
This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Bacchiani, L., Bravetti, M., Lange, J., Zavattaro, G. (2021). A Session Subtyping Tool. In: Damiani, F., 

Dardha, O. (eds) Coordination Models and Languages. COORDINATION 2021. Lecture Notes in 

Computer Science(), vol 12717. Springer, Cham.  

The final published version is available online at: https://doi.org/10.1007/978-3-030-78142-

2_6 

Terms of use: 

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are 
specified in the publishing policy. For all terms of use and more information see the publisher's 
website.   

 

https://cris.unibo.it/
https://doi.org/10.1007/978-3-030-78142-2_6
https://doi.org/10.1007/978-3-030-78142-2_6


A Session Subtyping Tool

Lorenzo Bacchiani1 Mario Bravetti2 Julien Lange3 Gianluigi Zavattaro2

1 University of Bologna, Italy
2 Department of Computer Science and Engineering & Focus Team, INRIA

University of Bologna, Italy
3 Royal Holloway, University of London, Egham, UK

Abstract. Session types are becoming popular and have been integrated
in several mainstream programming languages. Nevertheless, while many
programming languages consider asynchronous fifo channel communica-
tion, the notion of subtyping used in session type implementations is the
one defined by Gay and Hole for synchronous communication. This might
be because there are several notions of asynchronous session subtyping,
these notions are usually undecidable, and only recently sound (but not
complete) algorithmic characterizations for these subtypings have been
proposed. But the fact that the definition of asynchronous session sub-
typing and the theory behind related algorithms are not easily accessible
to non-experts may also prevent further integration. The aim of this pa-
per, and of the tool presented therein, is to make the growing body of
knowledge about asynchronous session subtyping more accessible, thus
promoting its integration in practical applications of session types.

1 Introduction

In recent years, session types have been integrated into several mainstream pro-
gramming languages (see, e.g., [15,25,26,19,24,1,23]) where they specify the pat-
tern of interactions that each endpoint must follow, i.e., a communication proto-
col. All of these practical applications show a good level of maturity of the ses-
sion type theory, but there are still some limitations. In particular, the notion of
subtyping considered in such tools usually assumes synchronous communication
channels, while, in many cases, communication takes place over asynchronous
point-to-point fifo channels (where outputs are non-blocking). In this setting,
the emitted messages are stored inside channels, and there may be an arbitrary
delay between an output (on an endpoint) and the corresponding input (on
the opposite endpoint). The impact on session subtyping of these aspects re-
lated with asynchronous communication has been initially studied in [21,20,12],
but the notions of subtyping proposed therein were subsequently proved to be
undecidable [6,18]. Only recently, sound (but not complete) algorithms for asyn-
chronous session subtyping have been proposed [7,5,9]. However, the theory be-
hind asynchronous session types (see [11] for a gentle introduction) and related
algorithms is rather intricate and this could limit their dissemination in the
research community, as well as their adoption in practical applications.



The aim of this paper, and of the tool that we introduce, is to make the grow-
ing body of knowledge about asynchronous session subtyping more accessible.
More precisely, we present in an uniform and intuitive way various notions of
(a)synchronous session subtyping that were presented in the literature following
different formalisms, e.g., types in [9] or communicating finite-state machines
in [5]. Our tool integrates several algorithms for checking subtyping that can be
invoked from an easy-to-use Python GUI. This interface allows the user to input,
using standard session type syntax, two types: the candidate subtype and su-
pertype. The tool automatically generates the graphical representation of these
session types as communicating finite-state machines [3]. It is also possible to exe-
cute on them the desired subtyping algorithm(s). The tool has been implemented
in a modular way, and it is possible to easily include several subtyping algo-
rithms, simply by customizing a JSON configuration file. In the current version,
we consider: two algorithms from [17] for synchronous session subtyping (based
on Gay and Hole’s [14] and Kozen et al.’s [16] algorithms), a sound algorithm for
checking (orphan message free) asynchronous session subtyping [5], and a sound
algorithm for checking fair asynchronous session subtyping [9]. The implementa-
tions of these algorithms, besides returning a verdict about subtyping of the two
types, also return a graphical representation of the so-called subtyping simula-
tion game: i.e., the procedure to check that each relevant input/output action
that can be performed by the candidate subtype has a corresponding matching
action in the candidate supertype. This graphical representation is helpful to un-
derstand the reason behind the given verdict. The original command line Haskell
implementations of the algorithms in [17,5,9] have been adapted and integrated
by: (i) uniformizing their graphical notation/colors (e.g., inner/outer states rep-
resented as rectangles, with the initial one being thicker, error ones being red,
content of outer ones being blue, etc. . . ), (ii) reimplementing the synchronous
algorithm so to also generate the simulation graph, (iii) completely rewriting, in
the fair asynchronous algorithm, the controllability check (existance of a compli-
ant peer, see Section 2.1) and (iv) error detection with generation of red states
for all algorithms, (v) pre-transforming inputted types with a Python ANTLR4
parser that produces a common raw syntax.

