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Quantum algorithms for differential equation solving, data processing, and machine learning po-
tentially offer an exponential speedup over all known classical algorithms. However, there also exist
obstacles to obtaining this potential speedup in useful problem instances. The essential obstacle
for quantum differential equation solving is that outputting useful information may require difficult
post-processing, and the essential obstacle for quantum data processing and machine learning is that
inputting the data is a difficult task just by itself. In this study, we demonstrate, when combined,
these difficulties solve one another. We show how the output of quantum differential equation solv-
ing can serve as the input for quantum data processing and machine learning, allowing dynamical
analysis in terms of principal components, power spectra, and wavelet decompositions. To illustrate
this, we consider continuous time Markov processes on epidemiological and social networks. These
quantum algorithms provide an exponential advantage over existing classical Monte Carlo methods.

I. INTRODUCTION

One of the primary proposed applications of quan-
tum computers is the solution of linear differential
equations on high-dimensional spaces. The ability of
quantum computers to represent N -dimensional vec-
tors as the state of log2N qubits, and to perform lin-
ear algebraic transformations of those states in time
poly(logN), then translates into a potential expo-
nential speedup over classical algorithms for solving
such high-dimensional differential equations. The
output of the quantum computer presents the solu-
tion to the equation as a quantum ‘history state’ that
is a superposition of the solution at different points
in time. The problem then arises: How do we ex-
tract useful information from that quantum solution
state? We can measure the expectation value of dif-
ferent quantities of interest: however, in the example
of Markov chains, such expectation values can often
be evaluated efficiently classically via Monte Carlo
techniques. To obtain a quantum advantage that re-
veals essential features of the solution to the linear
differential equations, we need to perform quantum
post-processing on the history state.

Quantum machine learning and data processing
algorithms provide potential exponential speedups
over classical counterparts for methods such as high-

dimensional regression, principal component anal-
ysis, and support vector machines [1–4]. A basic
problem with such quantum algorithms is that the
input to the algorithm is a quantum state that en-
codes the classical data, and to construct such a
state requires the implementation of a large-scale
quantum random access memory (qRAM), a difficult
technological task. The central observation of this
study is that the problem with quantum linear equa-
tion solvers – they give quantum states as output
– and the problem with quantum machine learning
and data processing algorithms – they require quan-
tum states as input – effectively solve each other:
the output from the quantum linear equation solver
can be used as the input to the quantum machine
learning or data processing algorithm. In particular,
we show that the history-state quantum solution to
high-dimensional linear differential equations takes
exactly the form needed to perform quantum anal-
ysis of the solution via quantum machine learning
and data analysis. We show how to produce the sin-
gular values and singular vectors of the solution via
quantum principal component analysis, and how to
extract the power spectrum of the solution by per-
forming quantum Fourier transforms. This analysis
reveals the dominant components of the time evo-
lution, corresponding to large singular values and
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eigenvalues of the transition matrix with small neg-
ative real part. Finally we show how to perform
quantum wavelet analysis to reveal rapid transitions
and emergent features in the solution at different
time scales. These quantum algorithms for post-
processing the solution of linear differential equa-
tions can yield an exponential speedup over classi-
cal methods, and could potentially be performed on
near term intermediate scale quantum computers.

The quantum post-processing of the history state
to reveal salient features of the history can be ap-
plied to any linear differential equation. To show
how quantum post-processing reveals such features,
we focus on the case of continuous time Markov
chains on high-dimensional spaces, with an empha-
sis on the spread of disease and opinion in complex
social networks. Previous quantum algorithms for
Monte Carlo methods yielded a square root speedup
over classical algorithms [5]. By contrast, the quan-
tum algorithms presented here for analyzing linear
dynamics in terms of singular values, power spectra,
and wavelets represent an exponential speedup over
existing classical Monte Carlo methods.

II. RESULTS

A. Quantum algorithms for linear differential
equations

Quantum numerical algorithms solve differential
equations by quantizing classical numerical proce-
dures and performing matrix operations on finite,
high-dimensional state spaces [6–9]. We write a gen-
eral linear differential equation for a vector in RN
with N � 1 in the form

d~x(t)

dt
=M~x(t) + ~c (1)

where x(t) represents the state of the system at time
t,M is the N×N differential equation matrix, and c
is a forcing term. For example, in the case of Markov
models, the state space is represented by a probabil-
ity vector x(t) with entries xi(t) indicating the prob-
ability of the system existing in state i at time t, and
M the transition matrix.

Well-known quantum algorithms [6, 7] can solve
linear differential equations of the form of Eq. 1,
where M is a sparse matrix, by applying the
quantum algorithm for linear systems of equations
[10, 11]. The algorithms of Refs. [6, 7] are based on
a simple underlying idea, but require highly nontriv-
ial technical improvements in order to achieve a low

computational complexity. For the sake of a clearer
exposition, we present here only the basic idea, and
refer the reader to Refs. [6, 7] for a complete presen-
tation of the algorithms. We consider the differential
equation (Eq. 1) for 0 ≤ t ≤ tmax. The idea is based
on the standard classical methods for discretizing
Eq. 1 in T time steps each of size h = tmax/T and
re-framing it as the solution to an equation of the
form

A~x = ~b (2)

where

~x =


~x0
~x1
~x2
...
~xT

 =


~x(0)
~x(h)
~x(2h)

...
~x(Th)

 (3)

is a ‘vector of vectors’ that contains the values of
the state vectors for the system, ~x` = ~x(t`), at dif-
ferent moments of discretized time t` = `h. A is
a matrix that represents the updating action of the
discretized differential operator. The form of A and
~b depends on which discretization method one em-
ploys for the differential equation (e.g., Euler for-
ward, Euler backward, Crank-Nicolson, etc.). The
simplest method is Euler forward, where

A =


I 0 . . . 0 0

−(I +M∆t) I . . . 0 0
. . .

