (23)

The causal magnitude Fi→j in (15) can be considered as
additional feature to incorporate the benefits of GC for the
classification. In the previous example, if the packet transmit-
ted by node j is an ACK, the statistical features estimated
from τ i→j , e.g., the sample mean, will significantly change
with respect to the case in which the packet is not an ACK.

If we consider, e.g., only two features, they can be rep-
resented on a plane such as the one reported in Fig. 4.
Each red and blue point in the figure represents a couple
{Mτ i→j ,Vτ i→j} extracted from time series measured at nodes
i and j. In particular, a red point corresponds to the presence
of a directed link from i to j, i.e., ai,j = 1, while a blue
point represents the absence of the link, that is ai,j = 0.
The color gradient shows the decision boundary identified by
the classification algorithm. After a proper training phase, a
classification algorithm (i.e., NN) can identify a boundary that
separates the two classes. Accordingly, this approach needs a
preliminary step where the features calculated from time series
obtained by real or simulated networks are collected and used

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Mτ i→j

V
τ
i
→

j

Fig. 4. Example of a two-dimensional normalized features space. In red:
points corresponding to the presence of a link (ai,j = 1). In blue: points
representing couples of nodes that are not connected (ai,j = 0). The
color gradient shows the decision boundary identified by the classification
algorithm.

for training. As it is shown in Fig. 4 the two groups of points
are not linearly separable, therefore a NN has been selected as
a proper classification algorithm in this work [50], [51]. Once
the boundary has been found, it is possible to classify new
points on-the-fly according to their position on the features
space. In this way, we first perform the classification of every
possible link and then merge all the outcomes to obtain the
network topology. Such an approach applies to STDM based
networks, which encompasses a variety of multiple access
algorithms (e.g., CSMA/CA), and appear to be lightweight
than known methods under certain conditions.

E. Computational complexity

In this section, we discuss the computational complexity of
the topology inference algorithms as a function of the number
of nodes of the network.
• Granger causality. A linear regression like (12) with K

data points and 2L parameters has complexity O(K4L2+
8L3). Similarly, including the linear regression in (13),
and considering that L3 � K and that there are N2−N
couples of nodes in the network, the overall complexity
is O(N2K4L2).

• NN based method. Since the training phase can be
executed offline, we account for only the forward prop-
agation in the complexity of the NN. The number of
operations strictly depends on the number of neurons
and layers and can be treated as a constant B. Thus,
the complexity of the NN is O(N2B). The forward
propagation is preceded by the feature extraction, whose
complexity is dominated by the most computational ex-
pensive feature to extract, the causal magnitude — for
this reason, considering that L2 � B, the complete ML-
based method has overall complexity O(N2KB).

• Conditional transfer entropy. The complexity is
O(N2KC1) and O(N2KC2) for the two steps of the
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N4

N3
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0.89 0.27 0.13 0.16 0.18 0.05

0.17 0.29 0.32 0.19 0.13 0.85

0.24 0.28 0.11 0.22 0.86 0.32

0.31 0.26 0.19 0.92 0.12 0.26

0.22 0.24 0.75 0.28 0.13 0.23

0.21 0.94 0.33 0.14 0.16 0.28

N1 N2 N3 N4 N5 N6

(b) (d) (f)

Fig. 5. (a) The directed graph representing the real topology of the network, whose adjacency matrix A is shown in (b); (c) and (d) examples of inferred
topology graph and adjacency matrices Â estimated over the Monte Carlo trials of the same topology depicted in (a) varying the position of the nodes and of
the the sensors in the landscape; (e) visualization of the performance where pi,jD and pi,jFA indicates the probability of detection and false alarm of the directed
link from node i to node j, calculated over Mmc = 100 Monte Carlo trials; the corresponding matrix of pi,jD and pi,jFA is shown in (f).

algorithm, respectively [27], [52]. C1 and C2 are two
constants that take into account the operations for the
choice of the interaction delay and the number of boot-
straps iterations in both steps. Combining the two steps,
the overall complexity is O(N2K(C1 + C2)).

Although the three algorithms have the same complexity
trends, O(N2K), considering a typical range of values for N
in a practical scenario, the time complexity of the NN results
considerably lower than the CTE. In fact, since in general B �
C1 + C2, although they are constant factors, their values can
differ by several orders of magnitude, so they are relevant for
comparing the algorithms. This means that, in cases similar to
those analyzed in the next section, the impact of such constant
factors is not negligible.

V. NUMERICAL RESULTS

In this section, we present several tests to evaluate the
performance of the whole processing chain, the impact of
channel impairments on BSS, and compare the state-of-the-art
solutions in topology inference with the NN-based method.

