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Simple Summary: The main histological subtypes of lung cancer are small-cell lung cancer (SCLC)
and non-small-cell lung cancer (NSCLC). NSCLC is further subdivided into squamous-cell carcinoma
(SCC) and adenocarcinoma (AD). Despite the recent introduction of innovative therapies, lung cancer
is still the first cause of cancer-related human death, indicating that the discovery of new therapeutic
targets is still a compelling need for this disease. In the present work, we performed a functional
genomics analysis on different lung cancer histotypes, combining data derived from different omics
resources with in vitro validation. Through this approach, we identified and validated CSNK1A1,
KDMA2, and LTB4R2 as new druggable vulnerabilities in lung cancer. These results open new
possibilities for the development of innovative therapies for lung cancer patients.

Abstract: Lung cancer is the leading cause of cancer-related human death. It is a heterogeneous dis-
ease, classified in two main histotypes, small-cell lung cancer (SCLC) and non-small-cell lung cancer
(NSCLC), which is further subdivided into squamous-cell carcinoma (SCC) and adenocarcinoma
(AD) subtypes. Despite the introduction of innovative therapeutics, mainly designed to specifically
treat AD patients, the prognosis of lung cancer remains poor. In particular, available treatments
for SCLC and SCC patients are currently limited to platinum-based chemotherapy and immune
checkpoint inhibitors. In this work, we used an integrative approach to identify novel vulnerabilities
in lung cancer. First, we compared the data from a CRISPR/Cas9 dependency screening performed
in our laboratory with Cancer Dependency Map Project data, essentiality comprising information on
73 lung cancer cell lines. Next, to identify relevant therapeutic targets, we integrated dependency
data with pharmacological data and TCGA gene expression information. Through this analysis, we
identified CSNK1A1, KDM2A, and LTB4R2 as relevant druggable essentiality genes in lung cancer.
We validated the antiproliferative effect of genetic or pharmacological inhibition of these genes in
two lung cancer cell lines. Overall, our results identified new vulnerabilities associated with different
lung cancer histotypes, laying the basis for the development of new therapeutic strategies.
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1. Introduction

Despite remarkable research efforts and the groundbreaking introduction of targeted
therapy and immune therapy, lung cancer is still the leading cause of cancer-related death.
Indeed, the prognosis is still poor, with a five year survival rate of only 17% [1]. Lung
cancer is a heterogeneous disease, classified into two main types based on histological
patterns: small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). SCLC
represents about 13% of cases, whereas NSCLC is further subdivided in various subtypes,
the most prevalent of which are adenocarcinoma (AD) (50%) and squamous-cell carcinoma
(SCC) (22%) [2,3]. Lung cancer subtypes differ in genetic alterations, carrying distinct
sets of mutations and rearrangements [3]. In AD, several drivers of genetic alterations
have been identified and mutations on EGFR gene and gene fusions involving ALK or
ROS1 genes have been targeted with specific small-molecule inhibitors [4]. Although
driver mutations have also been characterized for SCC and SCLC, the current standard
treatment for these patients is platinum-based chemotherapy in combination with immune
checkpoint inhibitors [5,6].

A substantial breakthrough in the treatment of lung cancer is represented by the
introduction of immune checkpoint inhibitors, which are now used for all three main lung
cancer subtypes [4,7]; however, only a fraction of patients show a sustained response to
treatment, and reliable biomarkers predicting response to therapy have not been identified
yet [7].

For these reasons, a deep molecular characterization of lung cancer is still required
to identify new or overlooked targets that will allow the development of novel strategies,
including single or combination therapy approaches. In this context, an innovative perspec-
tive is moving the focus from mutated oncogenes to the non-mutated gene dependency of
cancer cells. This notion, also called “non-oncogene addiction”, is based on the finding that
many cancer types rely for their survival—more than normal cells—on genes that are not
classical oncogenic drivers. As a consequence, cancer cells are more sensitive than normal
cells to the specific inhibition of those non-oncogenes, creating an intriguing therapeutic
window [8].