0 0 . . . I 0
0 0 . . . −(I +M∆t) I


(4)

and

~b =


~x0
~c
...
~c

 (5)

The solution to the differential equation is then ob-
tained by inverting the matrix in Eq. 2:

~x = A−1~b (6)

Roughly speaking, the quantum algorithms of [6, 7]
map the classical states onto quantum states, ~x →
|x〉, ~b → |b〉, and solve the problem using quantum
matrix inversion to construct the normalized version
of the unnormalized quantum state |x〉 = A−1|b〉,
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which represents a quantum superposition of the so-
lutions of Eq. 1 at different points in time.

We will base our results on the algorithm of Ref.
[7], which has the lowest computational complex-
ity. This algorithm sets T = dtmax ‖M‖e, employs
the Taylor expansion of the matrix exponential to
solve the differential Eq. 1, and produces a coherent
superposition of the quantum state |x〉 with some
garbage state associated to the terms of the Taylor
series. We show in Appendix A that the normalized
version |x̄〉 = |x〉/‖|x〉‖ of |x〉 can be recovered from
the quantum state produced by the algorithm of Ref.
[7] with O(1) success probability.

Form of the quantum solution The (unnor-
malized) quantum state |x〉 contains registers for the
states and time-steps:

|x〉 =
T∑
i=0

|xi〉 |i〉 (7)

where the entries of |xi〉 are the values of the state
for timestep |i〉. |x〉 is a quantum ‘history state’:
a superposition of the different timesteps |i〉, corre-
lated/entangled with the corresponding state vectors
|xi〉 at that timestep.

The quantum state in Eq. 7 can now be post-
processed using efficient quantum algorithms such
as those for wavelet transforms or quantum machine
learning. Alternatively, history states encoding the
evolution of an arbitrary quantum circuit at different
times can be created by preparing the ground state
of a local Hamiltonian [12, 13] and then subsequently
post-processed.

Computational runtime and scaling of the
error The computational complexity of the quan-
tum algorithm of Ref. [7] is linear in the condition
number and the time, and logarithmic in the error.
We show in Appendix A that, by running this al-
gorithm and by suitably projecting the generated
quantum state, we can obtain a quantum state that
is ε-close to the state |x〉 in 2-norm with

O

(
κ′ poly log

((
1 +

tmax ‖~c‖
‖~x(0)‖

)
κ′N
ε

))
(8)

elementary quantum gates. Here κ′ = κ tmax ‖M‖ s,
κ is the condition number of the matrix that is used
to diagonalize M and s is the sparsity of M.

Furthermore, input states |b〉 for differential equa-
tion solvers can often be efficiently constructed via
efficient algorithms that apply sparse matrix or lo-
cal operations. This is especially true in the case of
Markov chains, further discussed later, where initial

states are often supported on a sparse number of en-
tries or locally uniformly throughout the possible set
of states (see Appendix B).

Application to the Schrödinger equation In
the case where M is anti-Hermitian, then Eq. 1
is the Schrödinger equation [12]. In this case, the
Fourier analysis of the history state reveals the eigen-
values and eigenvectors of M. For example, when
M is the Feynman Hamiltonian, the history state
encodes the history of quantum computation and
the Fourier analysis reveals its eigenstates. Finding
the eigenstates of the Feynman Hamiltonian is at
least as hard as performing the quantum computa-
tion [14].

B. Continuous time Markov chains

To illustrate the power of our methodology, in this
study, we focus on differential equations for contin-
uous time Markov chains which update probability
distributions over state space by assuming that the
probability of making a transition to the next state
only depends on the current state of the Markov
chain. Here, we focus on Markov chains that rep-
resent dynamics of complex networks, particularly
those modeling the spread of opinion and disease.
The dynamics of complex networks are modeled via
Markovian techniques by assuming that each node
in a network exists in one of q states. A central
challenge in this setup is in handling the dimension
of the Markov state which grows exponentially with
the number of nodes in a graph, often rendering the
problem intractable for classical computers. For ex-
ample, in epidemiology, modeling the dynamics of
infection and recovery for a system of individuals
whose interactions make up a complex network of
n nodes is a hard computational problem that in-
volves predicting the behavior of a very large qn

dimensional continuous time probabilistic dynam-
ics [15, 16]. The exact solution for the dynamics of
such epidemiological models lies beyond the realm of
capability of even the most powerful classical com-
puters. Consequently, classical approaches typically
rely on various approximations, such as mean field
theory [15].

Continuous time Markov chains are defined by dif-
ferential equations of the form

d~x(t)

dt
=M~x(t) (9)

where ~x(t) is the vector of probabilities for the un-
derlying state of the system at time t, and M is a
matrix of transition rates [17, 18].
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Eq. 9 is precisely of the form required in Eq.
1 for efficiently solving differential equations using
quantum algorithms. As shown in Appendix A, the
quantum algorithm of Ref. [7] can be employed to
produce a normalized version of the quantum state

|x〉 =
∑T
i=0 |xi〉 |i〉 storing the state probabilities at

discretized times. Note that the quantum algorithm
represents the vector of probabilities as quantum
vector of probability amplitudes.

Generalization to non-Markovian models
We can generalize our algorithms to incorporate
prior histories in a “non-Markovian” model. The
Markovian nature to the methods for solving differ-
ential equations is reflected in the form of the matrix
A in Eq. 4 above. The fact that the Euler forward
method for discretizing a differential equation de-
pends only on the current and previous state of the
system implies that A only has entries on the diag-
onal and directly below the diagonal. If we wish to
include influences on the present from further in the
past (including the distant past), then we can simply
add additional entries to each row: adding a matrix
entry Aij , j < i to the i’th row of A allows the state
of the system at time j < i to influence the updating
at time i. This change cannot be directly incorpo-
rated in the algorithm of Ref. [7], which relies on the
Taylor expansion of the matrix exponential, but it
can easily be incorporated in the previous algorithm
of Ref. [6], which directly solves Eq. 2.

C. Quantum post-processing

The solution of our quantum differential equation
solver |x〉 exists in a very high dimensional Hilbert
space, and here, we discuss methods to obtain use-
ful information from |x〉 using various quantum al-
gorithms that can offer exponential speedups over
classical counterparts. In this study, we focus on
the particular case of post-processing outputs from
continuous time Markov chain models. The algo-
rithms we list here are by no means comprehensive
of the full catalog of algorithms available to quan-
tum computer scientists for extracting information
from these states.