Synopsis. Section 2 recalls basic notions about session subtyping using tool-
simulated examples and Section 3 describes the functionalities of the tool. Fi-
nally, in Section 4 we conclude the paper.

The tool sources/binaries are available at [2].

2 Session Subtyping

We first recall the syntax of session types and their automata representation
in the style of communicating finite-state machines (CFSM) [3]. We then show
how our tool can generate simulation graphs for supported session subtyping rela-
tions: synchronous [17], asynchronous [5] and fair asynchronous subtyping [9]. In
the asynchronous cases automata are assumed to communicate over unbounded
fifo channels as for CFSMs.
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Fig. 2. Hospital clients.
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Fig. 3. Satellite protocol server.
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Fig. 4. Satellite protocol clients.

2.1 Session Types and their Automata Representation

The formal syntax of two-party session types is given below. Notice that we
follow the simplified notation used in, e.g., [13,6,9], which abstracts away from
data carried by messages (payloads). This is done in order to focus on the key
aspects of the session subtyping problem (as we will see co/contra-variance of
output/input and output anticipation): passing data or channels (delegation)
are features that we deem orthogonal to such a problem.

Definition 1 (Session Types). Given a set of label names L, ranged over by
l, the syntax of two-party session types is given by the following grammar:

T ::= ⊕{li;Ti}i∈I | &{li;Ti}i∈I | µX.T | X | end

where I ̸=∅ and ∀i ̸=j∈I. li ̸= lj.

Type ⊕{li;Ti}i∈I represents an internal choice among outputs, specifying
that the chosen label name li∈L is sent and, then, continuation Ti is executed.
&{li;Ti}i∈I represents, instead, an external choice among inputs, specifying that,
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once a label name li∈L is received, continuation Ti takes place. Types µX.T and
X denote standard recursion constructs. We assume recursion to be guarded, i.e.,
in µX.T the recursion variable X occurs only after receving or sending a label.
Type end denotes the end of the interaction. Session types are closed, i.e., all
recursion variables X occur under the scope of a corresponding binder µX.T .

In the tool we graphically represent the behaviour of a session type T as a
Labeled Transition System (LTS), see, e.g., Figures 1, 2, 3 and 4. Following the
notation of CFSMs, we denote a LTS by (Q, q0,→), with Q being a set of states,
q0 the initial state and → a transition relation over Q×({!,?}×L)×Q, with label
“! l” representing output on l and label “? l” representing input on l.

We use LTS(T ) to denote the LTS of type T . Let T be the set of all session
types T . We define transition relation −→ ⊆ T × ({!,?}×L)×T , as the least
transition set satisfying the following rules

⊕{li;Ti}i∈I
! li−→Ti i∈I &{li;Ti}i∈I

? li−→Ti i∈I
T{µX.T/X} ℓ−→T ′

µX.T
ℓ−→T ′

with label ℓ ranging over {!,?}×L. Notice that a state end, called termination
state, has no outgoing transitions. Given a session type T we define LTS(T )
as being (QT , T,→T ), where: QT is the set of terms T ′ which are reachable
from T according to −→ relation and →T is defined as the restriction of −→ to
QT ×({!,?}×L)×QT .