The identification of non-oncogene addictions requires genome-wide approaches able
to portray pathway interactions and functional consequences of genetic perturbations.
On the other hand, the possibility to translate the findings of genomic screenings into
clinical practice is often hampered by the lacking targetability of screening hits and poor
correspondence between in vitro models and patient characteristics.

In a previous studied, we defined an integrative functional genomics approach, com-
bining in vitro non-oncogene dependency data within a large collection of lung cancer
cell lines, gene druggability information, patients’ gene expression data, and in vitro
validation. Through this approach, we identified and validated the EGLN1 gene as a
new pro-oncogenic factor and druggable dependency specifically associated with the
KRAS-mutated lung AD setting [9]. In this follow-up paper, using a similar approach, we
extended our analyses to cell lines derived from different lung cancer histotypes, including
AD, SCLC, and SCC. We identified and validated a set of novel druggable non-oncogene
vulnerabilities preferentially related to different lung cancer histotypes; dependency on
KDM2A is associated with AD and SCLC, dependency on CSNK1A1 is associated with
AD, and dependency on LTB4R2 is associated with SCC.
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2. Materials and Methods
2.1. CRISPR/Cas9 Genomic Screening

The human GeCKOv2 CRISPR knockout pooled library in lentiGuide-Puro plasmid
was a gift from Feng Zhang (Addgene # 1000000049) [10]. The screening was conducted as
already described [11].

2.2. CERES Score Generation

To make our CRISPR/Cas9 screening of the A549 cell line data comparable to the
DepMap A549 dependency data (19Q2 release), we normalized raw data from the two semi-
libraries GeCKOv2 A and GeCKOv2 B using the CERES computational method, which
estimates gene dependency while correcting for the copy number effect [12]. The sgRNA
sequences of the semi-libraries were aligned to the hg19 reference genome using bowtie2
(2.3.5.1 version) [13] and samtools [14]; the resulting alignments were then mapped to gene
coding sequences obtained from CCDS database (https://www.ncbi.nlm.nih.gov/projects/
CCDS/CcdsBrowse.cgi, accessed on 12 December 2019). Together with copy number data
downloaded from the CCLE data portal (https://portals.broadinstitute.org/ccle, accessed
on 12 November 2019), we fit the CERES algorithm, which was implemented in R language
and is available at https://github.com/cancerdatasci/ceres, accessed on 10 September
2019. The hyperparameter λ was set to 0.681 as suggested by the authors [12] for the
GeCKO library. The resulting CERES scores for semi-libraries A and B were then compared
to A549 DepMap data to evaluate the dependency value similarities of common genes.
Then, to proceed for downstream analyses, we integrated RNA sequencing data (19Q2
release) obtained from the DepMap data portal in order to focus only on expressed genes
that were present in all three libraries. To highlight dependency genes within this common
ground, we defined a dependency threshold (D), as shown below in Equation (1):

D = ∑n
i=1(CERES)

n
+ 2σ (1)

where n is the number of common essential genes (i) defined by the DepMap project, for
which the CERES scores were considered as the average plus two standard deviations in
order estimate the dependency threshold (D).

2.3. Histotype-Based Analysis

We downloaded the essentiality data from the DepMap repository for all lung cancer
cell lines (n = 73), the information for which was integrated with histotype classification
of the considered lines, namely AD, SCLC, and SCC cell lines, respectively. To select
dependency genes underlying each histological type, we applied our D cut-off to retain
only those genes with a CERES score below this threshold in at least 90% of the AD, SCLC,
or SCC cell line. To further evaluate the biological relevance of the resulting gene lists for the
examined histotypes, we performed a pathway enrichment analysis through the ClueGO
app [15] within the Cytoscape software platform (3.7.1 version) [16], using Reactome and
KEGG pathways as references. Only the pathways that were significantly enriched with a
Benjamini–Hochberg adjusted p value ≤ 0.05 were considered and graphically represented.

