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Reradiation and Scattering from a Reconfigurable
Intelligent Surface: A General Macroscopic Model

Vittorio Degli-Esposti, Senior Member, IEEE, Enrico M. Vitucci, Senior Member, IEEE,
Marco Di Renzo, Fellow, IEEE, and Sergei Tretyakov, Fellow, IEEE

Abstract—Reconfigurable Intelligent Surfaces (RISs) have at-
tracted major attention in the last few years, thanks to their
useful characteristics. An RIS is a nearly passive thin surface that
can dynamically change the reradiated field, and can therefore
realize anomalous reflection, refraction, focalization, or other
wave transformations for engineering the radio propagation envi-
ronment or realizing novel surface-type antennas. Evaluating the
performance and optimizing the deployment of RISs in wireless
networks need physically consistent frameworks that account
for the electromagnetic characteristics of dynamic metasurfaces.
In this paper, we introduce a general macroscopic model for
evaluating the scattering from an RIS. The proposed method
decomposes the wave reradiated from an RIS into multiple
scattering contributions and is aimed at being embedded into
ray-based models. Since state-of-the-art ray-based models can
already efficiently simulate specular wave reflection, diffraction,
and diffuse scattering, but not anomalous reradiation, we enhance
them with an approach based on Huygens’ principle and propose
two possible implementations for it. Multiple reradiation modes
can be modeled through the proposed approach, using the power
conservation principle. We validate the accuracy of the proposed
model by benchmarking it against several case studies available
in the literature, which are based on analytical models, full-wave
simulations, and measurements.

Index Terms—Radio propagation, electromagnetic modeling,
metasurfaces, ray tracing, reconfigurable intelligent surfaces.

I. Introduction
With the current deployment of fifth generation (5G) com-

munication systems, it is now a critical time to identify en-
abling technologies for the sixth generation (6G). 6G systems
are expected to fulfill more stringent requirements than 5G
networks in terms of transmission capacity, reliability, latency,
coverage, energy consumption, and connection density. Ex-
isting 5G technologies, such as millimeter-wave communi-
cations, massive multiple-input multiple-output schemes, and
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ultra-dense heterogeneous networks, are mainly focused on
system designs at the transmitter and receiver sides, as well
as on the deployment of additional network infrastructure ele-
ments with power amplification, digital signal processing ca-
pabilities, and backhaul availability. The purpose of currently
available 5G technologies is mainly to capitalize on or to cope
with often unfavorable wireless propagation environments. In
fact, the propagation environment is conventionally modeled
as an exogenous entity that cannot be controlled but can only
be adapted to. According to this design paradigm, communi-
cation engineers usually design the transmitters, receivers, and
transmission protocols based on the specific properties of the
wireless channels and for achieving the desired performance.

Recently, the technology referred to as reconfigurable in-
telligent surface (RIS) has emerged as a promising option
for its capability of customizing the wireless propagation
environment through nearly passive signal transformations. An
RIS is a thin surface that is engineered to possess properties
that enable it to dynamically control the electromagnetic waves
through, e.g., signal reflections, refractions, focusing, and their
combinations.

In wireless communications, RISs are intended to realize
so-called programmable and reconfigurable wireless propaga-
tion environments, i.e., large-scale or small-scale propagation
environments that are not viewed and treated as random
uncontrollable entities but become part of the network design
parameters that are subject to optimization for fulfilling the
stringent requirements of 6G networks [1]–[4]. Recent ap-
plications of RISs in wireless communications include their
use as nearly passive relay-type surfaces, multi-stream multi-
antenna transmitters, and reconfigurable ambient backscatters
that work without requiring power amplification or digital
signal processing [5]–[7].

An RIS operates, on the other hand, in the electromagnetic
domain directly on the electromagnetic waves that impinge
upon it. The performance evaluation and optimization de-
ployment of RISs in wireless networks require physically
consistent and realistic models that account for their electro-
magnetic characteristics and physical implementations, which
include the wave transformations that they realize, the size,
losses, parasitic effects, and transmission distances [5]. Ac-
curate microscopic simulations with the aid of full-wave
electromagnetic models may be utilized as well. These latter
models and methods are, however, too demanding in terms of
computational resources and this may prevent their utilization
for link- or system-level simulations in wireless networks [8].

Motivated by these considerations, a few research works
have recently investigated macroscopic methods for modeling
the scattering from finite-size RISs, which are based on
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different analytical approaches and assumptions. A summary
of the available contributions and a brief description of their
main features and limitations are available in Table I [9]–[20].

A more extensive state-of-the art review can be found in
[19], [20].

Based on Table I, we evince that, except for [19] and
[20], the contributions available to date on modeling the
scattered electromagnetic field from finite-size RISs can be
referred to as ideal scattering models. More precisely, the term
“ideal” refers to the assumptions that (i) the RIS reflects the
incident radio waves towards a single specified direction (dom-
inant) without generating parasitic scattered waves towards
(unwanted) directions, and (ii) the RIS is illuminated by a
single wave that impinges from a single direction of design.
These two major assumptions can be removed, under some
assumptions, by considering the analytical models proposed
in [19] and [20]. In [19], Theorem 2 can be applied to
any field ES on the surface of the RIS, which can be even
obtained from electromagnetic simulations and can account for
multiple scattering modes. However, the subsequent analysis
applied to reflective and refractive RISs is performed under the
assumption that only a single (the dominant) scattering mode
exists. The analysis reported in [20] explicitly accounts for the
existence of multiple directions of scattering (or reradiation)
based on Floquet’s theory. This latter theory is, however,
applicable only to periodic metasurfaces. Also, the analysis
is specialized to the far-field region of the RIS. Neither in
[19] nor in [20], the authors consider the presence and impact
of diffuse scattering that may be caused by, e.g., design
tradeoffs, construction inaccuracies and the deposit of dust.
Furthermore, the scattering models proposed for RISs to date
are based either on Huygens’ principle under the physical
optics approximation regime (e.g., [19], [20]) or on antenna
theory (e.g., [10], [11]). However, it is unclear to what extent
these two methods can be applied and provide similar results.
Therefore, we evince that understanding and realistically mod-
eling the scattering from finite-size RISs that can apply general
wave transformations, realized through periodic or aperiodic
surfaces, are open research problems.

In contrast to the current state-of-the-art, in the present
paper we introduce an approach for modeling the scattering
from a general finite-size and non-ideal RIS. The model is
conceived for being integrated into currently available ray-
based models, such as ray tracing and ray launching meth-
ods, which are recognized as the most suitable and efficient
deterministic models for realistic radio propagation simula-
tions in man-made environments. Several ray-based models
discretize ordinary surfaces into surface elements (also called
“tiles”) in order to simulate diffuse scattering (by using, e.g.,
the effective roughness (ER) model [21]) and/or to achieve
a good computational efficiency through parallel computing
algorithms [22]. In the present work, we leverage the tile-based
approach to simulate the anomalous scattering from an RIS
(also referred to as anomalous reflection or reradiation in the
sequel), by using a method based on Huygens’ principle [23],
[24]. The proposed methodology for modeling an RIS within
a ray-based propagation simulator is sketched in Fig. 1. While
ordinary surfaces are simply discretized to apply efficient

ray-based models, RIS-coated surfaces are first homogenized
and described through a proper spatial modulation function
Γ (x, y), which accounts for anomalous reradiation, and are then
discretized to apply computation procedures similar to those
utilized for ordinary surfaces. The scattering from an RIS sur-
face is therefore decomposed into “typical” scattering effects,
such as specular reflection, diffraction, diffuse scattering, and
anomalous reradiation. While the former effects are treated
by using well-established theories and methods, such as geo-
metrical optics, the uniform theory of diffraction, and the ER
model, the anomalous reradiation is treated by using Huygens’
principle approach, by integrating it into currently available
frameworks for the discretization of surfaces and for efficient
computation. This approach is described in Section III. The
key feature of the proposed model consists of fulfilling the
power balance between the different scattering modes, which
is ensured by using a parameter-based approach. Specifically,
the model is based on two steps: i) the definition of the global
power balance between conventional and anomalous scattering
modes, and ii) the computation of the scattered field as a
coherent sum of multiple contributions, including conventional
and anomalous reradiated modes. In more detail, the main
contributions of this paper are as follows:
• We introduce a general parametric approach for modeling

the scattering from a finite-size RIS, which is suitable for
integration into ray-based models.

• The proposed model is macroscopic, as it is agnostic
to the specific microscopic (unit cells) physical imple-
mentation of the RIS, and is instead characterized by
macroscopic parameters.

• The model explicitly takes into account diffuse scatter-
ing, in addition to the desired and undesired reradiation
modes, it is not limited to flat metasurfaces, and it
can be easily generalized for application to refractive
metasurfaces (not considered here for brevity).

