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ABSTRACT

The growth of increasingly powerful mobiles devices and
their ubiquity opens up more and more possibilities in
the creation of New Interfaces for Musical Expression
(NIMEs). However, since smartphones were not conceived
for musical purposes, they are affected by some limita-
tions.

This work aims to develop a mobile version of a vocoder
using the Faust programming language, in order to test the
limits and opportunities offered by smartphones in creat-
ing a portable version of such an old musical effect. Both
a custom app and purpose-designed phone case prototype
were developed. The vocoder app presents a clear recon-
struction of the words, via the quite pleasant and well-
known timbre. However, some difficulties were encoun-
tered in the development process. In particular, some mo-
bile devices are not powerful enough to handle a high level
of polyphony.

1. INTRODUCTION

The last fifteen years have seen a sharp increase in mobile
phones computational power, to the point that what we now
carry in our pocket is essentially a small computer, capa-
ble of carrying out many of the tasks that have been tradi-
tionally performed by laptops. Concerning the audio field,
many DSP algorithms which require a high computational
power can now run on relatively inexpensive devices. Be-
sides greater processing power, smartphones nowadays in-
clude a plethora of sensors for interfacing with the outside
world, which opens up many mapping possibilities. Fur-
thermore, the ubiquity of these devices provides a wide
user base. These features together make smartphones suit-
able for the development of more and more complex New
Interfaces for Musical Expression (NIMEs) [1].

The characteristics mentioned above are appealing; nev-
ertheless, many limitations need to be considered when de-
veloping a NIME on mobile devices; these can be sum-
marised by the phrase: "smartphones are not conceived for
musical purposes". This statement reflects itself in both
hardware and software limitations [2, 3]. From the hard-
ware side, the main problem lays in the touchscreen being
the primary form of input. Despite being easy to use, this

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

technology provides almost no tactile feedback response, a
crucial factor in the development of a musical interface [4].
Moreover, touchscreens usually do not capture pressure in-
formation. Apple alone tried to overcome this limitation,
by developing the 3D Touch technology and introducing it
in its mobile devices. Nevertheless, this feature was soon
abandoned. This fact shows that more sophisticated inter-
faces are not of commercial interest [5]. Smartphone sen-
sors such as accelerometers and gyroscopes can work as in-
put devices, however, since they are not designed for accu-
rate musical mapping, the sensor data usually needs to un-
dergo some pre-processing before being employed for mu-
sical purposes. Finally, despite the latest smartphones of-
fering high-quality ADCs and DACs, external input/output
interfaces are usually limited to mini-jack and Bluetooth
connections. From the software side, the two major oper-
ating systems, iOS and Android, present different limita-
tions. The first always provided great performance for au-
dio, and vast development support; however, prototyping
and developing on Apple machines usually requires per-
mission from Apple, which might discourage amateur de-
velopers. Android, on the other hand, traditionally put less
importance on audio dsp capabilities, focusing on other
tasks; however, it allows for a development process with
no restrictions.

1.1 Smartphone as a Portable Instrument

Despite the aforementioned limitations, several works have
investigated the opportunities offered by smartphones as
platforms for the development of NIMEs ever since their
initial spreading [1], sometimes trying to extend the de-
vices’ functionalities. [6].

An early work by Geiger [7] studied the possibilities pro-
vided by the touchscreen itself as a controller. In this pa-
per, he first mentions how the touchscreen allows to over-
come the classic WIMP (Windows, Icon, Menu, Pointer)
interface, which has proven to be difficult to handle in live
musical performance. Secondly, he defines a number of
interaction principles for the development of instruments
interfaces with touchscreen devices. According to Geiger,
this interface should:

• Be one piece, and not a collection of controllers.

• Be easily portable and usable in different social con-
texts.

• Have an interface which maximises control and
gives immediate feedback, providing control not
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only on the note and volume, but also at the sound
processing level.

• Be learnable and master-able, giving the player di-
rect feedback on their progress.

These bullet points are also in accordance with the evalua-
tion principles later provided by O’Modhrain [8].

