
A FAUST IMPLEMENTATION OF COUPLED FINITE DIFFERENCE SCHEMES

David SÜDHOLT(dsudho20@student.aau.dk)1, Riccardo RUSSO(riccardo.russo19@unibo.it)1,3, and
Stefania SERAFIN(sts@create.aau.dk)2

1CREATE, Aalborg University, Copenhagen, Denmark
2Multisensory Experience Lab, CREATE, Aalborg University, Copenhagen, Denmark
3University of Bologna, Bologna, Italy

ABSTRACT

Physical models using finite difference schemes (FDS) are
typically implemented using mutable data structures. The
FDS library of the Faust programming language, where
such data structures are not available, is instead based on a
cellular automaton approach. This paper proposes a mech-
anism by which multiple one-dimensional FDS based on
the Faust FDS library approach can be coupled together.
The coupling is achieved by composing the various FDS
algorithms in parallel and modifying the Faust FDS library
routing to calculate the connection forces. The mechanism
is demonstrated by coupling multiple stiff string models to
a bridge, modeled as an ideal damped bar.

1. INTRODUCTION

Physical modeling is an approach to sound synthesis in
which the behavior of an instrument is described by a sys-
tem of equations, the solution of which generates a time-
domain waveform [1]. Finite difference schemes (FDS) [2]
refer to an approach to solving these equations using finite-
difference time domain (FDTD) methods. While FDS
are more computationally demanding than other synthesis
methods, they offer a close correspondence between model
parameters and physical characteristics of the instrument,
and impose few restrictions on the nature of the modeled
behavior. This makes them a powerful tool to simulate a
variety of different interactions [3–5], including those that
go beyond what is possible in the physical world.

Faust (Functional AUdio STreams) [6] is a functional
programming language for real-time audio processing and
sound synthesis. It is designed to write digital signal pro-
cessing (DSP) specifications that can be compiled to a wide
range of backends such as C++, Java, WebAssembly etc.
The generated code can either run as a a standalone appli-
cation or be used in a larger context.

An intuitive implementation of a FDS algorithm in an
imperative language would typically involve representing
a discrete grid in a mutable data structure and updating
it time step by time step. This approach is not possible
in Faust, for the lack of arrays or similar data structures.

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

Recently, a library [7] was added to the official Faust dis-
tribution that allows for the implementation of FDS algo-
rithms by employing an approach similar to cellular au-
tomata. In this paper, we propose a mechanism by which
FDS algorithms constructed using this library can be cou-
pled together.

In section 2, we provide an overview over the FDS
method. Section 3 describes a theoretical formulation for
coupling one-dimensional FDS algorithms that is suitable
for implementation in a functional language. Section 4 ex-
plains how this formulation is used to implement coupling
with the Faust FDS library. Finally, we reflect on the re-
sults and discuss future work in section 5.

2. 1-D FINITE DIFFERENCE SCHEMES

In the FDS method, the system to be modeled is usually
described by partial differential equations (PDE), which
are then discretized and approximately solved with FDTD
methods. This section will first demonstrate this process
with a simple example, and then present a general formu-
lation for coupling one-dimensional FDS with rigid con-
nections. The methods presented here are based on [2].

2.1 1-D Wave Equation FDS

The simplest example of a FDS algorithm is the 1-D wave
equation, where the displacement 𝑢(𝑥, 𝑡) at a location 𝑥 ∈
𝒟 = [0, 𝐿] (where 𝐿 is the length of the system in meters)
at time 𝑡 ≥ 0 is characterized by

𝜕2
𝑡 𝑢 = 𝑐2𝜕2

𝑥𝑢 , (1)

where 𝜕𝑥 and 𝜕𝑡 refer to partial differentiation with respect
to 𝑥 and 𝑡, and the wave speed is denoted by 𝑐. To ob-
tain an FDS algorithm, we introduce a grid function 𝑢𝑛

𝑙

with 𝑛 ∈ N and 𝑙 = 0, . . . , 𝑁 , where 𝑁 is the number of
grid points in space. The grid approximates the continu-
ous function 𝑢 as 𝑢𝑛

𝑙 ≈ 𝑢(𝑙ℎ, 𝑛𝑘), where ℎ is the distance
between the grid points in space and 𝑘 is the size of the
time step, usually given by the external sampling rate 𝑓𝑠 as
𝑘 = 1/𝑓𝑠.