2.4. Druggability Analysis

The essentiality gene lists deriving from the histotype-based analysis were submitted
to the Drug–Gene Interaction Database (https://www.dgidb.org/, accessed on 15 January
2020) [17]. The resulting drugs were filtered to keep only those reporting an “inhibitor”,
“antagonist”, or “modulator” mode of action indication. Each list of gene–drug interac-
tions was manually curated to group the identified drugs into the following categories:
“approved for lung cancer”; “approved for other cancer conditions”; “in clinical trials for
cancer conditions”; “approved or in clinical trials for non-cancer conditions”, “pre-clinical
data on target”. In addition to the literature search, we took advantage of pharmacological

https://www.ncbi.nlm.nih.gov/projects/CCDS/CcdsBrowse.cgi
https://www.ncbi.nlm.nih.gov/projects/CCDS/CcdsBrowse.cgi
https://portals.broadinstitute.org/ccle
https://github.com/cancerdatasci/ceres
https://www.dgidb.org/
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data available in DrugBank (https://go.drugbank.com/, accessed on 25 January 2020) [18]
and Clinical Trials (https://clinicaltrials.gov, accessed on 25 January 2020) databases.

2.5. TCGA Analysis

AD and SCC RNA seq data were downloaded from TCGA database and analyzed
using the R TCGA biolinks package (project = “TCGA-LUAD” (AD) and “TCGA-LUSC”
(SCC); data.category = “TranscriptomeProfiling”; data.type = “Gene Expression Quan-
tification”; workflow.type = “HTSeq-FPKM”). SCLC RNA seq data extracted from the
study “U Cologne, Nature 2015” [19], were downloaded from cBioPortal repository
(https://www.cbioportal.org/, accessed on 15 April 2021) and analyzed using R software.

2.6. Patient Specimens and Gene Expression Analysis

Fresh-frozen tissue samples from lung cancer patients were retrieved from the Biobank
of AUSL-IRCCS di Reggio Emilia. Informed consensus was obtained from all patients.
This study was authorized by the local ethical committee (Comitato Etico dell’Area Vasta
Emilia Nord) and conducted according to the Helsinki Declaration. Patients’ features are
summarized in Supplementary Table S3. Total RNA was extracted from surgical samples
conserved in liquid nitrogen. For each patient, RNA was extracted from lung AD and
surrounding healthy lung tissue using TRIzol (Thermo Fisher, Waltham, MA, USA) and
analyzed as already described [20,21]. GUSB and cyclophilin A were used as reference
genes. Primer sequences are shown in Supplementary Table S4.

2.7. Cell Cultures and Treatments

A549 and NCI-H23 lung cancer cell lines were obtained from Dr. Massimo Broggini
(IRCCS—Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy). The HEK293T cell
line was purchased from ATCC (LGC Standards, Sesto S. Giovanni, Italy). All cell lines were
sub-cultured in RPMI-1640 medium (Thermo Fisher) supplemented with 10% fetal bovine
serum (FBS, Euroclone, Milan, Italy) and antibiotics at 37 ◦C and 5% CO2. All cell lines are
authenticated through SNP profiling by Multiplexion Gmbh (Heidelberg, Germany) and
are routinely checked for mycoplasma contamination. Cell lines were treated for 72 h with
a range of concentrations of D4476 (MedChem Express, Monmouth Junction, NJ, USA),
daminozide (MedChem Express, Monmouth Junction, NJ, USA), or LY255283 (Santa Cruz
Biotechnology, Dallas, TX, USA), then dissolved in DMSO and further diluted in complete
medium. DMSO alone was used as treatment control. Cell growth was monitored using
the Incucyte® S3 live cell imaging system (Essen Biosciences Inc, Ann Arbor, MI, USA) and
EC50 curves were generated using Incucyte® software (2020B version, Essen Biosciences
Inc, Ann Arbor, MI, USA).

2.8. Generation of KO Cell Lines

Sequences of two sgRNAs were selected for each target gene from independent
CRISPR KO libraries (GeCKOv2 Library and Brunello Library) [10,22] and cloned into the
pLKO5.sgRNA.EFS.GFP plasmid. The pLKO5.sgRNA.EFS.GFP was a gift from Benjamin
Ebert (Addgene plasmid # 57822, Addgene, Watertown, MA, USA) [23]. A non-targeting
sgRNA was used as the negative control. NSCLC cell lines expressing Cas9 were infected
as previously described to obtain the KO cell lines of target genes [11]. An Alt-R® genome
editing detection kit (#1075931, IDT, Skokie, IL, USA) was used to confirm on-target CRISPR
event efficiency. Sequences of sgRNAs target sequences and of primers used for Alt-R
analysis are shown in Supplementary Table S4.