Notice that in general an LTS may express more behaviours than the ones de-
scribed by session types: it can include non-deterministic and mixed choices, i.e.
choices including both inputs and outputs. Here we only consider LTSs (Q, q0,→)
such that ∃T ∈T . LTS(T ) = (Q, q0,→).

Example 1. As an example of session types we consider the Hospital server
from [5]:

THS = µX.&{nd ;⊕{ko;X, ok;X}, pr ;⊕{ko;X, ok;X}}
Figure 1 shows LTS(THS) as produced by our tool. The server THS expects to
receive two types of messages: nd (next patient data) or pr (patient report).
Then it may send either ok or ko, indicating whether the evaluation of received
data was successful or not, and it loops.

We now define the dual of a session type T , written T . T is inductively ob-
tained from T as follows: ⊕{li;Ti}i∈I = &{li;T i}i∈I , &{li;Ti}i∈I = ⊕{li;T i}i∈I ,
end = end, X = X, and µX.T = µX.T . For example, the dual of the Hospital
server THS is:

THS = µX.⊕{nd ; &{ko;X, ok;X}, pr ; &{ko;X, ok;X}}

Example 2. We now consider examples of session types that are clients of the
Hospital service: an “ideal” client THC and two specific ones T ′

HC and T ′′
HC ,

respectively.
THC = THS = µX.⊕{nd ; &{ko;X, ok;X}, pr ; &{ko;X, ok;X}}
T ′
HC = µX.⊕{nd ; &{ko;X, ok;X, dk;X}}

T ′′
HC = µX.⊕{nd ; &{ko;X, ok;⊕{pr ;X}}}
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Figure 2 shows LTS(T ′′
HC), LTS(T

′
HC) and LTS(THC),

4 as produced by our tool.
The “ideal” client THC is simply the dual of the Hospital server: first it may

send two types of messages nd or pr , then it expects to receive either ok or
ko. In general, a client that is compliant with the Hospital server is a type such
that: (i) each message sent by the client (resp. server) can be received by the
server (resp. client), and (ii) neither the server nor the client blocks in a receive.
For example, the client T ′

HC , a slightly modified version of THC that may send
nd only and expects to receive also dk (don’t know) besides ok and ko (i.e.,
it applies covariance of outputs and contravariance of inputs, see [17]) is still
compliant with the Hospital server. Hence we say that T ′

HC is a subtype of THC .
Under asynchronous communication client compliance is relaxed by requiring

that all messages that are sent are eventually received. For example, in this set-
ting, client T ′′

HC (that may anticipate output nd w.r.t. inputs) is also a compliant
client, see [5], hence T ′′

HC is an asynchronous subtype of THC .
Notice that, both for synchronous and asynchronous communication (see [7]),

it holds, for any session type T, T ′: T ′ subtype of T implies T subtype of T ′

(closure under duality). As we will see, our tool automatically handles the gen-
eration of the dual subtyping problem (T subtype of T ′) from T ′ subtype of T
by exchanging and dualizing inputted types.

Example 3. As another example, we consider clients of the Satellite protocol
from [9]: an “ideal” client (the dual of the Satellite protocol server TSS whose
LTS is depicted in Figure 3) and a specific one; here denoted with TSC and T ′

SC ,
respectively.

TSC = TSS = µX. &{tm;X, over ;µY.⊕ {tc;Y, done; end}}
T ′
SC = µX.⊕ {tc;X, done;µY. &{tm;Y, over ; end}}

Figure 4 shows LTS(T ′
SC) and LTS(TSC), as produced by our tool. The “ideal”

client TSC may receive a number of telemetries (tm), followed by a message over .
In the second phase, the client sends a number of telecommands (tc), followed
by a message done. Under fair asynchronous communication client T ′

SC (with
phases exchanged) is also compliant with the server, i.e. T ′

SC a fair asynchronous
subtype of TSC , see [9]. Compared to asynchronous communication considered
in Example 2, here client compliance entails that, under fairness assumption (i.e.
communication loops with some exit are assumed to be eventually escaped), both
the client and the server must reach successfull termination with no messages
left to be consumed in the fifo channels.

