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8 ABSTRACT: High-efficiency perovskite-based solar cells comprise sophisti-
9 cated stacks of materials which, however, often feature different thermal
10 expansion coefficients and are only weakly bonded at their interfaces. This may
11 raise concerns over delamination in such devices, jeopardizing their long-term
12 stability and commercial viability. Here, we investigate the root causes of
13 catastrophic top-contact delamination we observed in state-of-the-art p-i-n
14 perovskite/silicon tandem solar cells. By combining macroscopic and
15 microscopic analyses, we identify the interface between the fullerene electron
16 transport layer and the tin oxide buffer layer at the origin of such delamination.
17 Specifically, we find that the perovskite morphology and its roughness play a
18 significant role in the microscopic adhesion of the top layers, as well as the film
19 processing conditions, particularly the deposition temperature and the
20 sputtering power. Our findings mandate the search for new interfacial linking strategies to enable mechanically strong
21 perovskite-based solar cells, as required for commercialization.

22 In the past few years, monolithic perovskite/silicon
23 tandems, combining perovskite and silicon solar cell
24 technologies, have enabled high power conversion
25 efficiencies (PCEs) in a possible cost-effective way, which
26 holds great promise for their mass production.1−3 To date,
27 most of the tandem research has focused on pursuing PCE
28 increases,4−9 often by introducing sophisticated stacks of
29 materials. However, for commercialization, tandems need to be
30 integrated into solar panels, which may pose significant cell-to-
31 module related technological challenges,10 which urgently need
32 to be identified and mitigated. Conventional monofacial single-
33 junction crystalline silicon (c-Si) photovoltaic (PV) modules
34 consist of a front glass sheet, strings of series-connected c-Si
35 solar cells, sandwiched between two encapsulant layers (front
36 and rear, at present usually made from ethylene vinyl acetate,
37 EVA), and a polymeric backsheet.10,11 This stack is then
38 laminated by vacuum annealing to melt and solidify the
39 encapsulant layers, which also aids in anchoring the strings of
40 cells in the module. For module integration of perovskite/
41 silicon tandem solar cells, this process should be altered.
42 Indeed, due to the sensitivity of perovskites to moisture,12 the
43 backsheet needs to be replaced with a rear glass sheet, acting as

44a more effective barrier; such glass/glass module technology is
45already well established for bifacial c-Si PV technology.11

46Moreover, classic module lamination tends to shrink the
47encapsulant layers upon solidification, which can be several
48centimeters over the module dimensions. We find this often to
49cause tandem-device delamination, resulting in catastrophic
50module failure. For lab-scale devices, this can be resolved by
51removing the encapsulant layers and sealing the glass/glass
52modules only at their edges, for instance with butyl-rubber
53derivatives.13−15 However, for larger modules, the absence of
54encapsulants may compromise the anchoring and structural
55stability of the strings of fragile cells. Therefore, understanding
56and resolving tandem delamination is a key challenge toward
57its commercialization.16 In 2018, Cheacharoen et al. reported
58on delamination of single-junction perovskite solar cells
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59 (PSCs) in the p-i-n architecture, the same configuration as

60 most efficient perovskite/silicon tandems.13,14 With double
61 cantilever beam experiments, they found that the delamination

62occurs within the electron-selective contact, particularly in the

63phenyl-C61-butyric acid methyl ester (PCBM) film. This film
64features the lowest fracture energy among the whole device

Figure 1. Delamination of the top electrode: (a) structure of the p-i-n tandem. (b) Picture of the tandem solar cell, (c) covered by tape, (d)
after the peeling, with the emerging surface, and (e) peeled part left on the tape. (f) False-colored tilted SEM image of the peeled electrode.
The peeled surface presents the typical wrinkles of the perovskite surface. The purple area represents the top of the Ag/MgF2 electrode,
while the yellow area the lift-off film that delaminated. The yellow arrows indicate the interface where delamination happens.