As a case study, we recreated an IEEE 802.11s ad-hoc
network, operating at f0 = 2.412 GHz, using a simulator
developed through the ns3 platform. The landscape containing
the wireless network is a square area of side 10 m. The prop-
agation scenario is characterized by omnidirectional antennas
at the nodes and the sensors, path-loss, log-normal shadowing,
and thermal noise. The path-loss model is of power-law type

TABLE I
SET OF PARAMETERS USED IN THE TESTS DESCRIBED IN SECTION V

Parameter Set A0 A1 A2 B0 B1 B2 C0 C1 C2

ρS (nodes/m2) 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1
σS (dB) 0 3 6 0 3 6 0 3 6

with channel gain h′m,n = h0( d0
dm,n

)ν where the path-loss
exponent is ν = 3, the reference distance is d0 = 1 m, and
h0 = −60.1 dB [53]. The transmit power of the nodes is
PT = 10 dBm, while the thermal noise power for both nodes
and sensors is σ2

N = −93 dBm. The bandwidth of the RF
sensor is W = 20 MHz, according to the bandwidth of the
IEEE 802.11s signal, while the integration time is Tb = 10µs,
hence NDOF = 2WTb = 400. The offered traffic of each node
is 1 Mb/s, the size of data packets is set to 1024 Byte, while
the ACK packets have a size of 112 Byte.

Regarding the signal processing chain, the loss parameter
of the spatial filter, used as a benchmark, is set to η = 4, the
excision filter threshold, λn, is set as in (6) with q = 0.7,
and the termination parameter of the Fast-ICA is set to
εt = 10−5. The results presented in this section are obtained
from the data extracted by the simulations of Mtop = 100
different mesh topologies, such as the one depicted in Fig. 5.
Then, for each topology, Mmc = 100 Monte Carlo trials
are performed to change the position of nodes and sensors
randomly. In a real wireless network, the adjacency matrix
A is sparse, hence the number of links to be detected is
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Fig. 6. BSS algorithm performance varying the standard deviation σP of the
location uncertainty, the shadowing parameter σS and the density ρS.

much lower than the number of possible connections. Thus, the
standard non-weighted metrics (i.e., accuracy) are not suitable
for evaluating topology inference performance. Therefore, we
adopt the detection probability (or recall), pi,jD , and the false
alarm probability (or false positive rate), pi,jFA , of the directed
link from node i to node j, defined as

pi,jD = P{(âi,j = 1|ai,j = 1}
pi,jFA = P{âi,j = 1|ai,j = 0}.

In Fig. 5, we show the detection and false alarm probabilities
for some of the links of the network, using our NN-based
approach, estimated from the results of Monte Carlo trials in
which the position of the nodes vary inside the landscape,
but the network maintain the same logical topology. More-
over, the true adjacency matrix A, some of the adjacency
matrices Â estimated during the Monte Carlo trials, and
the matrix summarizing pi,jD and pi,jFA for each possible link
of the network, are shown. In the following, pD and pFA
are, respectively, the detection and false alarm probabilities
averaged over all the network links to summarize the topology
inference performance.

The algorithm used for classification is a 2-hidden-layer
feed-forward NN with 40 neurons in the first hidden layer and
10 in the second one. All the layers are fully connected, and
the activation functions are ReLU for the hidden layers and
softmax for the output layer. The considered features are the
mean, variance, kurtosis, and GCs causal magnitude. Thus, the
input layer has a size of 4. The network is trained with the fea-
tures extracted by the links of 70 different simulated topologies
for 5000 epochs (iterations of the stochastic gradient descent
algorithm) with an initial learning rate of 0.1. The learning
rate decreases by a factor of 10 after 3000 epochs [50]. A k-
fold cross-validation is performed to avoid overfitting with a
validation set composed by the features extracted by the links
of 30 different topologies. The simulated configurations used
in training and test differ in the number of connections, the
number of nodes, their position (i.e., network topology), and
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Fig. 7. Performance of BSS compared to the SF parametric method varying
ρS and σS according to Table I.

the position of the sensors. For the F−test of GC a time lag
L = 4 is set according to the Akaike information criterion
(AIC) [44], [54], while for the CTE the parameters R = 2,
Q = 1, and n0 = 3, are chosen. For the decision threshold, the
false alarm probability is set to 10−2 for both the algorithms.

The inferred topologies have to be considered instantaneous,
i.e., the topology of the network in a time horizon confined by
the observation time, Tob = 1 s in this case, which corresponds
to K = 100 ·103 samples.6 This way, the proposed framework
can capture the network’s dynamical behavior, including nodes
that join and leave the system.

A. BSS reconstruction error

To evaluate the performance of BSS we define the recon-
struction error as

Re =
# of wrong samples
# of total samples

=
||Z− P̄||1
N ·K

where the matrix P̄ has elements p̄n,k = 1 if node n is
transmitting in the kth bin, i.e., pn,k > 0, and 0 otherwise.7

The accuracy of the time series reconstructed is degraded by
noise and shadowing, while the node-source association could
be affected by uncertainties on node positions. We model
position uncertainty as a Gaussian distributed r.v. with standard
deviation σP added to both the coordinates of each node.
To characterize the impact of the number of sensors on the
performance of the source separation methods, we define the
density of sensors ρS, as the number of sensors per square
meter. The nine configurations of parameters used in this test
are summarized in Table I [55].