Post-processing: expectation values of
quantities The most basic information that can
be extracted from a Markov chain is the expecta-
tion value at a given time of a real-valued observ-
able on the state space. Classically, such expectation
values can be estimated efficiently by Monte Carlo
sampling of the Markov chain up to the required
time. In the quantum case, expectation values of

quantities can be obtained by estimating the over-
lap of the history state with a state encoding the
values of the quantity we wish to calculate. In Ap-
pendix C, we consider two quantum algorithms to
compute such expectation values. The first is based
on a post-processing of the quantum history state
of the Markov chain, and the second is based on the
coherent version of the classical Monte Carlo simula-
tion of the Markov chain. As shown in Appendix C,
one can obtain a quadratic speedup in the error of
estimating an observable using quantum techniques
for Monte Carlo sampling.

Post-processing: principal component anal-
ysis of data matrix If the history state is effec-
tively low rank, i.e., there are only a few large sin-
gular values, then the description of the time evo-
lution of the Markov process can be compressed by
expressing it in terms of the corresponding singu-
lar vectors, which the quantum principal component
analysis also reveals. The history state will be effec-
tively low rank, for example, when the Markov tran-
sition matrix has only a few eigenvalues with small
negative parts, so that the dynamics is dominated
over longer times by the corresponding eigenvectors.

In the case of continuous time Markov chains, the
quantum state in Eq. 7 can be interpreted as a qn×T
data matrix Xmat where each column j corresponds
to the probabilities of the Markov state at timestep
j. The dominant singular values and correspond-
ing singular vectors of this matrix can be extracted
from |x〉 by performing quantum principal compo-
nent analysis (qPCA) on the |xj〉 and |j〉 registers
which runs in O(Rn log q) time where R is the rank
of Xmat [2]. Note, that qPCA in this setting is
equivalent to performing a Schmidt decomposition
on the Hilbert spaces spanned by registers |xj〉 and
|j〉. The qPCA performs this decomposition via den-
sity matrix exponentiation [2]. It is often the case
that the effective rank R (the number of large sin-
gular values) of Xmat is small with respect to the
number of states qn, and later, we show that the
effective rank is in fact very small for the example
models we consider. Note that because our method
acts directly on a quantum state, quantum inspired
algorithms for PCA do not have access to the data
structure for extracting the singular vectors and sin-
gular values of the history state [19–21]. Specifically,
in Appendix D, we show that classical Monte Carlo
methods cannot efficiently extract the singular vec-
tors and the singular values of the history state (Eq.
7) whenever the support of the probability distribu-
tion is exponentially large in the number of nodes of
the network.

After performing qPCA via density matrix expo-
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nentiation on copies of |x〉, we have a decomposition
of the data matrix into left and right singular vec-
tors:

qPCA : |x〉 →
T∑
j=0

|lj〉 |rj〉 |σ̃j〉 , (10)

where |lj〉 are the left singular vectors corresponding
to the Markov states, |rj〉 are the right singular vec-
tors corresponding to the temporal states, and |σ̃j〉
are estimates of the singular values. The singular
values |σ̃j〉 represent the weight of the left (Markov
state) and right (temporal state) singular vectors in
the solution. It is conventional to take the ordering
in j in Eq. 10 to be from the largest to smallest
singular values.

The left singular vectors |lj〉 can be interpreted as
the most common profile of Markov states. The first
left singular vector corresponds to the profile with
the greatest contribution to the data matrix, often
the steady state of the Markov process. The next
few singular vectors typically correspond to the pro-
file of states in the early progression of the Markov
simulation before steady state is achieved (see sim-
ulations later for examples).

The right singular vectors |rj〉 detail the progres-
sion of the corresponding left singular vectors over
time. For example, the first singular vector is typ-
ically weak during the early progression and grows
to a constant value as the steady state arises. The
next few right singular vectors show when the corre-
sponding left singular vectors take prominence, of-
ten highest in magnitude at early points in time (see
simulations later for examples).

Decomposing the data into singular vectors also
allows one to apply efficient transformations to
the singular vectors using quantum post-processing
methods. For example, if one is interested in ana-
lyzing the Markov states in the frequency domain,
a quantum Fourier transform can be applied to the
right singular vectors. Later, in our example, we
show that the dominant singular vectors correspond
to slowly varying dynamics at low frequencies and
the later singular vectors correspond to more rapidly
varying dynamics at higher frequencies.

Post-processing: efficient quantum trans-
formations Fourier transforms and wavelet trans-
forms are commonly used in the analysis of large
datasets, especially time series [22–25]. Discrete
wavelet transforms, for example, can be used to
identify statistical patterns in a time series. With
a quantum computer, Fourier transforms and cer-
tain discrete wavelet transforms can be performed
exponentially faster than their classical counterparts

[26–28]. These transforms can be applied to the data
contained in our output quantum state (Eq. 7). For
example, a Fourier transform or wavelet transform
can be applied to the time register, e.g. to observe
the data in the frequency domain or to compress
the data in terms of the dominant wavelets. Let
Ujk = 〈k|j〉 be the element of the unitary matrix
U that maps the states |j〉 to the transform states
|k〉 (frequency states in the case of the quantum
Fourier transform; wavelets in the case of the dis-
crete wavelet transform). Applying U to the tempo-
ral register, we obtain the state

T∑
j=0

|xj〉U |j〉 =

T∑
j,k=0

|xj〉Ujk |k〉 =

T∑
k=0

|yk〉 |k〉 ,

(11)

where |yk〉 =
∑T
j=0 Ujk |xj〉, is the state of the sys-

tem correlated with the kth frequency or wavelet
state in the temporal register. Sampling from the
temporal register then yields the dominant frequen-
cies/wavelets, and the spatial register yields the
state of the system correlated with those frequen-
cies/wavelets. For example, as noted above in the
discussion of the Schrödinger equation, in Eq. 1, if ~c
is 0 and the matrixM is anti-Hermitian, performing
a quantum Fourier transform on the temporal reg-
ister yields the purely imaginary eigenvalues of M
and the output contains the corresponding eigenvec-
tors [29]. More generally, when the eigenvalues of
M have both real and imaginary components, per-
forming the quantum Fourier transform reveals the
power spectrum of the solution: a complex eigen-
value a + ib manifests itself as a Lorentzian peaked
at the natural frequency

√
a2 + b2.