Figure 2. XPS survey of the peeled electrode. (a) XPS survey of the emerging surface. The inset is a picture of the delaminated sample. The
red square represents the XPS probed area. (b) XPS survey of the peeled electrode. The inset represents the peeled electrode. (c) UPS
spectrum of the emerging surface. (d) UPS spectrum of the peeled electrode.
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65 stack, resulting in its rupture under stress.13,14 Here, we
66 thoroughly investigate the nature of delamination mechanism

f1 67 in state-of-the-art p-i-n tandems (Figure 1a) by intentionally
68 peeling-off the top electrode (Figure 1b−e). We found that,
69 the top electrode fully delaminates, even preserving the pristine
70 conductivity of the front transparent contact (Figure S1). For
71 improved understanding of the delamination process, we
72 collected tilted-angle scanning electron microscopy (SEM)
73 images at the peeling interface (Figure 1f). At the bottom of
74 the image, the typical textured surface of the c-Si bottom cell is
75 visibly covered by the perovskite layer. The perovskite exhibits
76 on its surface the characteristic wrinkles induced during the
77 crystallization process. These wrinkles are induced by the
78 presence of Cs in the perovskite formulation and the presence
79 of the textured substrate underneath.17 The purple area
80 highlights the top part of the contact (the Ag finger is covered
81 by the MgF2 anti-reflective coating (ARC)) that is partially
82 lifted, while the yellow area represents the film that
83 delaminated.
84 To identify the nature of the layers that delaminate, we
85 investigated both exposed surfaces of the failed device
86 interface, with a combination of surface sensitive (1−10 nm)
87 X-ray and ultraviolet photoelectron spectroscopies (XPS/

f2 88 UPS), energy dispersive X-ray analysis (EDX), and Kelvin

89 f2probe force microscopy (KPFM). Figure 2a shows the XPS
90survey scan of the films present on the surface emerging from
91the tandem (red square in the inset). The spectrum shows the
92typical feature of carbon in the form of fullerene (C60), a single
93C1s peak, accompanied by characteristic shake-up satellite
94features,18 with traces of elements belonging to the perovskite,
95but not of elements related to the contact (see Figure S2 for
96more details). From the quantification of the peak areas, we
97identified the material present on the tape (Figure 2b) as the
98atomic layer deposited (ALD) SnO2 buffer layer (film
99composition: Sn 24 At%, O 42 At%, C 33% and a trace of I
100of 0.5%). To further investigate, we acquired UPS spectra of
101both samples with a depth sensitivity of ∼1 nm. Figure 2c
102shows the UPS spectrum of the surface emerging from the
103tandem. The secondary electron cut-off (SECO) indicates a
104work function (WF) of 5.15 eV, which matches well with that
105of pristine C60 measured independently on a freshly evaporated
106C60 layer as well as resulting in an acceptable ionization energy
107(IE) of 6.50 eV (calculated from WF + VBM − Ef). Figure 2d
108shows the SECO of the film present on the tape side. The
109energy levels are univocally attributed to SnO2, with a deep
110valence band at −7.90 eV (resulting in a WF of 4.05 eV).19,20

111The UPS analysis confirms the finding of the XPS analysis,
112suggesting that the delamination happened on a macroscopic

Figure 3. Microscopic investigation of the delamination. (a) Large area overview SEM image at the edge of the peeled area. (b) Closer SEM
top-view image of the investigated area. (c−e) EDX mapping of indium, tin, and oxygen, respectively. (f) 10 μm2 KPFM map of a
delaminated tandem solar cell. (g, h) 1 μm2 close-up of one of the residuals as measured by KPFM and dynamic AFM morphology,
respectively. (i) Work function distributions of regions 1 (blue) and 2 (orange), corresponding to the regions delimited by dashed rectangles
in f) and g). (j) Work function distributions of calibration samples consisting of Si/ITO/Perovskite (green), Si/ITO/perovskite/C60 (blue),
and Si/ITO/perovskite/C60/SnO2 (orange).
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113 scale at the interface between the fullerene and the SnO2 buffer
114 layer, as evidenced by the area bulk averaging property of the
115 techniques.
116 To understand the microscopic nature of the delamination

f3 117 we combined EDX topography with KPFM mapping. Figure
f3 118 3a shows a low-magnification SEM top view of the