The Stanford Mobile Phone Orchestra (MoPhO) [9] not
only showed that smartphone instruments are suitable for
social and collective playing environments such as an or-
chestra, but it proved that they can be interesting means
of music production even when extended with external de-
vices. In fact, in its 2010 evolution, players were provided
with speaker gloves in order to provide amplification while
keeping focus on portability.

With the growth of smartphone popularity, many musi-
cal apps were developed, introducing new ideas for touch-
screen usage as a music controller. Bebot 1 is a mo-
bile phone synth with an interface specifically designed
for touchscreen devices. Inside Bebot, virtual knobs, slid-
ers, and even keys leave space for controllers that react to
the fingers movements and amount of fingers present on
the keyboard. More recently, Electrospit 2 won the 2020
Guthman competition for newest and greatest ideas in mu-
sic. It consists of a wearable talk-box which can be inter-
faced with any external synth, or with a companion app
provided by the company, downloadable from the internet.
These apps and devices show how much importance porta-
bility has in new musical interfaces design. In fact, not
only did Electrospit transform a fairly old effect like the
talk-box into a portable version, but it developed an app in
order to extend portability even further. This way, Electro-
spit only needs the wearable device and a smartphone to be
played.

In this research, a vocoder was developed in the form of
an Android app, by making use of the Faust programming
language. The goal was to test the portability opportuni-
ties provided by another classic musical effect that usually
comes in the form of keyboard synths. The app was devel-
oped according to the Geiger principles mentioned above.
Therefore, the instrument was thought to be: made of one
piece, highly controllable and learnable. By taking inspira-
tion from the MoPho, and following the work by Michon
et al. [2], the vocoder was augmented with the design of
a case prototype which could, at the same time, provide
amplification and extend playability.

The rest of the paper is organised as follows: Section 2
briefly illustrates how a vocoder works, in Section 3 the
development details are presented, Section 4 illustrates a
possible evaluation protocol, and Section 5 concludes the
paper.

2. THE VOCODER

The vocoder, invented in 1939 by Dudley [10], is prob-
ably the oldest vocal synthesis technique ever developed.
In this method, the incoming voice signal, the modulator,
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is processed by a filter-bank which measures the gain of
each frequency band. Another signal, the carrier, usu-
ally a broadband signal such as white noise or a sawtooth
wave, is then processed by another filter-bank with the
same characteristics of the first one. The gain of the fil-
ters from the second filter-bank is set using the coefficients
measured in the first one. This way, the frequency con-
tent of the carrier is modulated and becomes similar to the
original signal. The vocoder was an early attempt of com-
pressing and encrypting speech information. In fact, this
technique only requires to store filters coefficients instead
of raw audio data. The initial idea was to apply a cipher
algorithm to the coefficients and send them to a receiver
station, which could decrypt them and restore the origi-
nal message. Even though it has rarely been used for its
original function, this algorithm became very popular in
the musical field, and have been extensively used by musi-
cians such as Earth Wind and Fire or Daft Punk. Later,
the vocoder was extended by Flanagan, who formalised
the Phase Vocoder [11]. This version employs the Fourier
transform to split and analyse the modulator signal, thus
achieving more detail and allowing to keep information on
the phase. The schematic of a classic vocoder is illustrated
in Figure 1.

Figure 1. Schematic of a standard vocoder.

3. IMPLEMENTATION

3.1 DSP Algorithm

The vocoder algorithm was implemented using Faust [12]:
a high-level, domain-specific, functional programming
language, with a strong focus on the development of digital
signal processing algorithms for sound and music. Faust
code can be compiled with the Faust compiler, in order
to directly generate standalone audio applications or plu-
gins in different formats, or translate it to other languages
such as C++, Java and others. In particular, Faust can be
used to to directly build an Android app, for which the .apk
file can be downloaded from the Faust database with a QR
code, thus bypassing the usual development process (this is
one of the reasons why Faust was chosen for this work). In
Faust, data is treated as a signal stream and processed using
mathematical functions. Different signals can be routed
together using composition operation in a block-diagram
fashion. Faust works both with a local compiler and an
online one, the latter was used for this project.