By contrast, classical Monte Carlo sampling does
not obviously extract the proper information for per-
forming Fourier or wavelet transforms on the quan-
tum state (see Appendix D).

Post-processing: quantum machine learn-
ing In the past few years, many quantum algo-
rithms for machine learning have been proposed that
can be performed exponentially faster than classical
counterparts when data inputs are quantum states
[1, 3, 4, 30–34]. When data in the form of Eq. 7 is
used as input, applications of machine learning al-
gorithms are numerous. Here we list some of these
applications, grouped by the type of model used.
First, quantum models have been proposed for com-
pression of data or efficient readout. These models
include quantum auto-encoders [34, 35] and qPCA
as discussed before [2]. Second, a wide range of al-
gorithms implementing kernel methods can be used
to classify data, identify key features in the data, or
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measure similarity between different datasets [4, 36–
38]. Indeed, if we trace out the temporal register in
Eq. 7, the state register is described by the (un-
normalized) density matrix

∑
j |xj〉 〈xj |, which is

the covariance matrix for the synthetically generated
data which can be analyzed directly. Third, output
states can be input into parameterized quantum cir-
cuits or quantum neural networks to identify key fea-
tures or perform machine learning tasks [32, 39, 40].

D. Example simulation for epidemic processes

The analysis of epidemic spreading – viral or so-
cial – is often modeled as a dynamical process on
a complex network [15]. Theoretical approaches to
epidemic processes typically assume transitions (e.g.
rates of infection) occur as Poisson processes which
correspond to models of continuous time Markov
chains [15, 41]. Classically, numerical simulation of
continuous time Markov processes is intractable for
large networks as the dimension of the Markov state
grows exponentially with the number of nodes in the
network or graph.

To demonstrate the applicability of our quan-
tum algorithm, we simulate continuous time Markov
chain models on simple seven node networks. We
choose a relatively small network so that we can
still visually represent the full solution to the con-
tinuous time Markov chain. Here, we present mod-
els for analyzing viral epidemics and perform sim-
ilar analysis for social epidemics in Appendix E.
For ease of graphical presentation, we implement
susceptible-infected-susceptible (SIS) epidemiologi-
cal models which have only two states per node: sus-
ceptible and infected. This is in contrast to the more
realistic susceptible-infected-recovered (SIR) models
which also fits within the framework of our algo-
rithms, but can be hard to visualize and plot since
they have many more states (3n as opposed to 2n).

Epidemic simulations of viral contagion
We present analysis of a Markov simulation for
a susceptible-infected-susceptible (SIS) model on a
single network shown in Fig. 1a. Our simple
model features many common properties of contin-
uous time Markov chain simulations. Notably, it is
common that Markov transition matrices have only
a small number of dominant eigenvalues (i.e., those
whose values are close to zero) thus rendering them
suitable for analysis similar to that performed here
for small networks. Of course, network models with
more nodes will likely have emergent phenomena
that will not appear in this small network – phe-
nomena that one may hope to analyze using quan-

tum computers [15, 41].
For an SIS model, the full state at time t is de-

scribed by a vector ~x(t) of length 2n (n = 7 for our
example). All transitions are modeled as Poisson
processes with transition matrix Q.

d~x(t)

dt
= Q~x(t) (12)

We begin in an initial state where any node has a
35% probability of being infected and conduct anal-
ysis over the intermediate phase of the epidemic,
between days one and two. To numerically esti-
mate the state at discretized times ~xt, we employ
a Forward Euler method that begins at the state of
the epidemic on day one and ends at day two over
T = 1027 timesteps (step size h ≈ 0.001 days):

~xt+1 = ~xt + hQ~xt (13)

From day one to day two, the epidemic has spread
sufficiently that multiple individuals are likely to be
infected, and the probability distribution has spread
throughout the space. As noted above, this is the
regime where the quantum algorithm provides an
exponential advantage over existing classical Monte
Carlo techniques.

Fully simulating the above for T steps constructs
a data matrix Xmat where column i is equal to xi−1
(we assume initial state x0 is included in this matrix
as well).

Xmat =

 | | |
~x0 ~x1 . . . ~xT
| | |

 (14)

where we note that this data matrix can be inter-
preted as a classical version of the quantum output
state shown in Eq. 7.

In Fig. 1b, we plot the probabilities of states of
the Markov process over time providing a visualiza-
tion of the data matrix Xmat. Subsequent post-
processing of this data matrix is performed on the
segment of data between days one and two. We note
that though Fig. 1b contains a complete description
of the Markov history state, extracting trends and
analyzing this figure can be challenging. For larger
networks, visualization of this data matrix cannot
be efficiently performed and we now turn our atten-
tion to efficient quantum algorithms for extracting
salient features from this data matrix.

Simulations: quantum principal component
analysis (qPCA) The output of our continuous
time Markov chain algorithm is stored in a data ma-
trix, visualized in Fig. 1b. In the quantum set-
ting, this data matrix is a quantum state which we

6
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6a

states 0.0 0.2 0.4 0.6 0.8 1.0
time (in days)

b

10−3

10−2

10−1
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FIG. 1: (a) The 7 node network used for simulation of the continuous time Markov chain. Line widths
correspond to the rate of infection from infected neighbor nodes (rSI = {0.4, 0.8, 1.6} from thinnest to
thickest lines). Network has the feature that some nodes (e.g., node 2 and 3) are strongly connected to

neighboring nodes and others (e.g., node 5) are not. (b) Probabilities of Markov states over the course of
three days shown as a colorbar chart (logarithmically scaled). Post-processing is performed on the data
between days one and two contained in the orange box. States are enumerated as rows on the left hand

side, each denominated by a 7 node colorbar numbered node 0 on the left to node 6 on the right.
Dark/light color indicates a node in that state is infected/susceptible respectively.

can subsequently post-process using various efficient
quantum algorithms. One available post-processing
algorithm is quantum Principal Component Analy-

sis (qPCA) as in Eq. 10, which can compress the
data into its singular vectors [2]. If the matrix is
low rank, as in our example with exponentially de-
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caying singular values (see Fig. 2a), qPCA can be
performed in time logarithmic in the dimension of
the full Markov state [2]. The principal components
can be subsequently transformed or even measured.