Differentiation is approximated by introducing forward,
center and backward difference operators. The first-order
time operators are given by

mailto:dsudho20@student.aau.dk
mailto:riccardo.russo19@unibo.it
mailto:sts@create.aau.dk
http://creativecommons.org/licenses/by/4.0/

𝛿𝑡+𝑢
𝑛
𝑙 =

𝑢𝑛+1
𝑙 − 𝑢𝑛

𝑙

𝑘
, 𝛿𝑡·𝑢

𝑛
𝑙 =

𝑢𝑛+1
𝑙 − 𝑢𝑛−1

𝑙

2𝑘
and

𝛿𝑡−𝑢
𝑛
𝑙 =

𝑢𝑛
𝑙 − 𝑢𝑛−1

𝑙

𝑘
.

(2)

Second-order differentiation can be approximated by com-
bining first-order operators:

𝛿𝑡𝑡𝑢
𝑛
𝑙 := 𝛿𝑡+𝛿𝑡−𝑢

𝑛
𝑙 =

𝑢𝑛+1
𝑙 − 2𝑢𝑛

𝑙 + 𝑢𝑛−1
𝑙

𝑘2
(3)

The spatial difference operators 𝛿𝑥+, 𝛿𝑥·, 𝛿𝑥− and 𝛿𝑥𝑥 are
defined analogously.

These operators can be used to discretize a PDE such as
equation (1):

𝛿𝑡𝑡𝑢
𝑛
𝑙 = 𝑐2𝛿𝑥𝑥𝑢

𝑛
𝑙 (4)

Expanding the operators and rearranging the equation
yields an explicit update equation, which we can use to
calculate the state of the grid at time step 𝑛+ 1:

1

𝑘2
𝑢𝑛+1
𝑙 =

1

𝑘2
(︀
2𝑢𝑛

𝑙 − 𝑢𝑛−1
𝑙

)︀
+

𝑐2

ℎ2

(︀
𝑢𝑛
𝑙+1 − 2𝑢𝑛

𝑙 + 𝑢𝑛
𝑙−1

)︀ (5)

For reasons of numerical stability, ℎ and 𝑘 cannot be cho-
sen independently, but are linked by a stability condition.
In the case of the 1-D wave equation, this condition is given
by ℎ ≥ 𝑐𝑘 =: ℎmin. The number of points 𝑁 can then be
chosen as 𝑁 = ⌊𝐿/ℎmin⌋, from which the grid spacing
follows as ℎ = 𝑁/𝐿. This results in the highest number of
grid points permitted by the stability condition.

2.2 General FDS Formulation

We will now consider a general FDS algorithm given by

ℓ𝑢𝑛
𝑙 = 𝐽𝑙(𝑥𝑒)𝑓

𝑛
𝑒 . (6)

Here, 𝑓𝑛
𝑒 refers to an external excitation force applied to

location 𝑥𝑒. The linear spreading operator 𝐽𝑙 distributes
input at a location 𝑥 = 𝑥𝑖 between the nearest grid point
𝑙𝑖 = ⌊𝑥𝑖/ℎ⌋ to the left of 𝑥𝑖 and nearest grid point 𝑙𝑖 + 1
to the right. Writing 𝛼𝑖 = 𝑥𝑖/ℎ− 𝑙𝑖, it is defined as

𝐽𝑙(𝑥𝑖) =
1

ℎ

⎧⎪⎪⎨⎪⎪⎩
0 𝑙 < 𝑙𝑖

(1− 𝛼𝑖) 𝑙 = 𝑙𝑖
𝛼𝑖 𝑙 = 𝑙𝑖 + 1
0 𝑙 > 𝑙𝑖 + 1

. (7)

In this paper, we only consider operators ℓ such that ex-
panding it will always result in an explicit update equation
that is a linear combination of grid points in the spatial
neighborhood of 𝑢𝑛+1