2.2 Synchronous Session Subtyping

In order to establish whether type T ′ is a synchronous subtype of a type T [17]
we can perform synchronous simulation of the (ordered) pair of LTSs LTS(T ′) =
(Q′, q′0,→′) and LTS(T ) = (Q, q0,→). Simulation states are pairs (q′, q), with

4 As we will see, the order in which the LTSs are presented reflects the subtyping
relation (we will show that T ′′

HC and T ′
HC are subtypes of THC) and the positions in

which types are inputed in the tool.
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Fig. 5. Asynchronous simulation.
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Fig. 7. Failed synchronous simulation.
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q′ ∈Q′ and q ∈Q. The simulation proceeds by starting from state (q′0, q0) and
by synchronously matching transitions of LTS(T ′) and LTS(T ) having the same
labels (both “! l” or both “? l”). For each reached simulation state (q′, q) we must
have: (i) the set of outputs (resp. inputs) fireable by q′ is subset (resp. superset)
or equal to the set of outputs (resp. inputs) fireable by q; this enacts covariance
(resp. contravariance) of outputs (resp. inputs), (ii) if (q′, q) performs no tran-
sitions then both q′ and q must perform no transitions (successfully terminate).

On the contrary, simulation states (q′, q) for which the above constraints are
not satisfied are called failure simulation states (depicted in red in our tool) and
cause synchronous subtyping not to hold.

Example 4. Figure 6 shows the synchronous simulation graph, as produced from
our tool, for the pair LTS(T ′

HC) and LTS(THC). Notice that our tool builds the
simulation graph as a tree: when a pair (q′, q) is reached, which was previously
traversed (as e.g. for the (1, 1) pair), simulation does not proceed further in that
branch and a dashed line is depicted connecting the two copies of (q′, q). Notice
that, if in T ′

HC we turn ?ko into ?ko1 (creating a mismatch with the server),
T ′
HC is no longer a synchronous subtype of THC . This can be seen in Figure 7

where the originated failure simulation state is depicted in red.

We now give the formal definition of synchronous subtyping. We first define set of

inputs and set of outputs fireable by a state q as follows: in(q) = {l | ∃q′.q ? l−→ q′}
and out(q) = {l | ∃q′.q ! l−→ q′}.

Example 5. Consider LTS(THC) (Figure 2), we have the following:

in(1) = ∅ in(2) = {ko, ok}
out(1) = {nd ,nd} out(2) = ∅

Definition 2 (Synchronous Simulation). Given set of label names L and
two LTSs (P, p0,→1) and (Q, q0,→2), synchronous simulation is defined as a
labeled transition system over states of P×Q, i.e. pairs denoted by p≼ q, with
p∈P and q∈Q. In particular, the initial state is p0 ≼ q0 and the transition re-
lation ↪−→, labeled over {!,?}×L, is defined as the minimal relation satisfying rules:

p
? l−→1 p′ q

? l−→2 q′ in(p)⊇ in(q)

p≼ q
? l
↪−→ p′ ≼ q′

(In)
p

! l−→1 p′ q
! l−→2 q′ out(p)⊆out(q)

p≼ q
! l
↪−→ p′ ≼ q′

(Out)

Formally, a type T ′ is a synchronous subtype of a type T if the LTS obtained
as the synchronous simulation of the pair LTS(T ′) and LTS(T ) is such that, for
every state q′ ≼ q reachable from the initial simulation state, we have: if q′ ≼ q
performs no transitions then both q′ and q perform no transitions.