Currently, Faust does not allow FFTs to be performed;
therefore, the classic version of the vocoder was imple-



Figure 2. Schematic of the algorithm.

mented in this work. Figure 2 illustrates the structure of
the developed algorithm. The modulator is obtained by
capturing the user’s voice with a microphone. Then the sig-
nal is split: one branch is analysed by a filter-bank made
of 74 resonant band-pass filters, this number was chosen
to balance the analysis capabilities with the computational
power requested by the algorithm. The other branch is
multiplied by a gain, controlled by the user, and analysed
by and envelope follower. The filters and envelope fol-
lower used are included in the Faust libraries. The sig-
nal provided by the envelope follower is used to control
the gain of the analysis filters, in order to avoid spurious
sounds being outputted from the vocoder when nobody is
speaking into the microphone. This way the gain of the
filters is "opened" only when needed and it is possible to
control the "sensitivity" of the filter bank by changing the
modulator gain. Fast attack and release times were cho-
sen for the envelope follower, with values of respectively
0.1 ms and 5 ms, in order to obtain a fast response of the
vocoder. The signal output from each band of the filter-
bank is analyzed by an envelope follower with the same
characteristics of the first one. This signal is used to con-
trol the gain of the filters inside another filter-bank (with
the same characteristics as the first one), which processes
the carrier signal. The latter is previously multiplied by
a user-controlled gain, which provides a general volume
control for the vocoder. The carrier signal is made of a
blend of a square wave and a sawtooth wave. A tone con-
trol, made with a slider, allows to play either the square
wave, the sawtooth, or a mix of those. The latter contains
both even and odd harmonics of the fundamental, allowing
for a more accurate reconstruction of the voice. The square
wave was added, even though it contains only the odd har-
monics, in order to increase expressiveness, allowing to
perform variations on the timbre. Another slider controls
the dry/wet parameter of the vocoder: when the signal is
completely dry, only the carrier is audible, and the app be-
comes essentially a synth. On the contrary, when the sig-
nal is completely wet, only the vocoder signal is present,
meaning that playing a key without speaking into the mi-
crophone will not produce any sound. Finally, the sound is
processed by a low pass filter in order to increase control
over the timbre. The filter employed is a 3-pole Butter-
worth LPF, as included in the Faust libraries.

The overall sound is quite pleasing as vocoders can be,
and the app works without significant latency as devel-
oped. In addition, voice synthesis performs well and spo-

ken words are recognisable. However, the algorithm does
not allow for a high level of timbre customisation, with the
controls being limited to the choice of a sawtooth wave or
a square wave, and the low pass filter cutoff frequency. As
a matter of fact, the main focus of this work is to investi-
gate the capabilities of the vocoder as a mobile instrument,
and the addition of a full synth engine is left for future
work. Moreover, as it will be seen in the next paragraph,
the Faust framework employed makes it difficult to include
many controls on the GUI. On some smartphones it was
noticed that, if more than two notes are played simultane-
ously, the sound loses quality and becomes detuned. This
is due to the device not being powerful enough to carry
out all the computation. This issue might be solved by
optimizing Faust code at C++ level; nevertheless, further
investigation needs to be done.

3.2 Interface - Mapping

In order to develop the GUI, the Faust Smartkeyboard UI 3

tool was used. This framework allows to bypass the stan-
dard Faust UI and to implement a wide range of controllers
optimised for touchscreens such as x/y pads, sliders, smart
keys. In addition, the interface offers the possibility to eas-
ily access data from the smartphone accelerometers and
gyroscopes. Despite the user friendliness, the framework
presents some disadvantages over traditional GUI develop-
ment tools. For instance, the aspect of the graphic elements
of the UI cannot be changed from the default one; as such,
the GUI customization is limited.

Figure 3. Application interface.

Two traditional looking keyboards control the carrier fre-
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quency, namely, the note. The choice of implementing this
interface, instead of developing something more "touch
friendly" like what is seen in Bebot, has two explanations.
The first one is that Smartkeyboard is optimised for de-
veloping a keyboard-like interface, and changing this be-
haviour would have presented some difficulties. The sec-
ond one follows Cook’s statement [13]: "copying an instru-
ment is dumb, leveraging expert technique is smart". This
means that, by creating interfaces that resembles the ones
of actual instruments, it is possible to take advantage of
the years of practice that the performer already underwent.
Since piano interfaces are quite common also among phys-
ical synthesisers and vocoders, the statement holds also in
the case of this app.