2.9. Competition Assay

NSCLC cells with stable Cas9 expression were infected with a reduced multiplic-
ity of infection (MOI) of lentiviral particles to obtain 50% of infected target cells. The
pLKO5.sgRNA.EFS.GFP plasmid was used as the lentiviral backbone, carrying a single
sgRNA for each target gene. GFP expression was quantified to monitor the proliferation of

https://go.drugbank.com/
https://clinicaltrials.gov
https://www.cbioportal.org/
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the infected vs. non-infected cells. Cells were checked through a BD FACSCanto™ II Cell
Analyzer (BD, Franklin Lakes, NJ, USA) every 3 days for 21 days. Each experiment was
carried out in triplicate with independent infections and with 2 different sgRNAs for each
target gene.

2.10. Western Blot

Western blot analysis was performed as previously described [24]. Briefly, total cell
lysate was obtained with PLB Buffer (Promega, Madison, WI, USA) added with a protease
inhibitor cocktail (bimake.com, Munich, Germany). Soluble proteins were separated from
debris by 10 min centrifugation at 12,000 rpm and quantified with a Bradford Protein Assay
(Bio-Rad Laboratories S.r.l., Milan, Italy). The following primary antibodies were used,
following the manufacturer’s instruction: rabbit anti-KDM2A 1:500 (#A301-475A-T, Bethyl
Laboratories, Montgomery, TX, USA), rabbit anti-CSNK1A1 1:500 (#orb382647, Biorbyt,
Cambridge, UK), rabbit anti-LTB4R2 1:1000 (Biorbyt, Cambridge, UK), mouse anti-beta
actin 1:5000 (#A2228, Sigma-Aldrich, St. Louis, MO, USA).

2.11. Statistical Analysis

The statistical evaluation of our patient gene expression analysis and of competi-
tion assays was performed using GraphPad Prism software (GraphPad, San Diego, CA,
USA). Statistical significance was determined using Student’s t test. Each experiment was
performed in triplicate.

3. Results
3.1. Identification of Lung Cancer Dependencies Integrating Genome-Wide CRISPR/Cas9
Screening Data

We aimed to identify genes that are required for lung cancer cell proliferation and that
can be used as new therapeutic targets. We performed CRISPR/Cas9 screening in the A549
cell line, derived from lung adenocarcinoma (Figure 1A and Supplementary Video S1). We
used the GeCKOv2 genomic library, targeting nearly 20,000 genes in the human genome
and containing 6 sgRNAs for each gene, distributed into two semi-libraries, GeCKOv2 A
and GeCKOv2 B [10].

To confirm the validity of our screening results, we retrieved different omics resources
and exploited a data-integration-based approach, combining dependency data of a large
collection of lung cancer cell lines from the Broad Institute’s Achilles project and avail-
able on the DepMap portal (https://depmap.org/portal/, accessed on 12 November
2019) [12,25] with information on gene–drug interactions (https://www.dgidb.org/, ac-
cessed on 15 January 2020) [17], gene expression data in lung cancer patients available on
The Cancer Genome Atlas (TCGA) repository (https://www.cancer.gov/tcga, accessed
on 27 November 2019) [26], and in vitro assay validation. A flowchart of the integra-
tive procedure is shown in Figure 1B. First, we took advantage of DepMap dependency
data [12], a database including genome-wide mutational, gene expression, and dependency
information for 73 lung cancer cell lines, comprising AD, SCC, and SCLC cell lines. The
DepMap consortium developed the CERES algorithm to compare essentiality screening
data among different cell lines, taking into account copy-number-amplified regions that
may lead to false-positive results [12]. We applied the CERES algorithm to our screening
data, obtaining a CERES score for each gene in A549 cells. Since we performed two fully
independent screenings with the two semi-libraries, we kept the two datasets separated
and compared them with the corresponding DepMap data obtained using the AVANA
library. Comparisons of CERES scores among the three libraries indicated substantial
similarity (Figure 2A,B). To improve the robustness of our analysis, we exploited DepMap
RNA sequencing data to exclude non-expressed genes. Next, for each expressed gene
presenting sgRNAs in all the three libraries, we calculated the median of the concordant
CERES values. To select essential genes, we established a threshold (D) for CERES scores
at −0.3, representing the mean value plus two standard deviations of CERES scores for