𝑙 at time steps 𝑛 or earlier. We can
then write the state of the grid at time step 𝑛 in vector form
u𝑛 = [𝑢𝑛

1 , . . . , 𝑢
𝑛
𝑁−1] ∈ R𝑁−1×1, and state update equa-

tion for the general FDS algorithm as:

𝑎u𝑛+1 =

𝑇∑︁
𝜏=0

B(𝜏)u𝑛−𝜏 + j𝑒𝑓
𝑛
𝑒 , (8)

where 𝑇 is the number of past states required for the
update equation, j𝑒 is a column vector representing the
spreading operator defined in equation (7), and the scalar
𝑎 and the coefficient matrices B(𝜏) ∈ R(𝑁−1)×(𝑁−1) for
𝜏 = 0, . . . , 𝑇 result from expanding the difference opera-
tors contained in ℓ.

The top and bottom rows of the matrices B(𝜏) also deter-
mine the boundary conditions of the FDS algorithm.

The right-hand side of equation (8) contains all informa-
tion about how the previous state of the grid and the exter-
nally supplied excitation force influences u𝑛+1. For ease
of notation, we will summarize this information by defin-
ing an auxiliary variable q such that

q𝑛 :=

𝑇∑︁
𝜏=0

B(𝜏)u𝑛−𝜏 + j𝑒𝑓
𝑛
𝑒 , (9)

therefore, the update equation (8) becomes: 𝑎u𝑛+1 = q𝑛.

3. COUPLING FORMULATION

We now move on to considering 𝑀 different FDS algo-
rithms with individual update equations 𝑎𝑚u𝑛+1

𝑚 = q𝑛
𝑚

for 𝑚 = 1, . . . ,𝑀 . These systems need not be homo-
geneous and might be characterized by different operators
ℓ𝑚, as long as they are linear. In particular, they might
have different lengths 𝐿𝑚 and grid spacings ℎ𝑚, but share
the time step 𝑘. If two such systems are coupled, it means
that a point along one system is connected to a point along
the other, and they will influence each other through a con-
nection force.

Here, we formulate the modular connection mechanisms
covered in detail in [8] in a way that can be easily inte-
grated into the Faust FDS implementation. For this pur-
pose, we define a coupling as a 4-tuple (𝑟, 𝑠, 𝑥𝑟, 𝑥𝑠) for
1 ≤ 𝑟, 𝑠 ≤ 𝑀 . This denotes that the 𝑟-th system is coupled
above the 𝑠-th system, where 𝑥𝑟 ∈ [0, 𝐿𝑟] and 𝑥𝑠 ∈ [0, 𝐿𝑠]
refer to the respective coupling locations. The connection
force 𝑓𝑛

𝑟,𝑠 acts positively on system 𝑟 and negatively on
system 𝑠. Given a set of couplings C, this is reflected by
the update equation

𝑎𝑚u𝑛+1
𝑚 = q𝑛

𝑚 +
∑︁

(𝑟,𝑠,𝑥𝑟,𝑥𝑠)∈C:𝑟=𝑚

j𝑚,𝑥𝑟
𝑓𝑛
𝑟,𝑠

−
∑︁

(𝑟,𝑠,𝑥𝑟,𝑥𝑠)∈C:𝑠=𝑚

j𝑚,𝑥𝑠
𝑓𝑛
𝑟,𝑠 .

(10)

Here, the additional subscript 𝑚 for the spreading vectors j
reflects the fact that the value 𝛼𝑖 (see equation (7)) depends
on the grid spacing of the 𝑚-th FDS algorithm.

It remains now to calculate the connection force 𝑓𝑛
𝑟,𝑠.