119 delaminated interface of the tandem; the white bright side
120 represents the MgF2 top layer, whereas the dark side is the
121 emerging surface. With a closer look, we noticed that the
122 delamination is not uniform. Indeed, we spotted several
123 micrometer-sized areas where the top contact appears to be
124 intact. Moreover, the morphology of the perovskite is not
125 perfectly flat, and we noticed a difference in contrast on top of
126 the wrinkles, induced by perovskite crystallization. Therefore,
127 we performed EDX topography on one of those regions, where
128 the top electrode overlaps on top of a wrinkle (Figure 3b). The
129 EDX mapping of In, Sn, and O (Figure 3c−e) clearly shows
130 that the bright area is part of the top electrode stack (which in
131 this region consists of the ALD-SnO2 buffer layer and indium
132 zinc oxide (IZO) electrode) that did not delaminate with the
133 rest of the film. Moreover, we noticed traces of Sn and O on
134 top of the wrinkle, suggesting the presence of the SnO2 buffer
135 layer. This is of significant importance since the microscopic
136 roughness of the materials can have a fundamental role in
137 controlling the adhesion between the layers. To further
138 investigate the microscopic nature of the delamination we
139 took advantage of KPFM mapping in an argon ambient and in
140 dark conditions, to avoid sample degradation during the
141 measurement. Figure 3f shows a 10 μm2 KPFM scan of a
142 delaminated tandem solar cell. This map confirms the non-
143 uniformity of the delamination at the micrometer scale, with
144 clear presence of low WF residuals on top of a high WF
145 substrate. Figure 3g,h shows a 1 μm2 KPFM and morphology
146 close-up of one of the residuals, respectively. We note the close
147 correlation between the WF map and morphology, confirming
148 that the micrometer-sized islands are residuals of a different

149chemical species than the substrate. The morphology and
150phase maps of the delaminated solar cell are reported in Figure
151S3. Figure 3i shows the distribution of the WFs measured in
152regions 1 (substrate) and 2 (residual), as indicated in Figure 2f
153and 3g by dashed rectangles. To assess the nature of the two
154species, we measured WF distributions of calibration samples
155consisting of Si/ITO/perovskite, Si/ITO/perovskite/C60, and
156Si/ITO/perovskite/C60/SnO2 structures, shown in Figure 3l as
157green, blue, and orange histograms, respectively. The KPFM
158and morphology maps of the calibration samples are reported
159in Figure S3. The WF values measured by KPFM on the
160reference samples match well the values obtained by UPS scans
161on the same samples, as shown in Figure S4. A comparison
162with the distribution of the delaminated solar cell unequiv-
163ocally shows that the exposed layer consists of a C60 film with
164SnO2 residuals on top.
165To better understand the delamination mechanism, we
166performed density functional theory simulations of the C60/
167SnO2 interface to model the adhesion between the two
168materials. Specifically, we studied various orientations of the
169C60 molecule on the SnO-terminated (110) surface of SnO2.
170We found that the carbon atoms shared by pentagons and
171hexagons of the C60 molecule interact with both the Sn and O
172atoms of the SnO2 surface with a binding energy of −0.28 eV.
173The optimized structure is shown in Figure S5. The Bader
174charge analysis demonstrated a transfer of less than 0.02
175electrons from the C60 molecule to the SnO2 surface. Finally,
176we determined that the distance between the C60 molecule and
177SnO2 surface is 3.22 Å, falling into the physisorption range.
178With this information at hand, we then evaluated the fracture
179energy of the C60/SnO2 interface, namely the work of adhesion
180 f4(WoA), using 180° peel-off measurements (Figure 4a). To
181isolate the fracture, we realized different test structures on top
182of perovskite films that mimic the tandem architecture: C60/
183SnO2 (sample A), C60/SnO2/IZO (sample B), and C60/SnO2/
184IZO/MgF2 (sample C). Surprisingly, we found that the WoA