• We consider and compare two versions of the model for
computing the anomalous reradiated field.

• The method is conceived to be integrated into advanced
discrete ray-based models [22], and it can be efficiently
implemented on parallel computing platforms.

• The model is tested and validated against results available
in the literature, which are based on theory, full-wave sim-
ulations, and measurements conducted on manufactured
RISs. The results confirm the generality and accuracy
of the proposed approach, as well as the non-negligible
impact that multi-mode reradiation and diffuse scattering
may have on the total scattered field and, notably, on the
far-field radiation pattern of a finite-size RIS.

The rest of this paper is organized as follows. In Section II,
we describe the proposed macroscopic scattering model and
the power balance requirement among the different scattering
modes. In Section III, we introduce and compare two versions
of the proposed method for computing the reradiated field
from a finite-size RIS. In Section IV, we validate the pro-
posed macroscopic scattering model with the aid of numerical
simulations. Finally, Section V concludes the paper.
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TABLE I. Summary of state-of-the-art contributions with their main features and limitations

Reference Main features Limitations
[9] - Physical optics and the scalar Huygens-Fresnel principle are used for analysis

- Asymptotic scaling laws as a function of the distance and surface size are derived
- Far-field and near-field case studies are considered and discussed

- A two-dimensional space is considered
- Parasitic modes and diffuse scattering are not
considered

[10], [11] - Antenna theory and a locally periodic model for the surface are used for analysis
- The model is validated with measurements using manufactured RISs

- Parasitic modes and diffuse scattering are not
considered

[12] - Antenna theory is used for analysis
- Far-field and near-field case studies are considered and discussed

- Only reflectarray-type RISs are studied
- Only the far-field case is considered

[13] - Physical optics and antenna theory are used for analysis in the far-field region
- Path-loss behavior of anomalous reflectors is analyzed and discussed

- Only the surface electric currents are modeled
- Only anomalous reflection is considered

[14] - Methods for electronically steerable parasitic array radiators are used for analysis
- Scaling laws as a function of the transmission distance are discussed

- The analysis is limited to large antenna-arrays
acting as mirrors or scatterers

[15] - Physical optics methods are used for analysis
- The RIS is modeled as a multi-tile surface made of perfectly magnetic conductors
- A scalable optimization algorithm is proposed for a multi-tile anomalous reflector

- Only anomalous reflection is considered
- Parasitic effects and diffuse scattering are not
considered

[16],
[17], [18]

- A model based on impedance-controlled thin dipole antennas is proposed
- The mutual coupling and the impact of the tuning elements are considered
- Optimization algorithms are introduced to exploit the mutual coupling

- Minimum scattering antenna elements are
considered
- Parasitic modes and diffuse scattering are not
considered

[19] - Physical optics and the vector Huygens-Fresnel principle are used for analysis
- Asymptotic scaling laws as a function of the distance and surface size are derived
- Far-field and near-field case studies are considered and discussed
- Multiple RIS functions are considered, including anomalous reflection and focusing
- The surface can operate in reflection and refraction mode

- Diffuse scattering is not considered

[20] - Physical optics and the vector Huygens-Fresnel principle are used for analysis
- A non-ideal multi-mode scattering model based on Floquet’s theory is proposed
- The model is validated against full-wave simulations

- Applicable only to periodic surfaces
- Diffuse scattering is not considered

This work - A parametric scattering model based on a power balance conservation principle is
proposed
- The scattering model accounts for specular reflection, multi-mode anomalous
reradiation, and diffuse scattering; extension to transmission and curved RISs is possible
- Two reradiation models based on the vector Huygens-Fresnel principle and antenna
theory are analyzed and compared
- The integration of the proposed scattering model with ray tracing is discussed
- The model is validated against Floquet’s theory, simulations, and empirical data

- The model needs to be parameterized through
measurements or full-wave simulations

Fig. 1. Comparison between non-engineered walls and RIS-coated walls: Proposed methodology and integration in ray-based models.

II. A Macroscopic ScatteringModel for RISs

Even disregarding the impact of the finite size of the surface
and the near-field illumination, real-world metasurfaces can
generate multiple reradiated modes but only one of them is
usually the desired mode. For example, let us consider an
anomalous reflector that is designed, under a plane wave

illumination, to reradiate a single plane wave towards a non-
specular direction. It is known that a non-local design is
usually needed for realizing surfaces with a high reradiation
efficiency and for avoiding parasitic modes [25]. The use of
different design methods, such as designing phase-gradient
metasurfaces based on the locally periodical design, may result
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in a low reradiation efficiency and several parasitic modes, as
dictated by Floquet’s principle [26]. For example, specular
reflection is one of the most relevant parasitic modes. In
addition, diffuse scattering effects due to design trade-offs,
construction inaccuracies, and the deposit of dust or raindrops
on the surface may affect the reradiation efficiency as well.

Currently available ray-based simulation tools are conceived
for modeling specular reflection, diffraction and diffuse scat-
tering [27]. On the other hand, they cannot model anomalous
reradiation. The proposed scattering model for RISs constitutes
a plug-in extension of ray-based models, which accounts for
several physical implementations of RISs and wave transfor-
mations that they can apply. In the proposed model, an RIS is
partitioned into surface elements (or “tiles”), which is shown in
Section III to be a suitable approach for efficiently computing
the reradiated field. In general, however, the surface element
does not correspond to either a single meta-atom or unit cell
of the metasurface or to any other physical element of the
microscopic implementation of the RIS.

The proposed approach for modeling the scattering from an
RIS starts from imposing a power balance constraint, accord-
ing to the power conservation principle, between the incident
and the reradiated waves. The power balance constraint is
imposed regardless of the size of the RIS, and is formulated
in terms of macroscopic parameters that measure the relative
intensity of all possible reradiated and scattered modes, which
carry power towards different directions. As far as periodic
surfaces are concerned, the directions and the amplitudes of
the different reradiated modes can be obtained from Floquet’s
theory and by applying the mode-matching approach [20]. As
far as aperiodic surfaces are concerned, the reradiated modes
and their corresponding amplitudes and phases are usually
obtained through full-wave simulations or measurements. For
both periodic and aperiodic surfaces, the reradiated modes
depend on the angle of incidence and the specific design of
the surface, e.g., the surface impedance.

The proposed power balance criterion accounts for specular
reflection, diffraction, diffuse scattering, and for all non-
specular reradiated modes. In the proposed model, however,
we ignore the field reradiated by evanescent (non-propagating)
modes. This implies that the approach is applicable to obser-
vation points that are at least a few wavelengths away from
the surface of the RIS, where the impact of the evanescent
modes can be safely assumed to be negligible. However, the
proposed approach can be applied to both the near-field and
far-field regions of the RIS structure.

After ensuring the power conservation principle, the scat-
tered field is computed by taking into account the finite size of
the surface and the characteristics of every possible reradiated
mode. Specifically, anomalous reradiation is computed by
adopting two methods: (1) Huygens’ principle based on a
generalization, proposed in this paper, of the method of image
currents [23], [24] (see Section III-A), and (2) antenna theory
according to which an RIS is modeled as a planar array of
antennas (see Section III-B). Both methods use as an input the
parameters obtained from the power conservation principle.

The proposed approach is inspired to the ER model [21],
which originally enforces the power balance principle to the

Fig. 2. Local power balance for the ER model: the incident power Pi is split
into specularly reflected (Pr), diffuse (Ps), and transmitted (Pp) power.

specular reflection and diffuse scattering. Therefore, we first
briefly recall the original ER model, and then generalize it to
account for multi-mode anomalous reradiation.

A. The Effective Roughness Model

The ER model is a heuristic approach for modeling diffuse
scattering from ordinary surfaces (e.g., building walls) that can
be easily integrated into ray-based field prediction algorithms
[27]. As illustrated in Fig. 2, the ER model is based on a
power balance principle applied to a generic surface element
(“tile”) of the wall. In Fig. 2, the generic tile is denoted by
dS. A wave that impinges upon the tile is assumed to generate
both a specularly reflected wave and a diffuse scattered wave.
In addition, some power penetrates into the wall. The field
scattered by each tile is modeled as a non-uniform spherical
wave that departs from the tile itself and propagates in the
same half-space as the incident wave. The intensity of the
scattered wave is determined by a scattering coefficient S and
by a scattering pattern that depends on the irregularities of the
wall, as discussed next.