https://depmap.org/portal/
https://www.dgidb.org/
https://www.cancer.gov/tcga
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common essential genes in A549 cells (Figure 2C). From this analysis, we ended up with a
robust list of 3057 dependency genes in the A549 cell line, identified by taking into account
both our data generated with the two GeCKOv2 semi-libraries and DepMap data generated
with AVANA library.
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Figure 2. Identification of genes and pathways essential for lung cancer main histotypes: (A) com-
parison of CERES scores along all common genes between AVANA library (DepMap) and GeCKOv2
sub-library A in A549 cells; (B) comparison of CERES scores along all common genes between
AVANA library (DepMap) and GeCKOv2 sub-library B in A549 cells; (C) schematic representation of
filtering strategy used to identify the A549 dependency genes; (D) Venn diagram summarizing the
number of genes whose CERES score resulted ≤−0.3 (D threshold) in at least 90% of cell lines for
each histotype (AD: adenocarcinoma; SCLC: small-cell lung cancer; SCC: squamous-cell carcinoma;
(E) network representation of significantly enriched pathways for the SCLC dependency gene set
(n = 1285); (F) network representation of significantly enriched pathways for the SCC dependency
gene set (n = 1219); (G) network representation of significantly enriched pathways for the AD
dependency genes set (n = 1418).
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3.2. Identification of Dependencies Preferentially Associated with Lung Cancer Histotypes

We compared the results obtained in A549 cells with the DepMap collection of 73
lung cancer cell lines, reflecting patients’ histological and mutational complexity. The
CERES score datasets for 73 lung cancer cell lines were downloaded from the DepMap
portal. We grouped different cell lines according to their histotype and we identified
the genes that were dependencies in at least 90% of either AD, SCLC, or SCC cell lines.
Out of 3057 A549-specific dependency genes, 1418, 1285, and 1219 were dependencies
in AD, SCLC, and SCC cell lines, respectively. This analysis identified three partially
overlapping sets of essentiality genes, with specific lists for the three histotypes and a
common core of 1107 genes, which is shared by all groups (Figure 2D). To understand
the biological processes underlying the different lung cancer histotypes, we performed a
pathway enrichment analysis. The synthesis of DNA and RNA metabolic pathways were
significantly enriched in essential genes for all three histotypes. Cell cycle checkpoints and
cell-cycle-related processes were particularly enriched in AD and SCLC cell lines, while
pathways involved in regulation of Roundabout receptors (ROBOs) and SLIT ligands were
a specific dependency for the SCC cell line (Figure 2E–G and Supplementary Table S1).

3.3. Identification of CSNK1A1, KDM2A, and LTB4R2 as Druggable Dependencies in
Lung Cancer

To translate our results into possible therapeutic strategies, we focused on “drug-
gable” genes that can be directly targeted with chemical compounds. To this end, we
crossed the dependency genes lists with the Gene–Drug Interaction Database (https:
//www.dgidb.org/, accessed on 15 January 2020) [17]. From this analysis, we identi-
fied 103 dependencies and pharmacologically druggable genes in AD, 88 in SCLC, and 90
in SCC. Notably, most of our identified drug–gene interactions have been previously char-
acterized and the matched drugs have been approved or are under evaluation in clinical
trials for cancer treatment, strongly supporting the validity of our approach (Figure 3A–C
and Supplementary Table S2) [27,28].