Figure 4. (a) 180-degree peel-off test for tandem test structures. PVK is the perovskite layer. Sample A (PVK/C60/SnO2); sample B (PVK/
C60/SnO2/IZO); sample C (PVK/C60/SnO2/IZO/MgF2). The red line averages the adhesion energy in N/mm. (b) 180-degree peel-off test
for three identical test structures: PVK/C60/SnO2 annealed at different temperatures: RT black, 50 °C orange, 70 °C yellow, 90 °C red. (c)
Peel-off tests for tandem structures with the IZO layer deposited with different powers. The sample labeled 0.92 mW/cm2 is the reference
deposition for tandem applications.
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185 between the C60 and the SnO2 bilayer (∼0.23 N/mm) is
186 higher than that of the peeling tape interface (∼0.20 N/mm,
187 see Figure S6). Indeed, we did not notice any delamination on
188 sample A. However, when the SnO2 is capped with a sputtered
189 IZO layer as transparent electrode (sample B) we experienced
190 the same delamination behavior of the tandem itself, fracturing
191 at the C60/SnO2 interface. Moreover, we noticed that the
192 delamination happens via a slip-and-stick mechanism and, as
193 expected, is accentuated in the presence of film edges (see
194 Figure S7). From the delamination profile of sample B we
195 evaluated a WoA of 0.04 N/mm. Next, we found that coating
196 the IZO layer with an additional ARC layer of MgF2 (sample
197 C) further reduces the WoA of the C60/SnO2 interface (0.03
198 N/mm). The MgF2 layer is adopted at the single-cell level to
199 enhance the current response; it is not meant to be included at
200 the module level, since the encapsulant features a similarly low
201 refractive index. However, at the lab level and for practical
202 purposes, tandem devices are often laminated with MgF2 either
203 for stability or outdoor performance evaluation.4,21 In our case,
204 we found that the presence of MgF2 as second ARC is
205 deteriorating the long-term stability of the device, as it
206 enhances the possibility of delamination. However, the lower
207 adhesion energy attributed to the presence of IZO or MgF2 is
208 not due to the layers themselves, but rather to a weakening of
209 the C60/SnO2 interface during the IZO sputtering or MgF2
210 thermal evaporation processes. Indeed, it is likely that during
211 these depositions the sample heats up, particularly during the
212 MgF2 deposition (reaching temperature close to ∼50 °C). The
213 higher temperature weakens the bonding between C60 and
214 SnO2, favoring the delamination process. Therefore, to validate
215 our hypothesis, we performed a second peel-off experiment
216 (Figure 4b) with four identical test-structures of perovskite/
217 C60/SnO2 but annealed at different temperatures (room
218 temperature (RT) gray line, 50 °C orange line, 70 °C yellow
219 line, and 90 °C red line). The outcome of the experiment
220 validated our hypothesis. Indeed, the sample without annealing
221 (RT) showed a pattern similar to sample A in Figure 4a in
222 terms of profile and peeling force. On the contrary, a mild
223 annealing at 50 °C (and consistently at higher temperatures)
224 showed the clear features of delamination, as evidenced by the
225 pictures of the samples in Figure S8. Lastly, we shifted our
226 attention to the impact of the IZO deposition. The direct
227 deposition of TCOs by radio frequency (rf) sputtering is
228 known to possible create damage in the underlying layers.22

229 Even in silicon heterojunction solar cell manufacturing the
230 TCO deposition is followed by an annealing step to recover
231 the damage done to the amorphous silicon contact layers
232 during such sputtering. In perovskite/silicon tandems, the
233 SnO2 buffer layer protects the soft fullerene and perovskite
234 layers from the deposition of IZO. Figure 4a shows a clear
235 difference between sample A and B, suggesting that the IZO
236 deposition affects the WoA. Therefore, we deposited IZO
237 layers with different power densities: 0.5, 0.92, and 1.58 mW/
238 cm2, which represent soft deposition, our baseline deposition,
239 and a faster deposition conditions, respectively (all the films
240 share the same IZO thickness). Figure 4c shows the WoA
241 profiles for the three samples. We noted that there is a
242 correlation between the deposition power and the interfacial
243 mechanical properties. Indeed, at higher power the samples
244 delaminate easier, showing a lower WoA. To validate our
245 findings, we performed a statistical analysis over a batch of six
246 samples. Then we determined the average energy per sample
247 by integrating the WoA (Figure S9). The distribution clearly