Based on Fig. 2 and assuming that the surface is illuminated
by an electromagnetic wave whose direction of incidence is
θi and whose electric field is Ei, the following power balance
law holds:

Pi =
|Ei|

2

2η
cos (θi) dS = Pr + Ps + Pp (1)

where Pi, Pr, Ps, are the incident, specularly reflected, and
diffuse scattered powers at the generic surface element dS, and
Pp is the power that penetrates into the wall. More precisely,
the model assumes that the wall has some surface irregularities
with respect to an ideal uniform flat surface, that divert a
fraction of the power from the direction of specular reflection
towards other directions. The dissipated power Pp is assumed
to be independent of these irregularities.

Let us introduce the scattering parameter S (0<S<1), which
is defined so that S 2 corresponds to the ratio between the
diffuse scattering power and the reflected power. Also, let us
introduce the specular field-reduction factor R (0<R<1, which
is often called Rayleigh factor) to account for the attenuation
that the reflected wave undergoes with respect to a smooth flat
layer. From (1) we obtain

Pi = R2ρPi + S 2ρPi + Pp (2)
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where ρ is the surface reflectance of the wall. If the wall had
a perfectly smooth surface, we would have:

Pi = ρPi + Pp (3)
Combining (2) and (3), we evince that the following identity
should hold:

S 2 + R2 = 1 (4)

Equation (4) makes evident that the higher the diffuse
power, the lower the specular power. It is worth noting that
the power balance in (2) can be considered as global, i.e., it
is valid for the whole surface area, if the transmitter is in the
Fraunhofer far-field region of the surface and the surface is
flat. In this case, in fact, the incident wave can be assumed to
be a plane wave, and the angle of incidence can be assumed to
be the same over the whole surface. Given the power balance
constraint in (2), the contribution of the diffuse scattering field
is computed either globally (in the far-field case) or for each
tile (in the near-field case), according to a given scattering
pattern, as detailed in [21].

B. The Modified Effective Roughness Model for RISs

If an ordinary surface is replaced by an RIS, the ER
model needs to be generalized. In fact, an RIS is designed
to intelligently reradiate the incident wave into the desired
direction while minimizing the specular reflection and the
diffuse scattering. Therefore, the anomalous reradiation needs
to be included into the power balance formulation.

In practice, anomalous reradiation is realized through an
appropriate patterning of the surface of the RIS, e.g., by
using strip-based, patch-based, or loop-based unit cells. The
patterning imposes a spatial modulation on the incident elec-
tromagnetic waves, which in turn results in the creation of
reradiated modes. The proposed approach for modeling the
reradiation from the RIS is, however, macroscopic, i.e., it is
not intended for modeling the specific microscopic patterning
of the surface. The proposed model characterizes the phase
and amplitude modulation that the RIS applies to the incident
electromagnetic waves. Specifically, the generic mode that is
reradiated by the RIS is characterized through local surface-
averaged (on the scale of the wavelength) phase and amplitude
modulation coefficients, which are denoted by χ (x′, y′) and
A (x′, y′), respectively, with (x′, y′) being a generic point of
the RIS. Further details are given in Section III.

Similar to the original ER model, the power balance is
imposed to each surface element dS. Specifically, the power
balance in (1) is generalized to an RIS-coated wall as follows:

Pi = Pr + Ps + Pm + Pd (5)

where the power that penetrates into the RIS (Pp in (1)) is
split into two contributions: Pm, which is the total (for all
anomalous modes) power that is reradiated by the RIS, and
Pd, which is the power that is dissipated into the structure of
the RIS. As detailed in Section III, each tile of the RIS is
viewed as a secondary source of a set of reradiated spherical
wavelets, and the superposition of these wavelets results in the
reradiated waves based on Huygens’ principle.

To characterize the power balance at the RIS surface, we
introduce the total reradiation intensity coefficient m that
determines the fraction of the incident power Pi that is
reradiated into the anomalously reradiated modes. In simple
terms, m plays for anomalous reradiation the same role as the
reflectivity ρ plays for specular reflection. In RIS-coated walls,
in addition, diffuse scattering may be present, which is caused
by the presence of possible imperfections.

Under these assumptions and similar to (2), the power
balance in (5) can be rewritten as follows:

Pi = R2ρPi + S 2Pi + R2mPi + τPi (6)
where the same notation as in (2) is used, with the caveat that
the Rayleigh factor is applied to both the specular and the
reradiated modes and that the coefficient S 2 is redefined as the
ratio between the diffuse power and the incident power. Also,
the dissipated power is conveniently expressed as a function
of the incident power by using the dissipation parameter τ.
Equivalently, (6) can be written as follows:

1 = R2ρ + S 2 + R2m + τ (7)
If the RIS is assumed to be perfectly smooth and without
imperfections (while still taking the power dissipated in the
RIS into account), we obtain:

1 = ρ + m + τ (8)
Combining (7) and (8), the following identity is established:

S 2 =
(
1 − R2

)
(ρ + m) (9)

Even though not explicitly shown in (6), it is worth mention-
ing that the triplet of parameters (ρ,m, τ) depends, in general,
on the angle of incidence of the electromagnetic waves, i.e.,
(ρ(θi),m(θi), τ(θi)). If the RIS is illuminated by several plane
waves from different directions, this implies that each signal
needs to fulfill (6) based on the corresponding angle of inci-
dence. In wireless communications, this scenario corresponds
to a typical multipath propagation channel in which different
incident multipath components are scattered by the RIS. In
these cases, a complete angle-dependent characterization of the
triplet (ρ(θi),m(θi), τ(θi)) is needed, which is usually obtained
through full-wave numerical simulations or measurements in
an anechoic chamber. If the RIS is a periodic surface, the
impact of the angle of incidence can be retrieved by using
Floquet’s theory and the mode-matching approach [20].

Under the assumption of far-field illumination, i.e., the
incident wave is a plane wave, the aforementioned parameters
do not depend on the position of the tile dS on the surface.
This is similar to the original ER model. In this case, the power
balance constraint in (9) can be applied to the whole RIS. If
the transmitter is in the near-field region of the RIS, on the
other hand, the angle of incidence θi depends on the position of
the tile on the RIS. Therefore, the power balance in (9) holds
only locally, i.e., for the specific tile under consideration, and
the macroscopic parameters (ρ,m, τ) depend on the location
of the tile and the angle of incidence θi. Some RISs may be
realized, at the microscopic scale, by exciting evanescent (i.e.,
non-propagating) waves in the close proximity of the surface
in order to obtain wave transformations at high power efficien-
cies. These designs result in engineered surfaces with power
exchanges between different surface areas of the RIS, where
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local power losses and local power gains are observed. At
the macroscopic level, these implementations of RISs can be
modeled through the surface-averaged amplitude modulation
coefficient A (x′, y′) (further detailed are given in Section III).

In (6), the reradiated power can be further expressed as
a function of the ensemble of anomalous reradiated modes
that are excited by the incident electromagnetic field and that
are determined by the physical implementation and specific
microstructure of the RIS. As an example, the authors of
[25] have shown that a phase-gradient RIS that is engineered
to operate as an anomalous reflector for a large deflection
angle may reradiate power towards three dominant propagating
modes: the direction of specular reflection, the desired direc-
tion of reradiation, and the direction symmetric to the desired
direction of reradiation.

For generality, we assume that the RIS reradiates N prop-
agating modes. By denoting with mn the reradiated power
coefficient of the nth propagating mode, (7) and (9) can be
rewritten as follows:

1 = R2ρ + S 2 + R2
∑

n
mn + τ

=⇒ S 2 =
(
1 − R2

) (
ρ +

∑
n

mn

)
(10)

where
∑

n mn can be interpreted as the (macroscopic)
power reradiation coefficient of the RIS and the N-tuple
(m1,m2, . . . ,mN) defines how the reradiated power is dis-
tributed among the N modes. The N modes in (10) do not
include the specularly reflected mode, which is accounted for
separately by the coefficient ρ. This is convenient because
specular reflection is usually the most significant mode among
all parasitic diffracted modes, and it can be efficiently simu-
lated by using conventional ray-based methods.

The focus of this paper is the analysis and modeling of
reflective surfaces. The proposed approach can be generalized
for application to transmissive surfaces, i.e., RISs that scatter
the incident signals towards the forward direction, beyond the
wall. In this case, the forward-ER scattering model can be
applied [28]. The study of this case is left to a future work.

III. Reradiated Electromagnetic Field

The power balance constraint in (10) ensures that every
scattering component generated by an RIS is consistently
considered. In this section, we focus our attention on the
anomalously reradiated modes and discuss how to account
for the spatial modulation along the surface (in phase and
amplitude), which results in specified wave transformations.