The force depends on the nature of the connection; here,
we assume a rigid connection, which is characterized by
𝑢𝑟(𝑥𝑟, 𝑡) = 𝑢𝑠(𝑥𝑠, 𝑡)∀𝑡. To apply this to the discrete
model, we introduce the linear interpolation operator 𝐼 , us-
ing the same notation as with 𝐽𝑙:

𝐼(𝑥𝑖)𝑢
𝑛 = (1− 𝛼𝑖)𝑢

𝑛
𝑙𝑖 + 𝛼𝑖𝑢

𝑛
𝑙𝑖+1 (11)

A rigid connection can then be enforced by requiring

i𝑟,𝑥𝑟u
𝑛+1
𝑟

!
= i𝑠,𝑥𝑠u

𝑛+1
𝑠 ∀(𝑟, 𝑠, 𝑥𝑟, 𝑥𝑠) ∈ C , (12)

where i denotes a row vector such that multiplication with
the grid results in interpolation as defined in equation (11).

Assuming that the coupling points are sufficiently dis-
tant from each other that their associated grid points do
not overlap, i.e. no grid point is affected by two or more
couplings, allows us to solve for the coupling forces indi-
vidually by expanding equation (12):

i𝑟,𝑥𝑟
𝑎−1
𝑟

(︀
q𝑛
𝑟 + j𝑟,𝑥𝑟

𝑓𝑛
𝑟,𝑠

)︀
=

= i𝑠,𝑥𝑠𝑎
−1
𝑠

(︀
q𝑛
𝑠 + j𝑠,𝑥𝑠𝑓

𝑛
𝑟,𝑠

)︀ (13)

Observing that

i𝑚,𝑥𝑚j𝑚,𝑥𝑚 =
1

ℎ𝑚

(︀
(1− 𝛼𝑚)2 + 𝛼2

𝑚

)︀
= ℎ𝑚||j𝑚,𝑥𝑚

||22 ,
(14)

we can solve equation (13) for 𝑓𝑛
𝑟,𝑠:

𝑓𝑛
𝑟,𝑠 =

𝑎−1
𝑠 i𝑠,𝑥𝑠q

𝑛
𝑠 − 𝑎−1

𝑟 i𝑟,𝑥𝑟q
𝑛
𝑟

𝑎−1
𝑟 ℎ𝑟||j𝑟,𝑥𝑟 ||22 + 𝑎−1

𝑠 ℎ𝑠||j𝑠,𝑥𝑠 ||22
(15)

A system of coupled FDS algorithms can then be simulated
by

1. Calculating q𝑛 according to equation (9),

2. Calculating the connection forces according to equa-
tion (15),

3. Applying the forces to the connection points and up-
dating the grid state according to equation (10).

The next section describes how this behavior can be im-
plemented using the Faust FDS library.

4. FAUST IMPLEMENTATION

A detailed explanation of the concepts behind the Faust
FDS library can be found in [7] or in the official doc-
umentation. 1 We will summarize how the FDS library
implements one-dimensional FDS algorithms, and then
discuss how we can implement coupling using the pre-
viously derived formulation. The code and an exam-
ple using the mechanism to couple guitar strings over
a bridge can be found at https://github.com/
dsuedholt/coupled-fds-faust. Functions with
the fd. prefix are part of the Faust FDS library, while
those without are part of the proposed coupling implemen-
tation.

4.1 One-Dimensional FDS Algorithms in Faust

The basic building block of an FDS algorithm in Faust is
a scheme point. In a general, uncoupled FDS algorithm,
a scheme point calculates 𝑢𝑛+1

𝑙 as a linear combination of
its neighboring grid points in space and time. A scheme
point takes as input a force signal (e.g. an excitation), some

1 https://faustlibraries.grame.fr/libs/fds/

Figure 1. A scheme point with 𝑅 = 2, 𝑇 = 1 and 𝐷 = 1.
It expects a force at the input marked in blue, the weights
for the current timestep at the inputs marked in red, the
weights for the previous timestep at the inputs marked in
green, and finally the neighboring grid points 𝑢𝑛

𝑙−𝑅 to 𝑢𝑛
𝑙+𝑅

at the inputs marked in yellow. The routing section rear-
ranges the inputs so that the operations block can perform
the linear combination from equation 16. The grid points
at the yellow inputs are duplicated 𝑇 times and fed into
delays of appropriate length to correctly apply the weights.
Finally, the output of the individual calculations is summed
together.

coefficients and the grid points at time step 𝑛, and outputs
the value of the grid at 𝑢𝑛+1

𝑙 as a linear combination of the
grid points using the supplied coefficients.