Next, we focused our attention on dependency genes that are chemically targetable
but that still require biological validation as lung cancer vulnerabilities. In this category,
we selected three genes: CSNK1A1 (casein kinase 1 Alpha 1), KDM2A (lysine demethylase
2A), and LTB4R2 (leukotriene B4 receptor 2). CSNK1A1 was a druggable dependency gene
specifically associated with AD, KDM2A was associated with both AD and SCLC, whereas
LTB4R2 was associated with SCC cell lines (Figure 3D). Across different lung cancer cell
lines, these genes showed a variable extent of dependencies, ranging from highly addicted
to not-affected cell lines, as depicted in Figure 3E.

Notably, LTB4R2 was also identified in our previous work as a dependency gene
specifically associated with the KRAS-mutated background in lung AD [9]. As shown
in Figure 4A, the CERES scores for this gene were comparable in SCC cell lines and
KRAS-mutated AD cell lines, with two SCC cell lines showing remarkably low scores.

We verified whether these genes are shared dependencies with other cancer types,
comparing CERES scores in cancer cell lines derived from different tissues. All these genes
are also dependencies in other cancer types, although with variable scores (Figure 4A–C).

https://www.dgidb.org/
https://www.dgidb.org/
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Figure 3. Identification of druggable dependencies in lung cancer: (A) bar plot summarizing iden-
tified targets and druggable targets in lung cancer cell lines for each considered histotype (bars
and left Y axis represent all dependency genes, while the orange line and right Y axis represent the
subgroup of druggable genes for each histotype; AD: adenocarcinoma; SCLC: small-cell lung cancer;
SCC: squamous-cell carcinoma); (B) bar plot representing the number of identified drugs and the
status of each drug for each lung cancer histotype; (C) Venn diagram summarizing the number of
druggable dependency genes for each histotype (AD: adenocarcinoma; SCLC: small-cell lung cancer;
SCC: squamous-cell carcinoma); (D) median CERES score values in the cell lines of each histotype
for the identified druggable genes (values for KDM2A in AD and SCLC cell lines, for CSNK1A1 in
AD cell lines, and for LTB4R2 in SCC cell lines are labelled); (E) heatmap showing lung cancer cell
lines ordered by dependency on CSNK1A1, KDM2A, or LTB4R2 genes, expressed as CERES scores.
For each cell line, the histotype is indicated.
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3.4. CSNK1A1, KDM2A, and LTB4R2 Are Overexpressed in Lung Cancer Patients

We reasoned that CSNK1A1, KDM2A, and LTB4R2 dependencies could become thera-
peutic intervention points in lung cancer, so we proceeded with further characterization.
To gain insights into the role of these genes in lung tumorigenesis, we evaluated their
expression levels in the TCGA adenocarcinoma cohort [26] and in a set of samples retrieved
from the biobank of our institute. All these genes were significantly upregulated in tumor
tissue compared to surrounding healthy lung tissue in the cohorts of both AD and SCC
patients derived from TCGA, whereas for SCLC patients normal samples gene expression
data were not available (Figure 5A–H). In addition, we evaluated the gene expression
levels of these three genes in a set of AD patient samples derived from the biobank of our
institute. In this set of samples, the differential expression of KDM2A and LTB4R2 only
reached statistical significance (Figure 5C,F,I); however, the number of samples we were
able to retrieve from the biobank of our institute was very limited (n = 9) compared to
the TCGA cohort (n = 572 for AD and n = 550 for SCC), possibly explaining the lack of
significance for CSNK1A1 expression in our set of samples. Collectively, these data suggest
that sustained or increased expression of these genes may favor lung tumorigenesis.
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TCGA lung adenocarcinoma cohort samples (n = 572, normal = 59, tumor = 513), measured by RNA-Seq; (B) CSNK1A1
expression in TCGA lung squamous-cell carcinoma cohort samples (n = 550, normal = 49, tumor = 501), measured by
RNA-Seq; (C) CSNK1A1 expression in a set of surgical samples from our institute’s biobank (n = 9), measured by RT-qPCR;
(D) KDM2A expression in TCGA lung adenocarcinoma cohort samples (n = 572, normal = 59, tumor = 513), measured
by RNA-Seq; (E) KDM2A expression in TCGA lung squamous-cell carcinoma cohort samples (n = 550, normal = 49,
tumor = 501), measured by RNA-Seq; (F) KDM2A expression in a set of surgical samples from our institute’s biobank
(n = 9), measured by RT-qPCR; (G) LTB4R2 expression in TCGA lung adenocarcinoma cohort samples (n = 572, normal = 59,
tumor = 513), measured by RNA-Seq; (H) LTB4R2 expression in TCGA lung squamous-cell carcinoma cohort samples (n
= 550, normal = 49, tumor = 501), measured by RNA-Seq; (I) LTB4R2 expression in a set of surgical samples from our
institute’s biobank (n = 9), measured by RT-qPCR; * p < 0.05; ** p < 0.01; *** p < 0.001; ns = not significant.