2.3 Asynchronous Session Subtyping

In contrast to synchronous simulation, the asynchronous one gives the possibility
of “anticipating”, in the right-hand LTS, output transitions w.r.t. input tran-
sitions that precede them. This can be shown, using our tool, via an example.
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Example 6. Figure 5 shows the asynchronous simulation tree, as produced from
our tool, for the pair LTS(T ′′

HC) and LTS(THC). Simulation of Figure 5 proceeds
as follows. For instance, after transitions !nd , ?ko and !pr (i.e. path “!nd ?ko !pr”)
are synchronously performed by LTS(T ′′

HC) and LTS(THC), they reach states 1
and 2, respectively. Now, LTS(T ′′

HC) in state 1 can only do output !nd , while
LTS(THC) in state 2 can only do inputs. Being asynchronous, the simulation
can proceed by calculating the so-called state 2 input tree inTree(2) = ⟨ko :
1, ok : 1⟩, i.e. the spanning tree from state 2 (constructed considering input
transitions only), which has two leaves, both being state 1. Provided that all
leaves of inTree(2) can perform !nd , the simulation can proceed by considering
⟨ko : [ ], ok : [ ]⟩ as an “accumulated” input for the right-hand LTS and by making
all states in its leaves evolve by performing the !nd transition. Therefore, after
simulation performs !nd , LTS(T ′′

HC) and LTS(THC) reach states 2 and ⟨ko :2, ok :
2⟩, respectively (the state reached by the right-hand LTS is actually an input
tree).

In general, input trees (e.g. ⟨ko : 2, ok : 2⟩ in the example above) are defined
in [5] as input contexts A (representing “accumulated” input, e.g. ⟨ko : [], ok : []⟩
in the example above) with holes “[ ]” replaced by LTS states. Their syntax is:

A ::= [ ] | ⟨li : Ai⟩i∈I

In the tool we represent input trees by nested boxes. For instance the input tree
⟨ko : ⟨ko : 1, ok : 1⟩, ok : ⟨ko : 1, ok : 1⟩⟩ is represented as:

In general, due to input accumulation, represented by an input tree, even
if two types are in an asynchronous subtyping relation, the simulation could
proceed infinitely without meeting failure simulation states (as it would hap-
pen for the pair LTS(T ′′

HC) and LTS(THC) of Example 6). In our tool we use
the algorithm of [5] for checking asynchronous subtyping, which is sound but
not complete (in some cases it terminates without returning a decisive verdict).
In a nutshell, such an algorithm proceeds as follows. The subtyping simulation
terminates when we encounter a failure state (depicted in red in our tool), mean-
ing that the two types are not in the subtyping relation, or when we detect a
repetitive behaviour in the simulation (which, we show, can always be found, in
case of infinite simulation). In the latter case, we check whether this repetitive
behaviour satisfies sufficient conditions (see [5] for details) that guarantee that
the subtyping simulation will never encounter failures. If the conditions are sat-
isfied the algorithm concludes that the two types are in the subtyping relation,
otherwise a maybe verdict is returned.

Therefore, the tool always produces a finite simulation tree: for types that
are detected to be subtypes, simulation can stop in a state that is identified (via
a dashed transition in our tool) to a previously encountered state, even if they
are not identical; see bottommost state of Figure 5 (outgoing dashed transition).
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The sufficient conditions checked by the algorithm guarantees that the behaviour
beyond such a simulation state is a repetition of the behaviour already observed.

We now give the formal definition of asynchronous subtyping. Given a LTS

(Q, q0,→), we write q0
ℓ1···ℓk−−−−→ qk iff there are q1, . . . , qk−1 ∈ Q such that qi−1

ℓi−→
qi for 1 ≤ i ≤ k. Given a list of messages ω = l1 · · · lk (k ≥ 0), we write ?ω for
the list ?l1 · · ·?lk and !ω for !l1 · · ·!lk.

Definition 3 (Input Context). An input context is a term of the grammar

A ::= [ ]j | ⟨li : Ai⟩i∈I

where: All indices j, denoted by I(A), are distinct and are associated to holes.
Moreover, I ̸=∅ and ∀i ̸=j∈I. li ̸= lj.