The most dominant left (Fig. 2b) and right (Fig.
2c) singular vectors can be interpreted as the most
common profile of states (left vectors) and their cor-
responding trajectories in time (right vectors). In
our example, the first singular vector corresponds
to the steady state of our epidemic. Note that it
takes prominence almost completely throughout the
course of the simulation (see right singular vector in
Fig. 2c). The second singular vector plots impor-
tant changes in the epidemic as more nodes become
infected. The corresponding right singular vector
plots the steady, almost linear, transition over time
as this singular vector takes prominence. Similarly,
the third and fourth singular vectors plot trends in
the progression of the epidemic, especially in early
phases where nodes become infected.

Simulations: Fourier and wavelet analy-
sis For small networks such as the one studied
here, the data in the Fourier domain is dominated
by the steady state contributions as shown in Fig.
3a. With quantum algorithms, one also has the op-
tion of transforming the individual singular vectors
into their frequency components as shown in Fig.
3b. The second to fourth singular vectors all have
strong contributions from low frequencies, whose
values provide an indication of the rate of change
in the progression of the Markov chain. Given the
small network size, this dominance of low frequency
components is perhaps not altogether surprising.
Larger networks encounter phenomena not observed
in small networks, and may potentially reveal inter-
esting features in the Fourier domain [15, 41] if they
are analyzed with a quantum computer.

Beyond the standard Fourier transform, quan-
tum computers offer the advantage of efficient post-
processing via wavelet transforms [26]. Continuing
the example shown in the main text, here we trans-
form the time dimension of our data matrix using a
Haar wavelet transform, which can be performed ef-
ficiently on a quantum computer [26]. When viewed
in the Haar wavelet basis (form of wavelets shown
in Fig. 4a), one can analyze the characteristic
timescales over which differences in the Markov state
probabilities become apparent. Perhaps unsurpris-
ingly, as shown in Fig. 4b, the zeroth Haar vec-
tor is most prominent as this corresponds to the
steady state of the Markov chain. More interesting
results are observed in analysis of the singular vec-
tors, which can also be transformed into the Haar
domain as shown in Fig. 4c. Here, clear differences

can be observed in the Haar basis of the steady state
singular vector (first singular vector) and later vec-
tors. The first singular vector is dominated by the
zeroth Haar wavelet (constant wavelet) since that
singular vector corresponds to the steady state. The
next few singular vectors corresponding to changes
in the intermediate progression of the epidemic are
dominated by Haar vectors with support over vari-
ous phases. For example, the third and fourth singu-
lar vectors take large values over Haar vectors with
support in the early phases of the simulation (e.g.,
fourth and eighth Haar vectors).

E. Potential for realization on near term
quantum devices

The algorithms proposed here are potentially suit-
able for near term quantum devices [42] with around
100 qubits. We note that the presence of noise in
near term quantum devices, which is not analyzed
here, may present a challenge to the successful im-
plementation of these algorithms. Nevertheless, if
challenges with noise are addressed via error cor-
rection or other means, our algorithms can be used
to analyze the output of high dimensional differen-
tial equations outside the reach of available classical
algorithms. For example, Markov states of dimen-
sionality 250 can be simulated for a million timesteps
(approximately 220) on a quantum computer with
100 qubits using algorithms from [7]. Given the
output state, quantum principal component analy-
sis and wavelet transforms can subsequently be per-
formed to analyze the history state generated by the
near term quantum device [2, 26, 43].

III. DISCUSSION

Common quantum algorithms for solving linear
differential equations output quantum states corre-
sponding to solutions of physical models in high di-
mensional vector spaces. These output states store
the complete history of the solution to a differential
equation, allowing one to perform efficient quantum
post-processing on these solution states. Our ap-
proach avoids a commonly cited drawback of many
quantum machine learning and data processing algo-
rithms – that classical inputs must be mapped into
quantum states or stored in qRAM. We focus here
on the case of Markov models and propose efficient
quantum algorithms for evaluating continuous time
Markovian and non-Markovian models. Our algo-
rithms allow for efficient simulation of Markov mod-
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FIG. 2: (a) Singular values of data matrix Xmat decay exponentially fast. (b) First four left singular
vectors scaled by the square root of their corresponding singular values show that much of the disease

progression can be understood by just observing the first few vectors. States are enumerated as rows on
the left hand side, each denominated by a 7 node colorbar numbered node 0 on the left to node 6 on the

right. Dark/light colors indicate a node in that state is infected/susceptible respectively. (c) Values of the
right singular vectors scaled by the square root of their corresponding singular values show the progression

of the epidemic over time. The first singular vector depicts the steady state and the next few singular
vectors detail the intermediate course of the Markov process.

els on the complete state of a Markov chain. Out-
puts of our models are quantum states which can be
efficiently generated and then passed as inputs for
other efficient quantum post-processing algorithms
(e.g., quantum signal analysis and machine learn-
ing). The quantum post-processing reveals features
of the data such as the singular value decomposi-
tion, the power spectrum, and wavelet decomposi-
tions, which cannot be reconstructed efficiently us-
ing classical sampling algorithms. When applied to
complex networks, the quantum algorithms may be
used to reveal such fundamental features of the dy-
namics of epidemics potentially exponentially faster
than classical algorithms.
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(and supplementary information files).
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Appendix A: Proofs of runtimes and error bounds

1 Generation of the quantum history state

Let T = dtmax ‖M‖e, let δ > 0 and let k ∈ N with k ≥ 5 and (k + 1)! ≥ 2T . The quantum algorithm
of Ref. [7] discretizes the differential equation in T time steps of size h = tmax/T , truncates the Taylor
expansion of the matrix exponential at the k-th order and produces an approximate normalized version |φ〉
of the quantum state

|y〉 =

T−1∑
i=0

k∑
j=0

|i, j〉|yi,j〉+ |T, 0〉|yT,0〉 . (A1)