According to Huygens’ principle, as mentioned, each sur-
face element of a finite-size RIS is viewed as a secondary
source of a spherical reradiated wavelet, with a given phase
and intensity, and the coherent superposition of the wavelets
generated by the tiles that comprise the RIS results in the
overall reradiated wave. As summarized in Table I, several
methods have been proposed, each one having its own ad-
vantages, limitations, and assumptions, to calculate the field
reradiated by a finite-size RIS. In the next two sub-sections,
we propose two methods: (i) an integral formulation based on
the induction equivalent theorem [23] and on a generalized

Algorithm I: Computation of the RIS-scattered total field
1. Electromagnetic characterization of the RIS (via analysis, full-wave
simulations, or measurements). For every reradiated mode, the
parameters (ρ,mn, S , τ) are defined as a function of the angle of
illumination. In this step, the RIS is assumed to be of infinite extent.
2. Computation of the field due to specular reflection: Especular. This is
obtained based on geometrical optics [27].
3. Computation of the diffracted field from the edges of the RIS, which
is related to specular reflection: EUTD−diffraction. This is obtained through
ray-based models that use, e.g., the uniform theory of diffraction [27].
4. Computation of the field due to diffuse scattering: Ediffuse. This is
obtained through the ER model introduced in Section II-A, which is
already available in ray-based simulators [27].
5. Computation of the field reradiated by the RIS: Em. This is obtained
by using the method introduced in Section III-A (see (16)) or in
Section III-B (see (26) and (31)).
6. Computation of the total scattered field through coherent summation:
ERIS = Especular + EUTD−diffraction + Ediffuse + Em

Algorithm I. Proposed approach for modeling the total scattered field from a
finite-size RIS and its integration into ray-based models and simulators.

version of the method of image currents applied to an RIS
modeled as an impedance boundary [5], [24]; and (ii) a method
based on the antenna theory. The two methods are compared
against each other, in order to assess their applicability and
performance.

Before introducing the two methods, we summarize in Al-
gorithm I the proposed approach for computing the complete
scattered field from a finite-size RIS, which encompasses the
integration of the reradiation model discussed in this section
into ray-based models. More specifically: (i) the specular
reflected field is obtained by using the geometrical optics
methods; (ii) the edge diffracted field related to the specularly
reflected field is obtained by applying the uniform theory of
diffraction [27]; (iii) the diffuse scattering is obtained from the
ER model introduced in Section II-A and iv) the anomalously
reradiated field is obtained through the methods described in
Sections III-A or III-B. The first three contributions are already
available in ray-based simulators, and they can then be used in
Algorithm I provided that the power balance constraint in (10)
is fulfilled. As mentioned, the focus of the rest of this section
is, on the other hand, the computation of the reradiated field,
which is not available in current ray-based simulators.

A. Reradiated Field – Integral Formulation

The first proposed method for computing the reradiated
field is based on an integral formulation that originates from
the induction theorem [23], [24] and a generalization of the
method of image currents.

First, we introduce the macroscopic spatial modulation
coefficient as:

Γ
(
x′, y′

)
= R ·

√
m · Am

(
x′, y′

)
exp

(
jχm

(
x′, y′

))
(11)

where P′ = (x′, y′) ∈ S RIS is a generic point of the surface
S RIS of the RIS. As introduced in Section II, m is the
reradiation intensity coefficient, and R is the Rayleigh factor.
Also, Am (x′, y′) and χm (x′, y′) are the amplitude and phase of
the spatial modulation introduced by the RIS for realizing the
desired wave transformation, respectively. To ensure that the
power balance constraint in (7) is fulfilled, we assume:

1
S RIS

∫
S RIS

A2
m
(
P′

)
dP′ = 1
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Fig. 3. Generalized current source that corresponds to a generic surface
element dS.

The surface-averaged coefficient in (11) needs to be interpreted
as a macroscopic spatial modulation applied to the incident
signal. In other words, Γ (x′, y′) is determined by the actual
microscopic structure of the RIS but hides it for analytical
tractability. If the RIS reradiates multiple propagating modes,
(11) is generalized to:
Γ
(
x′, y′

)
=

∑
n
Γn = R

∑
n

√
mnAmn

(
x′, y′

)
exp

(
jχmn

(
x′, y′

))
(12)

If the multiple reradiated modes are plane waves, the am-
plitude modulation coefficients Amn (x′, y′) are constant terms,
i.e., Amn (x′, y′) = Amn .

Let us assume that the macroscopic model of the RIS
exemplified by Γ (x′, y′) in (11) and (12) is known, e.g.,
through some analytical models, full-wave simulations, or
measurements. Let us adopt the notation illustrated in Fig. 3
for a generic surface element (dS) of the RIS, with P being the
observation point where the electromagnetic field is evaluated.
More specifically, we consider a finite-size RIS that lies in the
xy(z = 0) plane of an Oxyz coordinate system. The generic
surface element dS is centered at the point P′ = (x′, y′) ∈ S RIS ,
and n̂ is the normal unit vector that points outwards (i.e.,
towards the reflection space) the surface element dS.

In order to derive the reradiated field, the induction theorem
is applied [23], [24]. The original scattering problem is turned
into an equivalent problem (“induction equivalent”), where the
sources of the incident field are removed, and a distribution
of electric and magnetic current densities, which are the
equivalent sources of the reradiated field, is impressed on the
RIS surface.

In conventional electromagnetic scattering problems, the
induction equivalent problem is usually formulated and solved
for surfaces that can be modeled as a perfect electric conductor
(PEC) or as a perfect magnetic conductor (PMC). In these
cases, the method of image currents is applied, and the
total surface current densities are computed. In these cases,
either only magnetic or only electric current densities exist.
With the current densities at hand, the reradiated field is
computed by using the radiation integrals in the absence of
the surface. This approach is, however, not directly applicable
to engineered surfaces like an RIS. An RIS can be viewed as a
layer with a generic surface impedance, as discussed in [19],
[29]. Therefore, both electric and magnetic surface currents
need to co-exist simultaneously on its surface. Indeed, a PEC
boundary, for example, cannot produce reflections with any
phase except 180◦. Therefore, the method of current images
needs to be generalized. For brevity, the generalization is
detailed in Appendix A.

Based on Appendix A, the field reradiated by an RIS can

be found as generated by equivalent surface electric (J) and
magnetic (M) currents, which depend on the incident fields
and on the macroscopic surface modulation coefficient Γ (P′),
as follows:

J (P′) = (1 + Γ (P′)) [Hi (P′) × n̂]
M (P′) = (1 − Γ (P′)) [n̂ × Ei (P′)] (13)

where Ei and Hi denote the incident electric and magnetic
fields that are evaluated on the RIS surface. If the RIS operates
as a conventional PEC (i.e., Γ = −1) we obtain J (P′) = 0 in
(13), i.e., the induced electric currents are shorted by the PEC
surface. Similar considerations apply if the RIS is configured
as a conventional PMC, i.e., Γ = 1, which implies M (P′) = 0.

Equations (13) are obtained under the assumption that the
ratio of the amplitudes of the tangential components of the
reflected electric and magnetic fields is the same as the
ratio of the amplitudes of the tangential components of the
incident electric and magnetic fields. This is the physical
optics approximation, i.e., the incident wave is reflected spec-
ularly at every “point” (x′, y′) of the RIS. The assumption
of locally specular reflection is approximately valid if the
surface properties vary slowly at the wavelength scale. This
approximated approach is useful in practice, since accurate
solutions for the reradiated field exist only for infinite peri-
odical surfaces that are illuminated by plane waves. On the
other hand, ray-based algorithms are designed for spherical
waves and for finite-size surfaces, which may or may not
be periodical. If a periodical RIS is considered, however, the
modeling assumption of locally specular reflections implies
that the coefficients of the multi-mode expansion in (12) are
related but are not exactly the same as the coefficients of the
expansion in Floquet’s harmonics for periodical metasurfaces
[20]. As recently reported in [30] and [31], it is possible
to introduce a “locally anomalous reflection” model, which
assumes that, at every reflection point, the incident spherical
wave is approximated as a plane wave tangential to the wave
front, and the reflected field is modeled as an anomalously
reflected plane wave. This approach, that describes the RIS as
a locally periodical structure whose period is the size of its
constituent super-cell, is approximated as well, since it utilizes
the notion of local reflection coefficient for slowly-modulated
(at the wavelength scale) metasurfaces.

From (13), the reradiated field can be computed by using the
radiation integrals, which account for the finite size and shape
of the RIS. This approach, however, ignores the perturbations
of the macroscopic modulation coefficient close to the edges of
the RIS. This approximation has the same physical ground as
the common physical optics approximation: it is acceptable if
the size of the RIS is large compared with the wavelength and
if the spatial variations of the surface currents are sufficiently
slow at the scale of the RIS microstructure.