Holes are, thus, actually indexed so to make it possible to individually replace
them. In this way A[qi]

i∈I(A) denotes the input tree obtained by syntactically
replacing each hole [ ]i in A by a specific state qi ∈ Q. In the sequel, we use ITQ
to denote the set of input trees over states q ∈ Q.

Auxiliary functions Given a CSFM (Q, q0,→) and a state q ∈ Q, we define:

– cycle(⋆, q) ⇐⇒ ∃ω ∈ L∗, ω′ ∈ L+, q′ ∈ Q. q
⋆ω−−→ q′

⋆ω′

−−→ q′ (with ⋆ ∈ {!, ?}),
– the partial function inTree(·) as

inTree(q) =


⊥ if cycle(?, q)

q if in(q) = ∅
⟨li : inTree(q′i)⟩i∈I if in(q) = {li | i∈I} ≠ ∅

with q′i being the state such that q
? li−−→ q′i.

Predicate cycle(⋆, q) says that, from q, we can reach a cycle with only sends (resp.
receives), depending on whether ⋆ =! or ⋆ =?. The partial function inTree(q),
when defined, returns the tree containing all sequences of messages which can
be received from q until a final or sending state is reached. Intuitively, inTree(q)
is undefined when cycle(?, q) as it would return an infinite tree.

Example 7. Consider LTS(THC) (Figure 2), we have the following:

inTree(1) = 1 inTree(2) = ⟨ko : 1, ok : 1⟩

inTree(2) tool
representation

Example 8. Consider the LTS of Figure 8. From state 1 we can reach state 2
with an output. The latter can loop with an output into itself. Hence, we have
both cycle(!, 1) and cycle(!, 2).
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Fig. 8. Output cycle example.

L0: 1(R)

L00: 2(R)

L000: 3(R) L001: 2(R)

L01: 1(R)

!done !tc

01 ?tm

02

?over

!tc

03

!done

?over ?tm

00c1 ?tm

00s3

?over

000s3 001c1 ?tm

001s3

?over

01c1 ?tm

01s2

?over

!tc

01s3

!done

Fig. 9. Fair asynchronous simulation fragment.

Definition 4 (Asynchronous Simulation). Given set of label names L and
two LTSs: LTS1=(P, p0,→1) and LTS2=(Q, q0,→2), asynchronous simulation
is defined as a labeled transition system over states of P×ITQ, i.e. pairs denoted
by p≼A[qj ]

j∈J , with p ∈ P and A[qj ]
j∈J ∈ ITQ. In particular, the initial state

is p0 ≼ q0 and the transition relation ↪−→, labeled over {!,?}×L, is defined as the
minimal relation satisfying rules in Definition 2, plus the following ones:

p
? lk−−→1 p′ k ∈ I in(p) ⊇ {li | i ∈ I }

p≼⟨li : Ai[qi,j ]
j∈Ji⟩i∈I

? lk
↪−−→ p′ ≼Ak[qk,j ]

j∈Jk

(InCtx)

p
! l−→1 p′ ¬cycle(!, p)

∀j∈J.
(
inTree(qj)=Aj[qj,h]

h∈Hj∧∀h∈Hj .(out(p)⊆out(qj,h)∧qj,h
! l−→2 q

′
j,h)

)
p≼A[qj ]

j∈J ! l
↪−→ p′ ≼A[Aj [q

′
j,h]

h∈Hj ]j∈J
(OutA)

The two additional rules express how inputs are accumulated and consumed by
means of input trees in the LTS2. The first one is applicable when the input tree
state of the LTS2 is non-empty and the state p of the LTS1 is able to perform a
receive action corresponding to any message located at the root of the input tree
(contra-variance of receive actions). The second rule allows the LTS1 to execute
some send actions by matching them with send actions that, in the LTS2, occur
after receives. Intuitively, each send action outgoing from state p of the LTS1
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must also be executable from each of the states qj,h of inTree(qj)=Aj[qj,h]
h∈Hj ,

with qj being a leaf of the input tree state A[qj ]
j∈J of the LTS2 (covariance of

send actions). The constraint ¬cycle(!, p) guarantees that accumulated receive
actions will be eventually executed.