For sufficiently large k, the vectors |yi,0〉 are close to the solution of the linear differential equation at the
i-th time step [7, Theorem 6]:

‖~x(ih)− |yi,0〉‖ ≤ 2.8κ i
‖~x(0)‖+ tmax ‖~c‖

(k + 1)!
, (A2)

and the vectors |yi,j〉 for j ≥ 1 are some garbage vectors associated to the terms of the Taylor expansion of
the matrix exponential, of which we do not need the exact form. Their norms are upper bounded by [7, eqs.
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(99), (100)]

‖|yi,j〉‖ ≤
‖|yi+1,0〉‖+ ‖|yi,0〉‖

(3− e) j!
. (A3)

Let

|ȳ〉 =
|y〉
‖|y〉‖

(A4)

be the normalized version of |y〉. The quantum state |φ〉 satisfies

‖|φ〉 − |ȳ〉‖ ≤ δ (A5)

and the algorithm requires

O

(
κ k2 tmax ‖M‖ spoly log

κ k tmax ‖M‖ sN
δ

)
(A6)

elementary quantum gates [7, eq. (128)].
An approximation of the quantum history state |x〉 can be obtained by projecting the second register of

the quantum state |φ〉 on the 0 value. Let 〈0|φ〉 be the unnormalized projection. In the following, we show
that its success probability is O(1), and that choosing

δ = O(ε) ,

k = O

(
log

((
1 +

tmax ‖~c‖
‖~x(0)‖

)
κ tmax ‖M‖

ε

))
(A7)

we can achieve ∥∥∥∥ 〈0|φ〉‖〈0|φ〉‖
− |x̄〉

∥∥∥∥ ≤ ε . (A8)

From Eq. A6, this modification of the algorithm of Ref. [7] requires

O (κ tmax ‖M‖ s

poly log

((
1 +

tmax ‖~c‖
‖~x(0)‖

)
κ tmax ‖M‖ sN

ε

))
(A9)

elementary quantum gates.

Success probability

We assume that

δ ≤ 1

2
√

66
. (A10)

We have from Eq. A3

k∑
j=1

‖|yi,j〉‖2 ≤
(‖|yi+1,0〉‖+ ‖|yi,0〉‖)2

(3− e)
2

∞∑
j=1

1

j!2

≤ 1.28 ∗ 2
‖|yi+1,0〉‖2 + ‖|yi,0〉‖2

(3− e)
2 , (A11)
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and

T−1∑
i=0

k∑
j=1

‖|yi,j〉‖2 ≤
1.28 ∗ 4

(3− e)
2

T∑
i=0

‖|yi,0〉‖2

≤ 65

T∑
i=0

‖|yi,0〉‖2 . (A12)

Let 〈0|y〉 be the projection of |y〉 onto the 0 value of the second register. The success probability of such
projection is

‖〈0|ȳ〉‖2 =

∑T
i=0 ‖|yi,0〉‖

2∑T
i=0 ‖|yi,0〉‖

2
+
∑T−1
i=0

∑k
j=1 ‖|yi,j〉‖

2

≥ 1

66
. (A13)

Let 〈0|φ〉 be the projection of |φ〉 onto the 0 value of the second register. We have from Eq. A5, A13 and
A10

‖〈0|φ〉‖ ≥ ‖〈0|ȳ〉‖ − ‖〈0|ȳ〉 − 〈0|φ〉‖

≥ ‖〈0|ȳ〉‖ − δ ≥ 1

2
√

66
, (A14)

therefore the success probability of the projection satisfies

p = ‖〈0|φ〉‖2 ≥ 1

264
. (A15)

Error analysis

From Eq. A2, the distance between the quantum history state |x〉 and the projection 〈0|y〉 satisfies

‖|x〉 − 〈0|y〉‖2 =

T∑
i=0

‖~x(ih)− |yi,0〉‖2

≤ 2.82 κ2
(‖~x(0)‖+ tmax ‖~c‖)2

(k + 1)!
2

T (T + 1) (2T + 1)

6
, (A16)

then

‖|x〉 − 〈0|y〉‖ ≤ κ‖~x(0)‖+ tmax ‖~c‖
2k+4

√
3T (T + 1) . (A17)

We have from Lemma 1 ∥∥∥∥|x̄〉 − 〈0|y〉
‖〈0|y〉‖

∥∥∥∥ ≤ ‖~x(0)‖+ tmax ‖~c‖
‖|x〉‖

κ
√

3T (T + 1)

2k+3

≤
(

1 +
tmax ‖~c‖
‖~x(0)‖

)
κ
√

3T (T + 1)

2k+3
. (A18)

We choose

k =

⌈
log2

((
1 +

tmax ‖~c‖
‖~x(0)‖

)
κ
√

3T (T + 1)

4ε

)⌉

= O

(
log

((
1 +

tmax ‖~c‖
‖~x(0)‖

)
κ tmax ‖M‖

ε

))
, (A19)
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such that ∥∥∥∥|x̄〉 − 〈0|y〉
‖〈0|y〉‖

∥∥∥∥ ≤ ε

2
. (A20)

We have from Eq. A5, A13 and Lemma 1 again∥∥∥∥ 〈0|φ〉‖〈0|φ〉‖
− 〈0|ȳ〉
‖〈0|ȳ〉‖

∥∥∥∥ ≤ 2 ‖〈0|φ〉 − 〈0|ȳ〉‖
‖〈0|ȳ〉‖

≤ 2
√

66 δ , (A21)

such that choosing

δ =
ε

4
√

66
(A22)

we have ∥∥∥∥ 〈0|φ〉‖〈0|φ〉‖
− 〈0|ȳ〉
‖〈0|ȳ〉‖

∥∥∥∥ ≤ ε

2
(A23)

and ∥∥∥∥ 〈0|φ〉‖〈0|φ〉‖
− |x̄〉

∥∥∥∥ ≤ ∥∥∥∥ 〈0|φ〉‖〈0|φ〉‖
− 〈0|ȳ〉
‖〈0|ȳ〉‖

∥∥∥∥
+

∥∥∥∥ 〈0|y〉‖〈0|y〉‖
− |x̄〉

∥∥∥∥ ≤ ε (A24)

as required.