As a case study, we focus our attention on the field
reradiated by an RIS under the assumption that the incident
signal is a far-field (with respect to the primary source antenna)
spherical wave whose electric and magnetic fields can be
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formulated as follows:

Ei =

√
η

2π
PtGt · e jχ0 ·

e− jkri

ri
p̂i (14)

Hi =
1
η

k̂i × Ei

where η is the free-space impedance, Pt and Gt are the radiated
power and the antenna gain of the transmitter, respectively, p̂i
is the normal unit vector that embodies the polarization of the
incident wave, k̂i is the propagation unit vector, k = 2π/λ is
the wave number, and χ0 is a fixed phase shift. Also, ri is the
distance from the phase center of the transmitter to the point
where the fields are computed. If the fields are observed on
the surface of the RIS, then ri = ri (P′). It is worth noting
that only the tangential components of the fields Eiτ and Hiτ,
which can be formulated as:

Eiτ (P′) = n̂ × (Ei (P′) × n̂)
Hiτ (P′) = n̂ × (Hi (P′) × n̂) (15)

contribute to the surface currents in (13).
As illustrated in Fig. 3, r′ = (x′, y′, z′ = 0) denotes the

coordinates of the generic point P′ of the RIS, r = (x, y, z)
denotes the coordinates of the observation point P whose
corresponding normal unit vector is r̂, and r′′ is the difference
vector defined as r′′ = r − r′. Assuming that the equivalent
surface currents in (13) are the sources of the reradiated fields,
the electric field reradiated by the RIS can be formulated as
follows (the analytical details are available in Appendix A):

Em (P) =

"
S RIS

j
e− jkr′′

λr′′
[
r̂′′ ×

(
ηn̂ ×Ha

(
x′, y′

))
× r̂′′

]
dS

+

"
S RIS

j
e− jkr′′

λr′′
[
r̂′′ ×

(
Ea

(
x′, y′

)
× n̂

)]
dS

(16)
where r′′ = |r′′|, r̂′′ = r′′/ |r′′|, and the following surface
electric and magnetic fields are defined:

Ea (P′) = −
(1 − Γ (P′))

2
Eiτ (P′)

Ha (P′) =
(1 + Γ (P′))

2
Hiτ (P′)

(17)

The fields in (17) can be interpreted as an RIS-modified
Huygens’ field source, and are completely determined by
the tangential components of the incident fields and by the
macroscopic spatial modulation coefficient in (11) and (12).

It is worth noting that, according to the induction theorem,
(16) gives a valid result only if the reradiated field is computed
in the space above the surface. Moreover, due to the approxi-
mations used in the derivation, [see (A.6) in Appendix A], (16)
is valid if P is located in the far-field zone or in the radiative
near-field region of the RIS. It is not applicable in the reactive
near-field region of the RIS. In practice, it is sufficient that P
is located at a distance that is a few wavelengths away from
the RIS.

The reradiated magnetic field Hm can be obtained, mutatis
mutandis, by using (13) and then computing the corresponding
radiation integral for the magnetic field (see (A.10) in Ap-
pendix A). The formulation in (16) can be generalized to RISs
that change the polarization of the incident wave. Due to space
limitations, the impact of the polarization is not considered.
Simplified closed-form expressions for (16) can be obtained

in the Fraunhofer far-field region of the RIS [19], [20] (see
Appendix A). Equation (16) is, however, practically relevant
since, in some network deployments [8], the RIS may be large
enough that the observation point P is located in the radiative
near-field region. In general, (16) cannot be expressed in a
closed form expression and needs to be computed numerically.

B. Reradiated Field – Antenna-Array Formulation

Based on (16), the field reradiated by a finite-size RIS is
formulated in terms of a surface integral. The accuracy of the
computation depends on the discretization of the integrand
with the only constraint that the spatial sampling needs to
be finer than half of the wavelength λ. By assuming equal
sampling over x′ and y′, we obtain dS < (λ/2) (λ/2) = λ2/4
for ensuring the absence of grating lobes [19]. The mentioned
discretization is just needed for the numerical calculation
of (16) and it is not related to any physical component of
the RIS, such as the size of the unit cells. The numerical
computation of (16) poses, in general, no problem if a single
RIS is considered. If, however, (16) is employed to analyze
the system-level performance, e.g., to estimate the coverage
maps of a large-scale geographic region in which multiple
RISs are deployed, the computational complexity may be
considerable. The issue can be solved, in part, by using
parallelized implementations that exploit high-performance
graphic processing units (GPUs). In this case, the computation
time can be reduced by a factor that is comparable with the
number of available GPU cores, i.e., by the order of hundreds
in modern GPU architectures [22]. In this sub-section, we
discuss another method that can be used in lieu of (16) for
reducing the computational complexity and to simplify the
analytical formulation.

In the literature, another approach that has been used for
estimating the field reradiated by a finite-size RIS is based on
antenna theory. In this method, an RIS is viewed as an array of
scattering antenna elements [10]–[12]. Specifically, the RIS is
subdivided into surface elements of area ∆S , and each surface
element can be thought of as an aperture antenna that receives
the incident power Pi and reradiates a spherical wavelet whose
power is Pm, which is defined in (5), according to a given
power radiation pattern fm (θm), where θm is the angle of
observation of the reradiated wave. In general, fm (θm) needs
to be appropriately chosen. In the following, we first elaborate
on the constraints that ∆S needs to fulfill for ensuring that the
antenna-array model for the RIS is physically consistent.

The representation of a finite-size RIS as an antenna-
array is based on the known relation between the effective
aperture Am and the directivity Dm of an aperture antenna,
i.e., Dm =

(
4π/λ2

)
Am [24]. If ∆S is viewed as the physical

size of the aperture antenna, the antenna effective aperture
needs to be smaller than the size of the physical aperture,
i.e., Am ≤ ∆S . Otherwise, the antenna could receive and
could reradiate more power than the power that enters into the
aperture (i.e., Pm > Pi), which is possible only for resonant
antenna elements. In this paper, we assume that the antenna
elements are not resonant and behave as electrically large
aperture antennas, for which Am ≤ ∆S [32].
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To formulate an antenna-array model that is electromagnet-
ically consistent, therefore, we consider antenna elements for
which the following physical relations need to hold:

Dm =
(
4π/λ2

)
Am

Am ≤ ∆S
∆S ≤ λ2/4

⇒ Dm ≤ π (18)

where the third inequality ensures the absence of grating lobes.
For simplicity of notation, we assume ∆S = (∆l)2. From the
third equation in (18), we obtain ∆l ≤ λ/2 and ∆l = δλ with
δ ≤ δmax = 1/2. Thus, from (18), we have:

Dm =
(
4π/λ2

)
Am ≤

(
4π/λ2

)
∆S

= 4π (∆l/λ)2 = 4πδ2 (19)

By definition, the directivity Dm is always greater than one.
Thus, from (19), we obtain:

4πδ2 ≥ Dm ≥ 1⇒ δ ≥ δmin = 1/
(
2
√
π
)
≈ 0.28

Therefore, δ must satisfy the following constraints:
0.28 = δmin ≤ δ ≤ δmax = 0.5 (20)

From the lower bound in (20), we evince that modeling a
finite-size RIS as an antenna-array can be considered correct if
the size of each antenna element is greater than ∆lmin = 0.28λ.
A similar finding was recently identified through experimental
measurements in [10] and [11]. By assuming that the surface
element ∆S is chosen equal to the size of the unit cells, the
authors of [10] and [11] remark that the antenna radiation
pattern needs to be chosen as a function of the size of the
unit cell as well, in order to obtain physically consistent
and accurate results. It is worth mentioning, in addition, that
the mutual coupling among the antenna elements cannot be
ignored if ∆l < λ/2, but it can be approximately taken
into account by applying locally periodic boundary conditions
when estimating the reflection coefficient of each unit cell [10],
[11], [20].

Motivated by [10] and [11], let us analyze the interplay
between the antenna pattern fm (θm) and the size of the surface
element ∆S . An example of antenna pattern that is often
utilized in the literature is the exponential-Lambertian function
(see, e.g., [10], [11]). The corresponding power radiation
pattern is:

fm (θm) = (cos θm)α , θm ∈ [0, π/2] (21)
where α ≥ 0 is a tuning parameter. From (21), by definition
of directivity, we obtain Dm = 2 (α + 1) [11, Eq. (16)]. From
(18), we have (for every δ):

Dm = 2 (α + 1) ≤ π⇒ α ≤
π

2
− 1 ≈ 0.57 (22)

On the other hand, larger values of α would result in grating
lobes. Since, in addition, α ≥ 0, from (19) we obtain:

4πδ2 ≥ 2 (α + 1)|α=0 ⇒ δ ≥ 1/
√

2π ≈ 0.4 (23)
From (22), (23), and (20), we see that the radiation pattern

in (21) can be employed for modeling an RIS only if 0.4 ≤ δ ≤
0.5 and α ≤ 0.57. If the surface element ∆S is assumed equal
to a unit cell of the RIS, as in [10] and [11], the exponential-
Lambertian radiation pattern cannot be used for RISs whose
unit cells are electrically small, if i.e., δ < 0.4.