6The topology of the network can be obtained by collecting several
instantaneous topologies and mixing all the estimations to have a topology
representation on a broader time horizon, as suggested in [20].

7Note that topology inference exploits temporal statistics of the transmitted
signals, so the quality of the reconstructed traffic profiles needs not to account
for the recovered transmit power error. Hence, P̄ can be interpreted as
normalization of P to discard irrelevant amplitude-related information.
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In Fig. 6, the BSS algorithm has been tested varying the
standard deviation σP(%), defined as percentage of the side of
the landscape, the shadowing parameter σS, and the density
ρS. The figure depicts how Re increases when σP gets higher,
even at relatively high density, i.e., ρS = 0.3. Moreover,
the curves translate upward when the shadowing intensity
increases, reaching an error Re = 16% with σS = 6 dB and
σP = 20%. In Fig. 7 the performance of BSS is compared to
the SF benchmark method described in Section IV. The figure
shows how SF performance is strongly influenced by choice
of the filtering parameter η. In many cases, it outperforms the
BSS algorithm but requires an experimental tuning that might
not always be possible. Moreover, in the presence of strong
shadowing, the performance of this method rapidly degrades.

B. Topology inference and number of nodes

After BSS, the time series are processed to extract the topol-
ogy information. In this section, the state-of-the-art methods
for topology inference described in Section IV are compared
varying the density of wireless nodes per square meter, ρN. In
this test, the BSS was performed with ρS = 0.3 sensors/m2,
σS = 3 dB and σP = 0. Note that increasing the number
of nodes in the landscape leads to an increase in collision
probability, which results in network congestion. The NN
has been trained only once on the data captured with ρN =
0.06 nodes/m2. A variation on the density of nodes ρN affects
the topology inference when it significantly deviates from the
density considered for the training. As depicted in Fig. 8, pD
for NN are comparable with that of GC when the density of
nodes is close to the one used for training. However, when
the nodes’ density doubles compared to that considered for
the training, GC outperforms the NN. On the contrary, when
considering pFA the NN is better than GC regardless of the
density of nodes. As far as CTE is concerning, it presents
the lower pFA, but the pD is lower than the other methods.
Therefore, the error on the reconstruction impacts more CTE
than the other approaches. Finally, considering the complexity
of the algorithms, GC and NN resulted in less computationally
demanding than CTE. To provide a qualitative example, for
N = 6, inferring the complete topology requires an average
execution time tGC = 8.09 s for GC, and tNN = 8.13 s for a
NN that includes the GCs causal magnitude as feature. In the
same setting, the execution of CTE requires tCTE = 117.26 s.

C. Impact of shadowing

Fig. 9 shows how increasing σS degrades the accuracy
of the algorithms, as expected. In this case, we set the
density of sensors ρS = 0.3 sensors/m2, the density of nodes
ρN = 0.06 nodes/m2, and σP = 0. Even in this scenario, CTE
presents a false alarm rate lower than the other methods, but pD
is still the lowest. Furthermore, even if the NN outperforms the
other methods for low σS, increasing the shadowing intensity
results in a substantial increment of pFA.

D. Impact of nodes mobility

In this test, the effect of the nodes’ mobility on the perfor-
mance of the topology inference is investigated. The mobility
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Fig. 8. pD and pFA of the topology inference algorithms as a function of
the density of nodes ρN for ρS = 0.3 sensors/m2 and σS = 3 dB.
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Fig. 9. pD and pFA of the topology inference algorithms as a function of
the shadowing parameter σS(dB) for ρS = 0.3 sensors/m2.

model chosen is the Random Walk [56]; within an observation
window Tob, each node moves along a random direction with
speed v. In Fig. 10, the performance of the topology inference
varying the speed of the nodes is shown. In particular, we set
v = 2, 10, 20 m/s to simulate human walking, a slow vehicle
(i.e., low-altitude unmanned aerial vehicle (UAV)) and a fast
vehicle, respectively. As highlighted by the figure, the topology
inference is strongly affected by the network nodes’ mobility.
More specifically, in case of v = 2 m/s the performance
is preserved, with v = 10 m/s the inference is degraded,
with a detection probability reduced to 70%, while in case
of v = 20 m/s topology inference is compromised. This is
due to the inability of BSS to reconstruct the power profile
transmitted by the nodes correctly.
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VI. CONCLUSION

We proposed a novel framework for blind topology sensing
of a non-collaborative wireless network whose key features
are unknown. The framework consists of combining BSS,
measurement association, excision filtering, and topology in-
ference. The last step was performed adopting state-of-the-art
causal inference methods such as Granger causality (GC) and
conditional transfer entropy (CTE), that exploit the times series
of traffic profiles, and a novel solution based on a properly
designed and trained NN that makes use of distilled time-
based features. The numerical results accounting for packet
collisions, nodes mobility, and realistic channel impairments,
such as noise, and shadowing, revealed that, in this frame-
work, topology inference of a wireless network is possible.
Moreover, we found that in mild shadowing regime and low
mobility, the performance in terms of probability of detection
and probability of false alarm is remarkably good, especially
for the proposed NN-based solution.
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