Lemma 1. Let v, w be vectors in a normed vector space. Then,∥∥∥∥ v

‖v‖
− w

‖w‖

∥∥∥∥ ≤ 2
‖v − w‖
‖v‖

. (A25)

Proof. We have ∥∥∥∥ v

‖v‖
− w

‖w‖

∥∥∥∥ ≤ ‖v − w‖+ |‖w‖ − ‖v‖|
‖v‖

≤ 2
‖v − w‖
‖v‖

. (A26)

Appendix B: Input state preparation

Input states to differential equations encode boundary conditions and initial states. These input states
can be prepared via two different methods discussed here.

a Efficiently constructed quantum initial states The most optimal setting which commonly occurs in
differential equation analysis is when input vectors are sparse or efficient to construct on a quantum computer.

For a standard linear differential equation in the form d~x(t)
dt =M~x(t) + ~c, the boundary conditions take the

form below (copied from the main text):

~b =


~x0
~c
...
~c

 .
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Note, that in quantum algorithms, copies of the vector above are encoded into the quantum state at

appropriate locations. It is often the case that ~b is sparse or easily computed by local operations. This is
especially true in the case of Markov chains algorithms where c = 0 and the initial state is either sparsely
supported or locally independent. For example, applying Hadamard gates to all qubits in the initial state
constitutes one easy method to construct the initial state with uniform support over all states. Similarly,
applying single qubit operations to each node provides an easy method to form an initial state where one
has knowledge of individual nodes independent of other nodes.

b Input states via qRAM If it is not possible to efficiently construct the initial state via sparse matrix
or local operations as discussed above, another option one can use is inputting states via a quantum random
access memory (qRAM) data structure [44, 45]. qRAM data structures store data (i, xi) ∈ [n] in a form that
allows for quantum queries in superposition |i, 0〉 → |i, xi〉 in time O(poly log(n)). Constructing such a data
structure would, in general, require O(n) quantum operations [45]. However, in settings where subsequent
computations require longer runtimes, say O(n2) or O(n3) time, then such a qRAM data structure can be
efficiently employed in our algorithms.

Appendix C: Sampling and calculating observables of Markov states

To determine the Tqn individual probabilities of a Markov state xj(k), for j = 0 to T , k = 1 to N = qn

stored in a quantum state, one would have to make an exponentially large number of measurements. However,
one can use quantum measurements to reveal a wide variety of desired properties of the quantum system at
time j. To extract the expectation value of some desired quantity Q (total number infected, variance of the
infection rate across the graph, existence of hot spots, etc.) we need to make a quantum measurement to
estimate the expectation value

〈Q〉 =

N∑
k=1

xj(k)Q(k) (C1)

where Q(k) is the value of Q on the k’th state of the vertices of the graph.
First, we have to make sure that we obtain the state |~xj〉 with high probability. In the formulation given

above, this state only occurs in the overall superposition |x〉 with amplitude O(1/
√
T ). The standard way to

amplify the probability of finding the answer at the desired time j [6] is to pad out the matrix A following
the j’th row with O(T ) rows of the form

(0 . . . 0 − I I 0 . . . 0) (C2)

where the I term in each −I I 0 sequence lies on the diagonal. These rows induce a trivial dynamics in
which all the states in the solution following the j’th state also contain the state |~xj〉. This technique allows
us to obtain the state |~xj〉 with probability O(1).

To obtain 〈Q〉 =
∑N
k=1 xj(k)Q(k), we use standard techniques of quantum state preparation [46]. We

assume that we are given access in quantum superposition to the individual values of the variable Q(k)
together with its partial sums over ranges of k; The techniques of [46] then allow us to construct the
(unnormalized) state

|Q〉 =

N∑
k=1

Q(k)|k〉 (C3)

in time O(logN) = O(n log q). Define ZQ =
∑N
k=1Q(k)2. Even if ZQ is not known beforehand, its value is

revealed during the state preparation process [46]. The normalized version of |Q〉 is then

|Q̃〉 = Z
−1/2
Q |Q〉 (C4)
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We can now use a swap test between |Q̃〉 and |x̃j〉 to measure the overlap 〈Q̃|x̃j〉. This overlap in turn
allows us to measure

〈Q〉 =

N∑
k=1

xj(k)Q(k) = 〈Q|xj〉 = Z
1/2
j Z

1/2
Q 〈Q̃|x̃j〉 (C5)

In conclusion, even though we don’t have access to the individual probabilities for states, the quantum
algorithm allows us to measure expectation values for a wide variety of observables efficiently. This method
allows us to use the quantum algorithm to extract expectation values of the desired quantities.

Comparison to classical complexity Extracting expectation values could also be done classically using
classical Monte Carlo to sample from the probabilistic dynamics. Because of the local form of the probabilistic
updating rule, the number of computational steps required to draw one sample of the Markov chain at time
t scales as

O(n(t/h) log q) . (C6)

The average of Q over O
(

log 1
δ

/
ε2
)

samples is ε-close to 〈Q〉 with probability at least 1− δ, and its compu-
tation has complexity

O

(
n(t/h) log 1

δ log q

ε2

)
. (C7)

Quantum speedup of Monte Carlo sampling The quantum algorithm of Ref. [5] provides a quadratic
improvement in the dependence of the complexity Eq. C7 of Monte Carlo sampling on the precision ε. More
precisely, let us assume that 0 ≤ Q(k) ≤ 1 for any k = 1, . . . , N (this can always be achieved by a suitable
linear redefinition of Q). Let U be a quantum unitary operator that implements a unitary dilation of the
classical algorithm for the Monte Carlo sampling of the Markov chain. We can assume that the complexity
of U has at worst a constant overhead with respect to the classical algorithm, and therefore has the same
scaling Eq. bC6. Then, Theorem 2.3 of [5] implies that, for any 0 < ε < 1 and any 0 < δ < 1 there exists
a quantum algorithm that, with O

(
log 1

δ

/
ε
)

applications of U , outputs µ ∈ R such that |µ− 〈Q〉| < ε with
probability at least 1− δ. The complexity of the algorithm is therefore

O

(
n(t/h) log 1

δ log q

ε

)
, (C8)

with the promised quadratic improvement in the ε-dependence with respect to Eq. C7.