Another often utilized antenna pattern is the Huygens radi-

ation pattern, which is defined as:
fm (θm) = ((1 + cos θm) /2)2 , θm ∈ [0, π] (24)

The power antenna pattern in (24) is motivated by the
fact that the Huygens source constitutes a reference model
for small aperture antennas. Thus, it can be considered as a
suitable choice for representing a discretized implementation
of Huygens’ principle [32] and for modeling an RIS as an
antenna-array.

By definition of directivity, we obtain Dm=3 from (24).
From (19), therefore, we have:

4πδ2 ≥ Dm = 3⇒ δ ≥
1
2

√
3
π
' 0.49 (25)

Equation (25) unveils that the Huygens power radiation
pattern can be applied only if the size ∆S of the surface
elements of the RIS is greater than or equal to 0.49λ.

The analysis of the exponential-Lambertian and Huygens’
radiation patterns bring to our attention that modeling an
RIS as an antenna-array is possible, but some constraints on
the modeling parameters need to be ensured. Specifically, an
RIS can be modeled as an antenna-array provided that the
feasibility conditions in (18)–(20) are fulfilled. For example,
the size ∆S of the surface elements and the power radiation
pattern are interrelated. As a result, the analysis shows that ∆S
may not be chosen equal to the size of the unit cells of the RIS,
if the RIS is made of unit cells whose size is much smaller
than λ/2 and if the exponential-Lambertian or the Huygens
radiation patterns for the unit cells are utilized.

Let us assume that the feasibility conditions in (18)–(20)
are fulfilled. Then, we are in a position to formulate the field
reradiated by an RIS as the sum of the far-field spherical
wavelets that are reradiated by each surface element ∆S . This
is similar to the approach utilized in Section III-A, with the
difference that we consider a discretized version of the RIS
and that each surface element ∆S is associated with a given
power radiation pattern fm (θm). Similar to Section III-A, the
approach introduced in this section can be applied in the far-
field and in the radiative near-field regions of the RIS.

Specifically, the RIS is partitioned into NX × NY elemen-
tary surface elements ∆S . The generic surface element is
identified by the indices (u, v), where u = 1, 2, . . . ,NX and
v = 1, 2, . . . ,NY . The corresponding reradiated electric field
is denoted by ∆Em (u, v). Then, the total reradiated field
evaluated at the observation point P can be formulated as:

Em (P) =

NX∑
u=1

NY∑
v=1

∆Em (P |u, v ) (26)

To compute ∆Em (u, v), we use a two-step approach: (i)
first, we ensure that the reradiated power fulfills the power
balance constraint in (10) and then (ii) we account for the
phase/amplitude modulation that each surface element ∆S
needs to apply in order to realize the desired wave transfor-
mation.

As far as the power balance principle is concerned, the
quadruplet of parameters (m, τ, ρ, S) needs to fulfill (10).
In the proposed approach, the presence of possible non-
ideal reradiation effects and losses is accounted for by the
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parameter m < 1. This implies that the surface elements can
be modeled as ideal scattering aperture antennas and that
the effective area Am of the antenna can be assumed to be
equal to the geometrical size of the surface element ∆S, i.e.,
Am=∆S. Assuming, e.g., that Huygens’ power radiation pattern
is utilized for each surface element, this implies ∆l=0.49λ.
As a byproduct, this choice ensures that the mutual coupling
among the surface elements may be assumed negligible for
the first-order analysis.

Under these assumptions, let θi (u, v) and θm (u, v) denote the
direction of the incident wave and the direction of propagation
towards the observation point P, respectively, that correspond
to the surface element (u, v). Then, the reradiated electric field
can be formulated as follows:

∆Em (P |u, v ) = ∆Em0 (P |u, v )
√

fm (θm (P |u, v ))

· Γ (u, v) exp (− jk (ri (u, v) + rm (P |u, v ))) p̂m (27)
where p̂m is the unit normal vector that embodies the polar-
ization of the reradiated wave, ∆Em0 (P|u, v) is the complex
amplitude of the reradiated wave, Γ (u, v) is the macroscopic
spatial modulation coefficient in (11) and (12) that is evaluated
at (x′, y′) = (∆lu,∆lv), and the exponential term accounts for
the accumulated phase shift along the path from the transmitter
to the (u, v)th surface element of the RIS and from the latter
surface element to the receiver, which depends on the distances
ri (u, v) and rm (P|u, v).

To fulfill the power conservation principle, it needs to be
ensured that a fraction equal to mR2 of the power received
by the antenna element is reradiated into the upper half-
space, which is a solid angle of 2π steradians. Therefore, the
following power balance equation needs to hold:

mR2 |Ei|
2

2η
Am (θi) = mR2 |Ei|

2

2η
λ2

4π
fm (θi)

=

∫
2π

|∆Em (P)|2

2η
r2

mdΩ = 2π
|∆Em0 (P)|2

2η

·
∫ π/2

0
fm (θm) r2

m (P) sin (θm) dθm

where the dependence on (u,v) is omitted for ease of reading.
Therefore, we obtain:

mR2 |Ei|
2 λ

2

4π
fm (θi) = 2π |∆Em0 (P)|2

·
∫ π/2

0
fm (θm) r2

m (P) sin (θm) dθm

(28)

where |Ei|
2 = (η/2π)PtGt/r2

i (u, v) = Ei1/r2
i (u, v) is the power

intensity of the incident electric field according to (14).
As a result, the power intensity of the total reradiated field

can be formulated as follows:

|∆Em0 (P)|2 =
λ2

8π2

mR2Ei1∫ π/2
0 fm (θm) sin (θm) dθm

fm (θi)
r2

i r2
m

(29)

By combining (27) and (29), the reradiated electric field can

Fig. 4. Reradiated field [V/m] in the xz plane from a 7 × 7 m2 RIS that is
located in the xy plane and is centered at the origin. Setup: 3 GHz operating
frequency, normal incidence, reflection towards the angle of 60 degrees.

be formulated as follows:

∆Em (P |u, v ) =
λ

2π

√
mREi1√

2
∫ π/2

0 fm (θm) sin (θm) dθm

Γ (u, v)

·
√

fm (θi (u, v))
√

fm (θm (P |u, v ))

·
exp (− jk (ri (u, v) + rm (P |u, v )))

ri (u, v) rm (P |u, v )
p̂m

(30)

Notably, θm (P |u, v ) in (30) denotes the angle between the
(u, v)th tile and the observation point P. This latter angle is, in
general, different for each tile and is different from the desired
angle of reflection that is determined by the macroscopic
modulation coefficient Γ .

Based on (30), the corresponding magnetic field can be
obtained by using the local plane wave approximation for the
generic surface element of the RIS:

∆Hm = (1/η) r̂m × Ei

If the Huygens power radiation pattern is assumed, (30) can
be formulated as a closed-form expression, as follows:

∆Em (P |u, v ) =
√

mR Ei1Γ (u, v)

·
3λ
16π

(1 + cos θi (u, v)) (1 + cos θm (P |u, v ))

·
exp (− jk (ri (u, v) + rm (P |u, v )))

ri (u, v) rm (P |u, v )
p̂m

(31)
Finally, the complete reradiated electric field is obtained by

inserting (30) in (26). It is worth noting that (30) satisfies
the reciprocity condition if the surface-averaged macroscopic
coefficient Γ is a reciprocal function of the angle of incidence
and the desired angle of reflection. In the next section, the
desired angle of reflection is denoted by θr.

IV. Model Validation

In this section, we validate the proposed reradiation models
for RISs. Specifically, we consider examples of RISs for
which the macroscopic spatial modulation coefficient Γ is
obtained from analytical models, full-wave simulations, and
experimental measurements. Six case studies are analyzed.

1) Ideal Phase-Gradient Reflector: The first case study
corresponds to an ideal metasurface that introduces an ideal
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Fig. 5. Relative error (in percentage) of the antenna-array model with respect
to the integral formulation in (16).

phase modulation to the reflected fields, with the goal of
reradiating a single incident plane wave towards a target
direction in the absence of dissipation and undesired reradiated
modes. We consider a 7 × 7 m2 large RIS that lies in the
xy plane and that introduces a linear phase modulation such
that dχm (x′) /dx′ = k (sinθi − sinθr), where θi is the angle of
incidence and θr is the desired angle of reflection [25]. Being
an ideal case, the rest of the parameters in (11) are set equal
to m = 1, R = 1, and Am(x′, y′) = 1.