3.5. Validation of CSNK1A1, KDM2A, and LTB4R2 as Novel Therapeutic Targets in Lung Cancer

To validate the dependency of tumor cells on CSNK1A1, KDM2A, and LTB4R2 in vitro,
we generated the knockout (KO) of each gene by independently introducing two sgRNAs
in two AD cell lines, NCI-H23 and A549 (Figure 6A,C and Supplementary Figure S1).
The KO cell lines of all three genes showed decreased cell proliferation or survival in a
competition assay. ATP2A2, being a strongly essential gene, was used as the positive
control (Figure 6B,D).

To provide an in vitro validation of the possibility of targeting these genes with
chemical inhibitors, we treated NCI-H23 and A549 cell lines with the CSNK1A1 inhibitor
D4476, the KDM2A inhibitor daminozide, or the LTB4R2 inhibitor LY2552843. As shown in
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Figure 6E,F, all three compounds showed inhibitory effects on cell proliferation, with EC50
values in the micromolar range. Notably, D4476 was the most effective in reducing cell
proliferation, in accordance with the strong sensitivity to the KO of CSNK1A1 observed in
both cell lines (Figure 6B,D).

These data suggest that CSNK1A1, KDM2A, and LTB4R2 may be considered relevant
therapeutic targets in lung cancer, warranting further investigations on the roles of these
genes in different lung cancer histological subtypes.
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Figure 6. Validation of CSNK1A1, KDM2A, and LTB4R2 as new therapeutic target in lung cancer cell lines: (A) Western
blot analysis showing CRISPR/Cas9-mediated knockout (KO) of CSNK1A1, KDM2A or LTB4R2 in NCI-H23 cells. Two
independent sgRNAs for each gene were used. Anti-β-actin antibodies are used as loading control. (B) Competition assay
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showing reduced proliferation in NCI-H23 cells KO for the indicated target genes. Cells infected with a non-targeting
sgRNA (NT) or with a sgRNA for ATP2A2 gene were used as negative and positive controls, respectively. For each time
point, the ratio between GFP-positive (infected) and GFP-negative (uninfected) cells was calculated and normalized on
T0. Statistical significance was calculated by comparing the normalized ratio for each sample with NT at each time point.
Data are expressed as means ± SEM; n = 3. (C) Western blot analysis showing CRISPR/Cas9-mediated knockout (KO) of
CSNK1A1, KDM2A, or LTB4R2 in A549 cells. Two independent sgRNAs for each gene were used. Anti-β-actin antibodies
are used as loading control. (D) Competition assay showing reduced proliferation in A549 cells KO for the indicated target
genes. Cells infected with a non-targeting sgRNA (NT) or with a sgRNA for ATP2A2 gene were used as negative and
positive controls, respectively. For each time point, the ratio between GFP-positive (infected) and GFP-negative (uninfected)
cells was calculated and normalized on T0. Statistical significance was calculated by comparing the normalized ratio for
each sample with NT at each time point. Data are expressed as means ± SEM; n = 3. (E) Sensitivity curves of NCI-H23 cells
to CSNK1A1 inhibitor D4476, KDM2A inhibitor daminozide, or LTB4R2 inhibitor LY255283. Data are expressed as means ±
SEM; n = 3. (F) Sensitivity curves of A549 cells to CSNK1A1 inhibitor D4476, KDM2A inhibitor daminozide, or LTB4R2
inhibitor LY255283. Data are expressed as means ± SEM; n = 3.