The function fd.schemePoint(R,T,D) takes as in-
put a neighborhood radius 𝑅, indicating how many spatial
neighbors to each side a grid point depends on, a time co-
efficient 𝑇 , indicating how many steps back in time are
needed, and the dimensionality 𝐷 of the FDS algorithm.
We can rewrite the update equation (8) as

𝑎𝑢𝑛+1
𝑙 =

𝑇∑︁
𝜏=0

(︃
𝑅∑︁

𝑖=−𝑅

B
(𝜏)
(𝑙,𝑙+𝑖)𝑢

𝑛
𝑙+𝑖 + 𝑓𝑛

𝑙

)︃
(16)

where B
(𝜏)
(𝑖,𝑗) refers to the entry in the 𝑖-th row and 𝑗-th

column of the coefficient matrix B(𝜏), and 𝑓𝑛
𝑙 refers to an

externally supplied force signal for the grid point 𝑙. Fig-
ure 1 illustrates the construction of a scheme point under
these conditions.

The function fd.buildScheme1D(points,R,T)
stacks a number of scheme points on top of each other,
and fd.model1D(points,R,T,scheme) builds the
proper routing of input forces, coefficients, and feedback
around the scheme points, so that the output of the scheme
at each time step is the current value of the grid.

4.2 Implementing the Coupling Mechanism

We will now build on the Faust FDS functionality to realize
coupling. Instead of fd.model1D, we introduce a func-
tion system1D that puts together multiple schemes con-
structed by fd.buildScheme1D and couples them ac-
cording to supplied coupling information. The individual

https://github.com/dsuedholt/coupled-fds-faust
https://github.com/dsuedholt/coupled-fds-faust
https://faustlibraries.grame.fr/libs/fds/

schemes first calculate q𝑛, which is then routed into a func-
tion forceUpdate; where, for each coupling, the af-
fected grid points are interpolated and the resulting forces
are calculated and spread back to the grid points. Finally,
the output is divided by 𝑎 to obtain the grid values at 𝑛+1.
Like in fd.model1D, the output of the system is always
routed back to its own input at the next time step using the
Faust feedback operator.

For the purpose of the forceUpdate, we rewrite equa-
tion (15) as

𝑓𝑛
𝑟,𝑠 = 𝛽𝑟i𝑟,𝜒𝑟

q𝑛
𝑟 + 𝛽𝑠i𝑠,𝜒𝑠

q𝑛
𝑠 , (17)

with

𝛽𝑟 =
−𝑎−1

𝑟

𝑎−1
𝑟 ℎ𝑟||j𝑟,𝜒𝑟

||22 + 𝑎−1
𝑠 ℎ𝑠||j𝑠,𝜒𝑠

||22
, (18a)

𝛽𝑠 =
𝑎−1
𝑠

𝑎−1
𝑟 ℎ𝑟||j𝑟,𝜒𝑟

||22 + 𝑎−1
𝑠 ℎ𝑠||j𝑠,𝜒𝑠

||22
. (18b)

The input required by system1D to couple 𝑀 schemes
together are the coefficients to calculate q𝑛

𝑚, the factors
𝑎𝑚, the set of couplings C and the coefficients 𝛽𝑟, 𝛽𝑠 to cal-
culate the coupling forces. An illustration of this is given in
figure 2. Figure 3 shows an overview over how the signals
are routed to allow for the force calculation.

An important distinction between fd.model1D and
system1D is that the coupling implementation requires
the coefficients B(𝜏) and the scalar factor 𝑎 to be supplied
separately, while the Faust library function expects the co-
efficients to already be scaled by 𝑎−1.