248shows that the deposition of the IZO plays a key role in the
249delamination and suggests that a precise control of the
250deposition conditions is strategic to prevent this issue.
251Few works in the past addressed delamination in PSCs.
252Cheacharoen et al., investigated this problem at the single-
253junction level and proposed the fracture of the PCBM layer, a
254functionalized version of C60, as the origin.13,14 Here we
255propose that the delamination originates at the C60/SnO2
256interface with a neat separation of the two films at the
257macroscopic level, but influenced by the perovskite roughness
258at the microscopic level. Yet, in both cases, it is clear that the
259presence of the fullerene (or its derivatives) poses a serious
260roadblock toward the development of mechanically stable
261perovskite-based solar cells. Indeed, the challenge is not limited
262to the fabrication of modules, but also to the stability of the
263performances. In real applications, the temperature of the
264tandems can reach up to 50−60 °C at the peak-sun hours.1,23

265The periodic temperature changes typical for outdoor
266performance impose cyclic stresses to the materials, in
267particular to those that have different thermal expansion
268coefficients. Therefore, it is of high urgency to address the
269delamination issue at the widely used C60 interface within the
270perovskite community.
271Fullerene-based n-type contacts are an iconic part of p-i-n
272PSCs,24 in particular thanks to their unique property in
273reducing the hysteresis in the current−voltage character-
274istic.25,26 Currently, there are no reasonable candidates that can
275be used in this polarity configuration as an alternative to
276fullerenes without losing performance, stability, or exacerbating
277hysteresis.27 Therefore, the best approach for p-i-n PSCs to
278address delamination is the functionalization of the fullerene
279and its surface.28 In this direction, in tandems, particular
280attention should be given toward the realization of a strong
281chemical bond between the C60 and the buffer layer (inserted
282between C60 layer and sputtered transparent top electrode), to
283enable a proper lamination of stable perovskite/silicon
284tandems. This bond can be enhanced either with an in situ
285approach or with other layers deposited on top of the fullerene.
286In both cases, the treatment must respect the perovskite
287constrains, in terms of solvent compatibility and temperature
288processing. In parallel, particular attention should be given to
289preserve the electronic properties of the ETL and to avoid
290parasitic absorption that can affect the current output of the
291tandem. Lastly, we proved that the processing conditions for
292the tandem fabrication have a significant role in delamination.
293Temperature treatments or post-annealing treatments neg-
294atively affect the weak adhesion between C60 and SnO2 and
295they should be minimized or avoided completely. Moreover,
296the impact of the sputtering process should be reduced for
297example employing soft-landing depositions such as the hollow
298cathode technique and the parallel sputtering configuration.
299In this work, we showed the origin of the delamination in
300perovskite/silicon tandem solar cells. Delamination is among
301the most serious concerns for the manufacturing of tandem
302modules and for the stability of the tandem performances, yet
303hardly discussed to date. Contrarily to what has been reported
304earlier for single-junction PSCs, we found that delamination
305happens at the interface between the C60 extraction layer and
306the SnO2 buffer layer. Moreover, we realized that the adhesion
307between the two layers is influenced by the perovskite
308morphology; indeed, the wrinkles induced during the perov-
309skite crystallization retain microscopically the adhesion
310between the C60 and SnO2. This provides the opportunity in
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311 the near future to engineer the roughness of the perovskite
312 layer in such a way that the probability for delamination to
313 occur is reduced. Furthermore, we showed that the temper-
314 ature during the processing of the tandem has an influence on
315 the adhesion between the C60 and SnO2. Such an under-
316 standing is pivotal to improve the tandem fabrication, toward
317 more stable performances.
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