The RIS operates at 3 GHz and is illuminated normally (θi =

0) by a plane wave that is linearly polarized in the y-direction
and whose intensity is 1 V/m. The desired angle of reradiation
is θr = 60 degrees. The reradiated field is computed with the
integral model in Section III-A and is reported in Fig. 4. The
locations illustrated in Fig. 4 lie in the radiative near-field
region of the RIS, since the Fraunhofer far-field distance is
approximately equal to 1000 m for the considered setup. We
observe that the electric field is steered towards the desired
angle of reflection. As expected, in addition, we observe edge-
diffraction fringes that are due to the finite size of the RIS.

For comparison, we compute the reradiated electric field by
using the antenna-array model introduced in Section III-B, i.e.,
by using (26) and (31). For consistency, (16) is computed by
using the same discretization as for (26). The comparison is
illustrated in Fig. 5. The figure shows that the relative error is
less than 1-2% for most of the observation points. Thus, both
models provide consistent results. The antenna-array method
is, however, simpler and faster to compute. In particular, the
computation of the methods described in Section III-A and in
Section III-B requires 0.13 s and 1.8 · 10−2 s, respectively, for
each observation point. Therefore, the method in Section III-B
is six times faster than the method in Section III-A.

2) Ideal Focusing Lens: The second canonical case study
corresponds to an ideal and lossless metasurface that focuses
a single spherical wave towards an intended location, i.e.,
the metasurface operates as a reflecting focusing lens. In this
example, the angle of incidence is θi = 60 degrees, the RIS lies
in the xy plane at z0 = −10 m, and the intended focus is at the
origin. The phase modulation profile to obtain the desired rera-

diated wave is χm1 (x′, y′) = k
√

(x′)2 + (y′)2 + (z0)2 − ksinθix′,
while we assume unitary amplitude parameters as in the

Fig. 6. Reradiated field [V/m] from a 7 × 7 m2 focusing lens. Except for the
phase profile of the metasurface, the setup is the same as for Fig. 4.

Fig. 7. Radiation pattern of the lossless anomalous reflector in [20]. Setup:
normal incidence and the desired angle of reflection is 70 degrees.

previous case study. The results are illustrated in Fig. 6. We
see that the electric field is focused at the desired location
and that the intensity (ignoring the impact of the transmission
distances) is approximately 40 times stronger than the incident
field, thanks to the focusing capabilities of the RIS for this
considered application case. It is worth noting that the location
of the focusing point lies in the radiative near-field of the RIS.

3) Lossless Anomalous Reflector (with parasitic modes):
To evaluate the capabilities of the proposed model to account
for the presence of parasitic reradiated modes, we consider
the metasurface analyzed in [20, Fig. 9]. This case study
corresponds to a phase-gradient RIS that is lossless, periodic,
and is optimized based on the locally periodic approximation.
In [20], the metasurface is characterized with the aid of
electromagnetic simulations and on an approximate analytical
framework based on Floquet’s theory. In this example, the RIS
is illuminated by a normally incident plane wave at 3 GHz.
The modulation period of the metasurface is D = 0.1064 m
and the size of the RIS is 10D × 10D. The reradiated field
is evaluated at a distance equal to 22.64 m, which is close
to the Fraunhofer far-field boundary. The reradiation pattern
is illustrated in Fig. 7 and is obtained by using the antenna-
array formulation in Section III-B in the absence of losses
and diffuse scattering, as in [20]. The reradiated field in
(26) is computed by taking into account two anomalous
reradiated modes that are combined with specular reflection
and diffraction, according to Algorithm I. Specifically, specular
reflection and diffraction are obtained by using state-of-the-art
ray-based methods. Specular reflection, anomalous reradiation,
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Fig. 8. Far-field (dBV/m) scattering pattern of the lossless anomalous reflector
considered in [20] in the absence of diffuse scattering (reference black curve),
and in the presence of 40% (blue curve) and 80% (red curve) of the incident
power diverted into diffuse scattering.

and diffraction are appropriately weighted according to the
power balance principle in (10) and are then coherently
summed together to obtain the total scattered field. More
precisely, Fig. 7 is obtained by setting ρ=0.17 (undesired
specular reflection), m1=0.76 (desired anomalous reflection),
and m2=0.17 (undesired symmetric reflection). By comparing
Fig. 7 with [20, Fig. 9], we observe a good agreement between
the two reradiation patterns.

4) Diffuse Scattering: The fourth case study is centered on
analyzing the impact of diffuse scattering that originates from
design trade-offs, construction nonidealities and/or the deposit
of dust on the surface of the RIS. To the best of our knowledge,
no specific experimental results on modeling diffuse scattering
from engineered surfaces exist in the literature. Thus, we con-
duct a parametric study, in order to assess the potential impact
of diffuse scattering on the radiation pattern of an RIS. The
numerical results are shown in Fig. 8 for different values of
the scattering parameter S in (10). The metasurface considered
in Fig. 8 is the lossless anomalous reflector analyzed in Fig. 7.
In Fig. 8, we study the impact of diffuse scattering under
the assumption that 40% (S2=0.4) or 80% (S2=0.8) of the
incident power is diverted into Lambertian diffuse scattering
according to the power balance constraint in (10). Although
the considered values for S may be overestimated, we choose
them to make the curves more readable. Figure 8 shows the
important role that diffuse scattering can play in RIS-aided
communications. In particular, we see that the intensity of
the electric field towards the desired direction of reflection
is reduced, and that the intensity of the sidelobes increases
as S increases. Differently from Fig. 7, a logarithmic scale is
used to highlight the sidelobes.

5) Lossy Anomalous Reflector: The fifth case study is
centered on validating the proposed macroscopic model for
characterizing a phase-gradient lossy metasurface that has

Fig. 9. Far-field radiation pattern (ρ = 0, S = 0,m = 0.97) corresponding to the
lossy phase-gradient metasurface reported in [33, Fig 2.c]. The corresponding
benchmark radiation pattern is available in [33, Fig 2.d].

Fig. 10. Far-field radiation pattern (ρ = 0, S = 0,m = 0.9) corresponding to the
lossy phase-gradient metasurface reported in [33, Fig 2.e]. The corresponding
benchmark radiation pattern is available in [33, Fig 2.f].

been manufactured and experimentally characterized [33].
To match the parameters of the proposed model with the
metasurface designed in [33], we set ρ = 0 and S = 0.
In addition, the metasurface in [33] is designed to realize
anomalous reflection and to suppress the parasitic reradiation
modes. Although the metasurface is engineered based on the
local design, for moderate angles of reradiation, the scattering
into parasitic modes can be ignored. Part of the incident power
is dissipated, but a single reradiated mode exists, and (10)
reduces to m+τ = 1. The rest of the simulation parameters are
the same as those in [33]. The reradiation pattern is obtained
by using the antenna-array model and is illustrated in Fig. 9
and Fig. 10 for the desired angles of reflection, and by setting
m = 0.97 and m = 0.9, respectively. From Fig. 9 and Fig. 10,
we see that the reradiation patterns are in good agreement
with those reported in [33]. This confirms the suitability and
accuracy of the proposed macroscopic reradiation and power
conservation models.

6) Analysis of the Spreading Factor: The final case study
is centered on evaluating whether the proposed model can
correctly reproduce the transition from the near-field to the
far-field regions of a finite-size RIS. Based on the considered
modeling assumptions, the power intensity of the electric field
is expected to be constant as a function of the distance in the
near-field region, while it is expected to decay with the square
of the distance in the far-field region. To validate this trend, we
consider an ideal phase-gradient reflector that is illuminated
by a normally incident plane wave (θi = 0◦) with a unitary
electric field, which is steered towards an anomalous angle of
reflection equal to θr = 30◦. Specifically, we compute local
averages of the intensity of the electric field over regions of
size 10λ× 10λ, and as a function of the observation distances
along the direction of the main lobe of the reradiation pattern.

The results are shown in Fig. 11 for different values for the
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Fig. 11. Local average of the amplitude of the reradiated electric field by an
ideal phase-gradient reflector with Ei = 1 V/m, θi = 0◦, θr = 30◦. The curves
are computed by using (16) as a function of the distance and for different
sizes of the RIS at the frequency f = 3 GHz.

size of the RIS, i.e., 2 × 2 m2, 5 × 5 m2, and 7 × 7 m2, which
correspond to 20λ×20λ, 50λ×50λ, and 70λ×70λ, respectively,
at the operating frequency of 3 GHz. From Fig. 11, we see
that the intensity of the electric field has a behavior that is
consistent with the theoretical expectations. Let us consider,
for example, an RIS whose size is 7 × 7 m2. The average
intensity of the electric field remains almost constant up to
several tens of meters from the RIS. This is due to the
assumption of plane-wave illumination and to the large size
of the RIS compared with the distance. If the observation
point is located in the radiative near-field region of the RIS,
the average intensity of the electric field is characterized by
some ripple effects that are determined by the impact of the
edge-diffracted waves. If the observation point is located in the
Fraunhofer far-field region of the RIS, i.e., at distances greater
than approximately 1000 m for the considered case study, the
average intensity of the electric field has the typical slope of
a spherical wave. The trend is the same for RISs having a
smaller size with the only exception that the transition between
the two slopes of the curves occur for shorter distances, as
expected. Therefore, we conclude that the proposed approach
can model both near-field and far-field propagation regimes.