Once the vocoder was developed, it was necessary to de-
cide which parameters could be mapped to the interface,
and which ones had to be hardcoded. In fact, each al-
gorithm block could potentially provide many parameters
for controlling the instrument, something which could, in
theory, have increased expressiveness. Nevertheless, two
main issues arose. The first is linked to the devices’ sizes,
in that smartphones have small screens; therefore, adding
all the possible controls would have made interface ele-
ments so tiny that playing the instrument would have been
virtually impossible. The second issue is more related to
the playability of the instrument. As a matter of fact, when
designing a NIME it is necessary to make a decision re-
garding the complexity of mappings, which reflects on the
cognitive load on the player [4]. Some low-level parame-
ters might need to be mapped in a way that, after being set,
the player "forgets" about them, in order to focus on other
aspects of playing. Both issues could be solved by creat-
ing sub-menus where to place all the "secondary" controls.
However, Smartkeyboard does not allow to do that, there-
fore some parameters had to be set at the code level. In
particular the hardcoded values were: the attack and re-
lease time of the envelope followers (respectively 20.1 and
5 ms), the number of bands (74) and the Q-factor of the
filters (0.5), the highest and lowest possible frequencies of
the filter cutoff (80 and 10000 Hz) and the filter sharpness.
Therefore, the mapped parameters were: carrier frequency,
carrier gain, carrier tone blend, modulator gain, dry/wet
and filter cutoff frequency.

The developed interface is represented in Figure 3. The
app is intended to be played with the bottom of the phone
facing the body; in fact, the microphone is located at the
bottom of the phone. Hence, the way of playing resem-
bles the one of flutes, in a similar fashion to Wang’s Oca-
rina [14]. The two keyboards lay at the opposite sides of
the screen. This way the instrument can be played with two
hands simultaneously, plus, the carrier frequency range
spans two octaves. Both keyboards span one octave, the
left keyboard lowest key is a C3, the right keyboard one is
a C4. This note range was chosen in order to allow to play
a wide repertoire, in fact, Smartkeyboard does not allow
to change the keyboard frequencies once the app is built.
The y position of the fingers on the keys controls the car-
rier gain: the nearer the finger is to the border of the screen
the louder the volume is. The center keys are sliders, con-

trolled by the x position of the finger. "Cutoff" controls
the cutoff frequency of the low pass filter: the nearer to
the bottom of the phone, the higher the cutoff frequency.
"Dry/Wet" controls the dry/wet parameter: the nearer to
the bottom, the dryer the sound. "Voice Gain" controls the
modulator gain: closer to the bottom means more gain. Fi-
nally, "Tone" controls the blend between square wave and
sawtooth wave: near to the bottom of the phone means
full square wave, far from it means full sawtooth wave.
The smartphone x-axis accelerometer is mapped to the fre-
quency, so that strongly shaking the phone will produce a
vibrato effect. It was thought that mapping more compli-
cated gestures to the accelerometers would have affected
the overall playability.

3.3 Case Design

The vocoder naturally suffers from feedback issues. In
fact, if the output sound is caught by the microphone,
the instrument will self-amplify itself to the point that it
will become unusable until the output sound is muted.
This problem particularly affects this app; indeed, in most
smartphones the speaker is located near to the microphone.
For this reason, either an external speaker or a micro-
phone are needed for playing the instrument. However,
this means that, in this configuration, the app alone is not
compliant with the first one of Geiger’s principles men-
tioned in section 1. Moreover, it was noticed that playing
with two hands simultaneously was not very comfortable,
as one of them was busy holding up the phone, an issue
also encountered in [2].