Appendix D: Classical algorithms for Principal Component Analysis

Here we show that the singular vectors and singular values of the data matrix X cannot be efficiently
estimated with classical methods whenever ‖|xj〉‖2 is exponentially small in the number of nodes for any
time step, i.e., if the size of the support of the probability distribution is always exponential. More precisely,
we show that none of the entries of X†X can be estimated efficiently. Indeed, if xj(k) is the probability of
the k-th state at the time step j, the jj′ entry of X†X is(

X†X
)
jj′

=
∑
k

xj(k)xj′(k) , (D1)

and is equal to the probability that, in a couple of independent Monte Carlo simulations of the Markov chain,
the state of the first simulation at the step j is equal to the state of the second simulation at the step j′.
This probability can be estimated by running many couples of simulations of the Markov chain. However,
the estimate will be zero until a couple with the state of the first simulation at the step j equal to the state
of the second simulation at the step j′ is found. This event will typically happen after

O

(
1

(X†X)jj′

)
≥ O

(
1

maxi ‖|xi〉‖2

)
(D2)

runs, which is exponentially large in the number of nodes if ‖|xj〉‖2 is exponentially small for any time step.
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Appendix E: Additional simulations and figures

1 Epidemic simulations of social opinion

Continuous time Markov chains can also be implemented to simulate the spread of social opinion. Here, we
consider a model where nodes can exist in one of three states: conservative, liberal, or undecided. As in our
analysis on viral epidemics, we perform simulations on the same 7-node network as in the main text. Similar
to before, transitions from undecided to liberal or conservative occur at rates dependent on the strength of
connection to other liberal or conservative nodes respectively. The data matrix is analyzed between days
one and two of the ”social epidemic”, where at day zero, all states are equally likely.
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FIG. 5: Quantum principal component analysis of the spread of social opinion. (a) Singular values of data
matrix Xmat decay exponentially fast. (b) Values of the right singular vectors scaled by the square root of

their corresponding singular values show the progression of social opinion over time. The results are
consistent with prior results for the analysis of viral epidemics on the same network.

As shown in Fig. 5a, the data matrix in this case is similarly low rank. Furthermore, we see similar
progressions over time in the right singular vectors as shown in Fig. 5b. The first singular vector corresponds
to steady state contributions, whereas later singular vectors chart the most prominent changes in the data
matrix over time.
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2 Model of social distancing
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FIG. 6: (a) The 7 node network used for simulation of continuous time Markov chain where transitions
from susceptible to infected and vice-versa occur with rates rSI = 1.5, reduced by a factor of five when four

or more nodes are infected. (b) Probabilities of Markov states over time shown as colorbar chart
(logarithmically scaled). States are enumerated as rows on the left hand side, each denominated by a 7

node colorbar numbered node 0 on the left to node 6 on the right. Dark/light color indicates a node in that
state is infected/susceptible respectively.

Supplementary to the main text, we show results here for a simulation of a Markov chain which incorporates
effects of ”social distancing” in the Markov model. Specifically, we simulate a viral epidemic on the same
network as in the main text where transitions from susceptible to infected and vice-versa occur with rates
rSI = 1.5 and rIS = 0.33 respectively as long as three or fewer nodes are infected. When four or more nodes
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are infected, ”social distancing” is enacted and transitions from susceptible to infected occur at a fifth of the
original rate (rSI = 0.3). As expected, this shifts the steady state away from situations where all nodes are
infected to those where four nodes are infected.

The complete progression of this model is plotted in Fig. 6b. Note, that the state where all nodes are
infected is now unlikely; instead, the states where four or five nodes are infected become very likely (i.e., the
social distancing works).
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FIG. 7: (A) Singular values of data matrix X decay exponentially fast. (B) First four left singular vectors
scaled by the square root of their corresponding singular value show that states where four nodes are

infected become prominent as this is the inflection point for social distancing. States are enumerated as
rows on the left hand side, each denominated by a 7 node colorbar numbered node 0 on the left to node 6

on the right. Dark/light colors indicate a node in that state is infected/susceptible respectively. (C) Values
of the right singular vectors scaled by the square root of their corresponding singular value show the

progression of the epidemic over time. The first singular vector depicts the steady state and the next few
singular vectors detail the intermediate course of the Markov process.

As with the original model, singular values decay exponentially rapidly (see Fig. 7a). The first four left
singular vectors are plotted in Fig. 7b scaled by their corresponding singular value. The steady state singular
vector has clearly changed with respect to the original model. Analysis of the first singular vector shows
that the dominant states are those where no node is infected and four nodes are infected (i.e., the transition
point of social distancing).

Appendix F: Markov states incorporating more than just simple nodes

Markov models can incorporate nodes of different types which interact in a customized fashion. Fig. 8
outlines some of the different options available to one modeling epidemiological processes. Utilizing quantum
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algorithms, nodes of different types can be stored in separate registers. Analysis and post-processing of the
Markov states using a quantum state can take advantage of the structure inherent in these expanded models.
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infected
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model with testing/treatment nodes
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FIG. 8: By customizing the properties of nodes in a network, Markov states can model various different
phenomenon. Here, we show some of the options available to expand the functionality of a Markov state.
In these cases, states are stored in a tensor product structure where information corresponding nodes of

different types can be stored in separate registers.

Appendix G: Experimental details

All experiments were performed in Python using the packages Numpy [47] and Scipy [48]. For simulations
of epidemic spreading, to construct the transition matrix Q for our experiments, we use the method detailed
in [49]. We assume transitions from infected to susceptible (i.e., recovery rate) occur at rate rIS = 0.33
indicating that it takes about three days on average to recover from infection. Transitions from susceptible
to infected occur at a rate rSI ∈ {0.4, 0.8, 1.6} depending on a node’s connection strength to a neighboring
node.

To simplify the exposition, our experiments and simulations were performed classically. In Appendix A, we
further discuss, the asymptotic runtimes and errors for performing our algorithms on a gate based quantum
computer. We also show that input states for Markov models can typically be efficiently constructed using
simple quantum operations.
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