4. Discussion

In this work, we identified new possible therapeutic targets in lung cancer, combining
in vitro results produced in our laboratory with large collections of data available in public
repositories. A great part of this analysis was conducted on dependency data generated
by our CRISPR/Cas9 screening, together with data provided by the DepMap consortium.
This approach allowed us to identify genes and pathways that represent vulnerabilities
in different lung cancer histotypes. Each list of genes was crossed with the Drug–Gene
Interaction Database to select dependency genes that can be targeted with inhibitory
chemical compounds. From this analysis, we identified drugs that are used in clinical
practice for lung cancer, such as irinotecan and gemcitabine [27,28], as well as a large list
of compounds whose interactions with gene targets have already been characterized and
that are currently under evaluation in clinical trials [29–31]. These results strongly support
the validity of our approach. In addition, this strategy allowed us to identify three target
genes that are poorly characterized and still require biological validation in lung cancer:
CSNK1A1, KDM2A, and LTB4R2.

The CSNK1A1 gene encodes the alpha isoform of casein kinase 1 (CK1α), a serine–
threonine kinase that plays a critical role in regulating WNT/β-catenin signaling via
the phosphorylation of multiple pathway components with both positive and negative
consequences on overall signal transduction [32]. In addition, CK1α is involved in other
oncogenic pathways, including autophagy and p53 and NFkB signaling, having either
pro-oncogenic or tumor suppressor functions, depending on the context [33,34]. Several
CK1 small-molecule inhibitors have been developed, showing different specificities and
promising results in preclinical studies, but none has been included in clinical trials so
far [35]. Our results showed that CSNK1A1 gene is a vulnerability in lung AD, indicating
that this gene has a predominant pro-oncogenic function in this setting and supporting the
possible use of pharmacological inhibitors in clinical trials.

LTB4R2 encodes the leukotriene B4 receptor 2, a G-protein-coupled receptor regulating
chemotaxis and wound healing. In addition to inflammatory processes, this receptor has
been shown to be implicated in invasion and metastatic colonization of lung and other
cancers [36–38]. In this work, we found LTB4R2 to be a druggable essentiality gene in SCC,
whereas in a previous work we found LTB4R2 to be a vulnerability specifically associated
with the presence of KRAS mutation in lung AD [9]; thus, the sensitivity to the KO of this
gene may be context-specific and not limited to a single lung cancer subtype.

KDM2A is a histone demethylase that specifically removes methyl residues from
lysine 36 of histone H3, promoting a chromatin-repressed state [39,40]. KDM2A has
been demonstrated to promote tumorigenesis in different cancer settings, including lung
cancer [41,42]. The possibility to pharmacologically hit KDM2A was demonstrated by
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the discovery that the plant growth modulator daminozide is a selective inhibitor of the
KDM2/7 demethylase subfamily [43]. These findings, together with our results, suggest
that further development of KDM2A inhibitors may be a feasible path for the realization of
novel therapeutic strategies.

Importantly, we found equal dependency on KDM2A in AD and SCLC cell lines,
highlighting the importance of this gene and suggesting the possibility to also develop
a targeted therapy approach for SCLC patients, whose therapeutic options are still very
limited.

5. Conclusions

Overall, in our study we described the use of an innovative integrative genomic
approach to identify new candidate genes for lung cancer treatment, namely CSNK1A1,
KDM2A, and LTB4R2. Further experiments are required to define each gene contribution
to tumor development and to characterize the specific mechanisms associated with cancer
dependency. Future evaluation is foreseen to fully validate CSNK1A1, KDM2A, and
LTB4R2 as druggable candidates in clinical practice.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13143477/s1: Figure S1: Evaluation of CRISPR/Cas9-mediated genetic modification.
Table S1: Complete list of enriched pathways in AD, SCLC, or SCC dependency genes. Table S2:
Complete list of druggable targets within dependency genes lists in AD, SCLC, and SCC. Table S3:
Features of patients analyzed by RT-qPCR. Table S4: Sequences of sgRNAs and primers. Video S1:
CRISPR/Cas9 screening for essentiality genes.
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