2.4 Fair Asynchronous Session Subtyping

Consider again the satellite protocol of Example 3. The asynchronous subtyping
of previous Section 2.3 rejects T ′

SC as a subtype of TSC . Indeed that notion of
subtyping allows for anticipation of outputs only when they are preceded by a
bounded number of inputs. However the outputs of TSC occur after an arbitrary
number of inputs. That notion of subtyping requires that all sent messages are
consumed along all possible computations of the receiver. While in T ′

SC there is
a degenerate execution where the candidate subtype sends an infinite number of
tc messages and thus never performs the required inputs.

In contrast, fair asynchronous session subtyping [9] relies on the assumption
that such degenerate executions cannot occur under the natural assumption the
loop of outputs eventually terminates, i.e., only a finite (but unspecified) amount
of messages can be emitted.

Concretely, the fair subtyping uses a more expressive notion of input contexts
A that also include recursive constructs. Their syntax becomes:

A ::= [ ] | ⟨li : Ai⟩i∈I | µX.A | X
These input context can encode the recursive reception of messages in the satel-
lite example and thus identify T ′

SC as a fair asynchronous subtype of TSC .
Figure 9 shows a fragment of the resulting fair asynchronous simulation tree,

as produced from our tool: due to the more complex syntax of input contexts,
states now contain a (possibly looping) automaton instead of an input tree.

3 Main Functionalities of the Tool

Besides the classic operations that a text editor allows (e.g. edit, load, save),
users can compute the dual of: either a single session type or the entire sub-
typing problem. To facilitate understanding of session types, the tool offers the
possibility to view/save the graphical representation of a given type by means of
“Show Image” and “Save Image” respectively. In our tool types are inputted by
means of two text areas: the leftmost one is used for the candidate subtype and
the rightmost one for the candidate supertype. Input types must be expressed
with the syntax presented in Definition 1, with “+” standing for “⊕” and “rec”
standing for “µ”. In addition the tool accepts: (i) the alternative “raw” syn-
tax [! a ;T, ! b ;T ′, . . . ] standing for ⊕{a ;T, b ;T ′, . . . } and [? a ;T, ? b ;T ′, . . . ] for
&{a ;T, b ;T ′, . . . } (ii) the abbreviations ! a ;T and ? a ;T standing for ⊕{a ;T}
and &{a ;T}. A Python parser checks that the inputted types fit the above syn-
tax using the following EBNF syntax:

S ::= OP { id ;S (, id ;S )∗} | rec id . S | id | end
! id ;S | [ ! id ;S (, ! id ;S )∗] | ? id ;S | [ ? id ;S (, ? id ;S )∗]

OP ::= + | &
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where id is a non-empty sequence of uppercase and lowercase letters possibly
followed by trailing numbers.

The core of the tool is the algorithm menu. Users can choose between different
subtyping algorithms and possibly set a maximum number of execution steps.
The algorithm response can be: “true”, “false” or “maybe” (for asynchronous
algorithms, due to undecidability, or when the specified number of steps is not
enough to determine the subtyping relation), along with the time needed. In
addition, it is possible to run all the algorithms to have an overview of the
types of relationship that hold. Finally, the “Simulation Result” menu, which is
initially disabled, makes it possible to show or save the graphical output of the
last performed algorithm.

3.1 Extensibility of the Tool

Our tool (and its GUI) is automatically extensible with new subtyping algo-
rithms by simply modifying its json configuration file that we will detail in the
next section. Such a file can also be modified, directly from the GUI, by using
the “Algorithm configuration” menu under “Settings”. Configuration of a new
algorithm is done by providing: its displayed name and the path and calling
pattern of its execution command, in the form

ExecutableName [flag] [t1] [t2] [steps]