4.3 Example: Strings over a Bridge

We will now demonstrate how this mechanism can be used
in practice to couple different FDS together. We want to
model three strings coupled to a connecting bridge, result-
ing in 𝑀 = 4 different FDS. The schemes 𝑚 = 1, 2, 3
model the strings using the stiff string operator ℓ𝑠𝑚 , de-
fined as [2]

ℓ𝑠𝑚 = 𝜌𝑚𝐴𝑚𝛿𝑡𝑡 − 𝑇𝑚𝛿𝑥𝑥 + 𝐸𝑚𝐼𝑚𝛿𝑥𝑥𝛿𝑥𝑥

+ 2𝜌𝑚𝐴𝑚𝜎0,𝑚𝛿𝑡− − 2𝜌𝑚𝐴𝑚𝜎1,𝑚𝛿𝑡−𝛿𝑥𝑥 .
(19)

Here, 𝜎0,𝑚 is a general and 𝜎1,𝑚 a frequency-dependent
damping parameter, and 𝐸𝑚 is Young’s modulus, describ-
ing the material stiffness of the string. 𝑇𝑚 refers to the
string tension, and 𝜌𝑚 to its density. Given the string radius
𝑟𝑚, 𝐴𝑚 = 𝜋𝑟2𝑚 is the cross-sectional area of the string and
𝐼𝑚 = 𝜋𝑟2𝑚/4 is the moment of inertia.

The scheme 𝑚 = 4 models the bridge as an ideal bar.
The corresponding operator ℓ𝑏 can be obtained from ℓ𝑠𝑚
by setting the tension to 0.

The values of the coefficient matrices B𝑚 follow from
expanding ℓ𝑠𝑚𝑢𝑛

𝑙 (omitting the 𝑚 subscripts for simplic-
ity):

B
(0)
(𝑖,𝑗) =

1

ℎ4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝐸𝐼 |𝑖− 𝑗| = 2

𝑇ℎ2 + 4𝐸𝐼 + 2𝜌𝐴𝜎1ℎ
2

𝑘 |𝑖− 𝑗| = 1

−2𝑇ℎ2 − 6𝐸𝐼 − 2𝜌𝐴𝜎0ℎ
4

𝑘

− 4𝜌𝐴𝜎1ℎ
2

𝑘
+

2𝜌𝐴ℎ4

𝑘2

𝑖 = 𝑗

0 else

(20)

B
(1)
(𝑖,𝑗) =

⎧⎨⎩ − 2𝜌𝐴𝜎1

ℎ2𝑘 |𝑖− 𝑗| = 1
2𝜌𝐴𝜎0

𝑘 + 4𝜌𝐴𝜎1

ℎ2𝑘 − 𝜌𝐴
𝑘2 𝑖 = 𝑗

0 else
(21)

and 𝑎 = 𝜌𝐴/𝑘2. Simply taking over the coefficients from
the expanded FDS algorithms and "clipping" them at the
matrix boundaries implements the clamped boundary con-
dition, equivalent to introducing virtual points 𝑢𝑛

−1, 𝑢
𝑛
𝑁+1

and setting 𝑢𝑛
−1 = 𝑢𝑛

0 = 𝑢𝑛
𝑁 = 𝑢𝑛

𝑁+1 = 0. This boundary
condition is employed for the bridge.

The Faust FDS library takes in coefficients as input for
every single scheme point; therefore, it is possible to use
different values at the boundary points to implement the
simply supported boundary condition, which is given by:
𝑢𝑛
−1 = −𝑢𝑛

1 , 𝑢𝑛
𝑁+1 = −𝑢𝑛

𝑁−1, 𝑢𝑛
0 = 𝑢𝑛

𝑁 = 0. This is the
condition implemented for the stiff strings.

The strings are coupled above the bridge by defining the
couplings 2

C = {(1, 4, 0.1, 0.04),
(2, 4, 0.1, 0.08),

(3, 4, 0.1, 0.12)}
(22)

Together with the factors 𝛽 to enable the force calculation
according to equations (17-18), we have now fully char-
acterized coupling the strings to the bridge using a rigid
connection to implement it using the developed methods.

5. CONCLUSION

This paper proposed a general mechanism for coupling
one-dimensional FDS algorithms with rigid connections
using the Faust FDS library. It was demonstrated on an
example that can implement the desired behavior in real-
time in the Faust Online IDE.