In order to overcome both issues, a case was designed,
intended to hold the smartphone, increase playability, pro-
vide amplification, limit feedback issues and create a com-
pact, portable instrument. A cardboard prototype of the
case is visible in figures 4 and 5. The handle provides a
stable support for the whole instrument, while leaving both
hands’ fingers free to play. The smartphone would be hold
in position and secured by a vise, while the whole support
could be adjusted in height by moving the support on a
tiny rail placed on the handle. This way the case could be
adapted for various hands sizes. The bottom box would
hold an external speaker, in order to provide amplification.
Moreover, as mentioned by Oh et al. [9], keeping the sound
source close to the instrument (the keyboard in this case)
provides a closer association between the instrument and
the performer. The idea of including a speaker into the
case introduces a problem in the design. In fact, there
are two ways of doing so, each with pros and cons. The
most straightforward solution would be to directly build
the case with a speaker in it, in a similar fashion to what
is done with the Gramophone [15]. This way, users could
obtain a working instrument without any effort from their
side. On the other hand, doing this would complicate the
manufacturing stage. It would make it necessary to build
or buy a speaker, good enough to be used as an instru-
ment, to include a battery holder, amplification circuit, etc.
These components cannot be 3D printed; therefore, this
solution would complicate the building process, increasing
costs too. A different way of solving the amplification is-



sue would be to simply develop a speaker holder, which
could be easily 3D printed, where users could place their
own speaker. While, with this solution, the manufacturing
process would be simplified, dealing with speakers of dif-
ferent sizes would become complicated. Given the consid-
erations detailed above, the best solution would probably
be a combination of the two. It could be possible to build a
case with a speaker included and sell it (to cover the manu-
facturing cost). At the same time, the CAD projects could
be released as open-source, thus allowing users to alter the
design and build their own version of the case, adapted for
their own speaker.

The instrument can be played either with the phone mi-
crophone or with an external one without affecting the
playability. As mentioned above, the case was thought to
be easily 3D-printed or assembled with a laser cutter. In
particular, many of its components, for instance the phone
holder, could be built starting from elements present in
Mobile3D, a CAD library specifically designed for aug-
menting mobile devices [2]. An actual implementation of
the case is planned as a future work.

Figure 4. Case prototype. Front view. The empty box is
supposed to hold an external speaker.

4. EVALUATION

Since the instrument is still at the stage of proof-of-
concept, the development of an evaluation protocol is be-
yond the scope of this work. However, it is possible to state
few possible evaluation goals. Following O’Modhrain
work [8], there are different point of views when evaluat-
ing a NIME. One of the key factors in giving the audience
an enjoyable performance with a NIME is to provide vi-
sual cues linking cause and effect. Since this instrument
is essentially a digital and portable version of an already
existing one, audience perception of virtuosity should not
change. The manufacturer point of view has been already

Figure 5. Case prototype. Rear view. This image provides
a demonstration of how the handle works.

discussed in the previous section. In fact, the only physi-
cal device to be constructed is the case, while users would
be able to simply download the app on their smartphones.
This is one of the advantages of developing NIMEs on
smartphones: players already possess most of the hard-
ware in their pocket. Nevertheless, whatever building so-
lution is chosen from the ones previously discussed, the
construction of the case remains very convenient, as most
of its parts can be easily 3D printed or assembled with parts
made on a laser cutter. The most important point of view
in the evaluation of this instrument is undoubtedly the per-
former’s. The aim of this work was to recreate an already
existing instrument in a more compact, cheap and portable
form without dramatically affecting playability. For this
reason, it is important that the players would be able to
achieve a decent level of mastery. A straightforward way
to test this aspect might be to ask performers to play classic
vocoder songs.

5. CONCLUSION

An Android vocoder app has been developed and pre-
sented, along with a case prototype. The instrument per-
forms well, producing the pleasant well-known vocoder
sound, and correctly reconstructing words. However, some
computational limitations were encountered, an aspect
which needs further investigation. The app interface al-
lows musicians to play different songs, both monophonic
melodies and polyphonic ones (up to two notes for now).
Nevertheless, expressiveness remains quite limited, as it
was not possible to implement a proper sound synthesis
section. Future work will involve the development of a
full synth engine, which will improve timbre customiza-
tion. Initial tests revealed that the case is easy to use, al-
lowing musicians to easily hold the smartphone without
suffering from fatigue. When a final version of the case is
finished, an evaluation of this research could be conducted



in order to test overall instrument playability. Future work
thus involves working on the C++ version of the Faust
code in order to introduce optimizations and make the
algorithm more efficient, and exploring the instrument’s
capabilities and limitations with an evaluation and feed-
back from musicians. The source code of this project
can be found at: github.com/Rickr922/mobile-
vocoder, along with the app in the form of .apk file.
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