The tool will replace [flag][t1][t2][steps] with: the user-selected flags, the pair of
session types the user wants to check and the number of steps the algorithm is
requested to do. The above order of bracketed elements ([steps] is optional) may
change according to the algorithm. The json file also maps algorithm-dependent
flag names into tool functionalities by categorizing them. For instance, the de-
fault flag category includes flags that simply modify the behaviour of algorithms:
e.g. the asynchronous one has the - -nofallback flag that prevents the algorithm
from trying to fall back to the dual subtyping problem in case of an initial maybe
verdict. Moreover, the execution flag category is useful when an executable en-
closes different (alternative) algorithms, e.g. Gay and Hole (- -gayhole) and Kozen
et al.’s (- -kozen) algorithms for synchronous subtyping (with one indicated as
being the default). Morever, the visual flag category includes just the name of
the flag causing the algorithm to produce the graphical simulation.

When adding an algorithm to the tool, the following requirements have to
be satisfied: they have to support command line execution (with the possibility
of taking .txt files as input) and have to fit the “raw” syntax described above.
Regarding the algorithm response, the only requirement is that it is printed on
the standard output. Finally, to generate the graphical output, it is mandatory
that the algorithm creates a .dot file no matter what its name is (since it is
specified in dedicated section of the json configuration). It is important to observe
that our tool is agnostic to the implementation language of algorithms, since it
makes use of their executable version.

12



3.2 Configuration of Tool Algorithms

The json file presented below is an example of the “algorithms config.json” cur-
rently used by the tool. The standard exec field specifies the default execution
flag, e.g. Gay and Hole or Kozen. Moreover, the simulation file field indicates
the relative path to the algorithm generated Graphviz “.dot” simulation file.
Similarly win, osx and linux point at the folder in which the tool looks for the
algorithm binaries for that specific os.

1 [{

2 "alg_name ": "Async Subtyping",

3 "flag": "--nofallback",

4 "execution_flag ": "",

5 "standard_exec ": "",

6 "visual_flag ": "--pics",

7 "simulation_file ": "tmp/simulation_tree",

8 "win": "asynchronous -subtyping \\win\\",

9 "osx": "asynchronous -subtyping/osx/",

10 "linux ": "asynchronous -subtyping/linux/",

11 "exec_comm ": "Checker [flags] [t1] [t2]"

12 },

13 {

14 "alg_name ": "Fair Async Subtyping",

15 "flag": "",

16 "execution_flag ": "",

17 "standard_exec ": "",

18 "visual_flag ": "--debug",

19 "simulation_file ": "tmp/simulation_tree",

20 "win": "fair -asynchronous -subtyping \\win\\",

21 "osx": "fair -asynchronous -subtyping/osx/",

22 "linux ": "fair -asynchronous -subtyping/linux/",

23 "exec_comm ": "Checker [flags] [t1] [t2] [steps ]"

24 },

25 {

26 "alg_name ": "Sync Subtyping",

27 "flag": "",

28 "execution_flag ": "--gayhole ,--kozen",

29 "standard_exec ": "--gayhole",

30 "visual_flag ": "--pics",

31 "simulation_file ": "tmp/simulation_tree",

32 "osx": "sync_subtyping/osx/",

33 "win": "sync_subtyping \\win\\",

34 "linux ": "sync_subtyping/linux/",

35 "exec_comm ": "Checker [flags] [t1] [t2]"

36 }]
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4 Conclusion

In this paper we introduced an integrated extensible GUI-based tool which:
applies algorithms for synchronous and (fair) asynchronous session subtyping,
and generates graphical simulations showing how underlying algorithms work.

Concerning future work, we plan to use our synchronous subtyping simula-
tion algorithm (with error detection) in the context of type checking for object
oriented programming languages where classes are endowed with usage proto-
cols [8]. Indeed, extending the theory of [8] with protocol subtyping, would make
it possible to verify correctness also for class inheritance. In particular, we have
started integrating our algorithm into the Java checker [22], which is based on [8].
Finally, we plan to extend the syntax of session types managed by our tool, e.g.
by including passing of data/channels and, possibly, by also encompassing pre-
emption mechanisms [10,4], which are often used in communication protocols.
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