The method works with explicit, one-dimensional FDS
algorithms and makes use of rigid connections and linear
interpolation. Future work will involve including support
for different types of connections and interpolators, in or-
der to generalize the implementation and include it in the
Faust distribution.

To understand how the performance of the Faust FDS
library and the proposed coupling implementation com-
pares to other languages and frameworks, a speed evalu-
ation should also be performed. However, due to the large

2 The Faust code uses zero-based indexing of the schemes as opposed
to the one-based indexing in the mathematical formulation

Figure 2. An example of system1D combining three FDS with three points each into a coupled system. The inputs of the
entire system are the excitation forces for each point of each system in order, marked in blue. The forces are then routed
to be interleaved with the grid points from the previous time step, marked in yellow, so that each individual scheme can
receive its proper input. The block labeled here as “schemes” performs the calculation of q𝑛 for all schemes. These values
are then passed on to add and subtract the appropriate coupling forces in the “forceUpdate” block, and finally passed to the
“norm” block, where division by 𝑎𝑚 finalizes the update calculation.

Figure 3. An example of forceUpdate for two FDS with three grid points each and one coupling. For each coupling, the
four grid points belonging to the coupling (two per system) are added to the current scheme values q𝑛 in parallel, and the
“interp” block interpolates the two points per system into one single value, which are then used in “forcecalc” to calculate
the coupling force. The values q𝑛 are simply passed through. The outputs of “forcecalc” are then the outputs of applying
the spreading operator to the calculated force; and multiplying the values for the lower system with -1. Then these four
values per coupling can simply be added back onto their respective grid points.

variety of optimization options and backends of the Faust
compiler, this exceeds the scope of this paper.

6. REFERENCES

[1] S. Bilbao, C. Desvages, M. Ducceschi, B. Hamilton,
R. Harrison, A. Torin, and C. Webb, “Physical Mod-
eling, Algorithms and Sound Synthesis: The NESS
Project,” Computer Music Journal, vol. 43, no. 2-3, pp.
15–30, Jun. 2020.

[2] S. Bilbao, Numerical Sound Synthesis: Finite Differ-
ence Schemes and Simulation in Musical Acoustics.
Wiley Publishing, 2009.

[3] S. Bilbao and A. Torin, “Numerical Modeling and
Sound Synthesis for Articulated String/Fretboard In-
teractions,” Journal of the Audio Engineering Society,
vol. 63, no. 5, pp. 336–347, May 2015.

[4] S. Willemsen, S. Serafin, S. Bilbao, and M. Ducceschi,
“Real-time Implementation of a Physical Model of the
Tromba Marina,” in Proceedings of the 17th Sound and
Music Computing Conference, June 2020.

[5] M. G. Onofrei, S. Willemsen, and S. Serafin, “Real-
Time Implementation of a Friction Drum Inspired In-
strument using Finite Difference Schemes,” in Pro-
ceedings of the 24th International Conference on Dig-
ital Audio Effects (DAFx20in21), September 2021.

[6] Y. Orlarey, D. Fober, and S. Letz, “FAUST : an Effi-
cient Functional Approach to DSP Programming,” in
New Computational Paradigms for Computer music,
2009, pp. 65–96.

[7] R. Russo, S. Serafin, R. Michon, Y. Orlarey, and
S. Letz, “Introducing Finite Difference Schemes Syn-
thesis in FAUST: A Cellular Automata Approach,” in
Proceedings of the 18th Sound and Music Computing
Conference, June 2021.

[8] S. Bilbao, M. Ducceschi, and C. Webb, “Large-Scale
Real-Time Modular Physical Modeling Sound Synthe-
sis,” in Proceedings of the 22nd International Confer-
ence on Digital Audio Effects (DAFx-19), September
2019.

	 1. Introduction
	 2. 1-D Finite Difference Schemes
	2.1 1-D Wave Equation FDS
	2.2 General FDS Formulation

	 3. Coupling Formulation
	 4. Faust Implementation
	4.1 One-Dimensional FDS Algorithms in Faust
	4.2 Implementing the Coupling Mechanism
	4.3 Example: Strings over a Bridge

	 5. Conclusion
	 6. References