V. Conclusion

We have introduced a physically consistent and realistic
macroscopic model for evaluating the multi-mode reradiation
and diffuse scattering from general engineered reconfigurable
surfaces. The model is based on a hybrid approach, according
to which well-established ray-based methods for modeling
specular reflection, diffraction, and diffuse scattering, are com-
plemented with the Huygens principle for modeling anomalous
reradiated modes. Specifically, ray-based and Huygens-based
methods are coupled together through a parametric power
balance constraint that ensures the energy conservation be-
tween the incident and scattered fields. We have compared
two different formulations of the Huygens principle. The
first approach is based on the induction theorem and the
second approach is based on antenna-array theory. Further-
more, the feasibility and accuracy of both methods have been
discussed. In addition, we have implemented the complete
macroscopic model and have validated its accuracy against
analytical models, full-wave electromagnetic simulations, and

Fig. A1. Conventional (a) and modified (b) method of image currents. The
image currents replace the presence of the object (scatterer, i.e., the RIS) for
the purpose of calculating the field outside of it.

experimental measurements available in the literature. Possible
generalizations of the proposed model include its use for link-
level and system-level performance evaluations in realistic
multipath propagation scenarios, as well as the development
of a ray-based framework for modeling multi-mode reradiation
for different types of reconfigurable surfaces.

Appendix A
Generalized method of image currents and derivation of (16)

By virtue of the induction theorem and the theorem of image
currents [23], [24], the field reradiated by a physical object (a
scatterer) that is illuminated by an incident electromagnetic
field can be determined by equivalent electric and magnetic
surface current densities, which depend on the incident signal
and by appropriate image current densities that are in turn
determined by the incident signal and the physical properties
of the object, i.e., the RIS in our case. In canonical electromag-
netic scattering problems, the object is assumed to be either a
PEC or a PMC. However, an RIS is a more complex surface,
for which it is necessary to consider Maxwell’s equations
in the presence of both electric and magnetic currents. For
general wave transformations, therefore, the reradiated field
depends on both current densities [20].

The method of current images can be generalized in the
presence of an RIS as shown in Fig. A1. Fig. A1.a repre-
sents the conventional case of a PEC surface element, where
the induced electric currents are shorted by the PEC. After
applying the method of images and removing the surface,
thus, only the magnetic currents are non-zero. On the other
hand, Fig. A1.b depicts the case study of a surface element
(e.g., a RIS surface element) that is characterized by a generic
surface impedance, and the corresponding modified method
of images. In this latter case, electric and magnetic currents
are present after removing the surface, and they both depend
on the macroscopic coefficient Γ , which can be interpreted as
the local reflection coefficient under the assumption of locally
specular reflection. Therefore, the rest of the proof assumes
that every single point of the RIS is the source of a wavelet
that is locally polarized as a specularly reflected wave and is
spatially modulated with the coefficient Γ . The reradiated wave
is obtained, by virtue of Huygens’ principle, as a result of the
summation of the locally reflected wavelets.
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Specifically, according to the induction theorem, the induced
surface currents are:

Ji (P′) = Hi (P′) × n̂
Mi (P′) = n̂ × Ei (P′) (A.1)

where P′ = (x′, y′) ∈ S RIS is a generic point on the surface
of the RIS, n̂ is the unit normal vector that points outwards
(i.e., towards the reflection half-space), and Ei and Hi are the
incident electric and magnetic fields, respectively. In addition,
the image current densities are (see Fig. A1.b):

Jimag (P′) = Γ (P′) Ji (P′)
Mimag (P′) = −Γ (P′) Mi (P′) (A.2)

where Γ (P′) is the macroscopic spatial modulation coefficient
in (11) and (12).

Based on (A.1) and (A.2), the field reradiated by the RIS
can be calculated by replacing the RIS with the total surface
current densities as follows:

J (P′) = (1 + Γ (P′)) [Hi (P′) × n̂]
M (P′) = (1 − Γ (P′)) [n̂ × Ei (P′)] (A.3)

and by assuming that the reradiation occurs in the absence
of any physical objects, i.e., in free space. The total surface
currents in (A.3) assume that the RIS is of infinite extent and
the impact of the edges on the surface currents is ignored.

By using the notation in Fig. 3, the electric field that is
reradiated by a finite-size RIS in the generic observation point
P = (x, y, z) above the surface can be obtained from Kottler’s
formula [34, Eq. (18.4.1)]:

Em (P) = 1/ ( jωε)
∫ ∫

S RIS
k2G (x′, y′) J (x′, y′) dS

+1/ ( jωε)
∫ ∫

S RIS
(J (x′, y′) ·∇′)∇′G (x′, y′) dS

−1/ ( jωε)
∫ ∫

S RIS
jωεM (x′, y′) × ∇′G (x′, y′) dS

(A.4)

where ∇′ denotes the gradient operator with respect to (x′, y′),
“×” denotes the vector cross product, “ · ” denotes the scalar
dot product, and G (x′, y′) is the free-space Green’s function:

G
(
x′, y′

)
= e− jk|r−r′ |/

(
4π

∣∣∣r − r′
∣∣∣) = e− jkr′′/

(
4πr′′

)
(A.5)

where r′′ = r − r′ and r′′ = |r′′|. It can be observed that the
gradient operator ∇′ can be written as follows:

∇′ = ∇′ |r − r′|
∂

∂ |r − r′|
= −

r′′

|r′′|
∂

∂r′′
= −r̂′′

∂

∂r′′

when it acts on a function of r′′ = |r − r′| =√
r · r − 2r · r′ + r′ · r′.
Besides, the second and third integrals in (A.4) can be sim-

plified by taking into account that, for typical communication
scenarios that encompass the radiative near-field and far-field
regions of the RIS, the following approximations hold true:

∇′G (x′, y′) =

(
jk +

1
r′′

)
e− jkr′′

4πr′′
r̂′′ ≈ jkG (x′, y′) r̂′′

∇′ ≈ jk r̂′′
(A.6)

where the terms that decay faster than 1/r′′ are neglected.
By using (A.6), the following expression is obtained:

(J (x′, y′) ·∇′)∇′G (x′, y′)
≈ −k2G (x′, y′) (J (x′, y′) · r̂′′) r̂′′ (A.7)

Also, the following triple vector product identity holds:
J (x′, y′) − (J (x′, y′) · r̂′′) r̂′′ = r̂′′ × (J (x′, y′) × r̂′′) (A.8)

By inserting (A.6), (A.7) and (A.8) in (A.4), and recalling
that k/ (ωε) = η, the reradiated electric field can be formulated

as follows:
Em (P) ≈ − jk

∫ ∫
S RIS

ηG (x′, y′)
[
r̂′′ × (J (x′, y′) × r̂′′)

]
dS

− jk
∫ ∫

S RIS
G (x′, y′) (M (x′, y′) × r̂′′) dS

(A.9)
By substituting (A.3) and (A.5) in (A.9), we eventually

obtain (16). The proof follows by noting that the reradiated
field in (A.9) is formulated in terms of the surface current
densities in (A.3) and it can hence be obtained from the
incident wave and the macroscopic coefficient in (11) or (12).

In a similar way, the expression of the reradiated magnetic
field can be obtained by applying the approximations (A.6) to
the Kottler’s formula for the H field [34, Eq. (18.4.1)]:

Hm (P) ≈ − jk
∫ ∫

S RIS

1
η

G (x′, y′)
[
r̂′′ × (M (x′, y′) × r̂′′)

]
dS

+ jk
∫ ∫

S RIS
G (x′, y′) (J (x′, y′) × r̂′′) dS

(A.10)
Finally, we note that (A.9) and (A.10) can be further

simplified in the Fraunhofer far-field region of the RIS, and, in
some cases, the reradiated field may be formulated in a closed-
form expression. Due to space limitations, the corresponding
formulas are not reported but they can be obtained by using
the following approximation:

G
(
x′, y′

)
=

e− jk|r−r′ |

4π |r − r′|
≈

e− jk|r|

4π |r|
exp

(
jk

(
r
|r|

· r′
))

(A.11)
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