
Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

11

INTRODUCING FINITE DIFFERENCE SCHEMES SYNTHESIS IN FAUST: A
CELLULAR AUTOMATA APPROACH

Riccardo RUSSO(rrusso19@student.aau.dk)1, Stefania SERAFIN1, Romain MICHON2,3, Yann ORLAREY2, and
Stéphane LETZ2

1Aalborg University, Copenhagen, Denmark
2GRAME-CNCM, Lyon, France
3CCRMA, Stanford University, USA

ABSTRACT

In this paper we propose a technique for formalizing Finite
Difference Schemes (FDSs) physical models in the Faust
programming language. Faust libraries already allow for
the implementation of several kinds of physical modeling
techniques; however, to our knowledge, FDSs have never
been integrated into this language. In fact, their imple-
mentation in imperative programming languages is typi-
cally achieved using data structures, which are not avail-
able in Faust. First, a method for coding FDSs in a func-
tional programming way is introduced, starting from pre-
vious works on mass-interaction models. Then, we draw a
connection between FDSs and cellular automata, and ex-
ploit it for building a library that eases the implementation
of FDS synthesis in Faust.

1. INTRODUCTION

Physical modeling has quite a long history in the field
of sound synthesis. Over the years, many different tech-
niques have been proposed [1], such as digital waveg-
uides [2], mass-interaction models [3], modal synthesis [4]
or finite difference schemes [5]. Even though sometimes
more computationally demanding and difficult to control
than other synthesis methods [6], physical modeling tech-
niques offer many advantages. Indeed, creating a model
of a vibrating system provides full control on its proper-
ties and, as a consequence, the output sound. These ap-
proaches theoretically allow us to synthesize natural and
realistic sounds, tunable in every detail.

Faust [7] is a high-level, domain-specific, functional pro-
gramming language, with a strong focus on the develop-
ment of digital signal processing algorithms for sound and
music. Faust code can be compiled with the Faust com-
piler, in order to directly generate standalone audio ap-
plications or plugins in different formats, or translate it
to other languages such as C++, Java and others. The
compiler includes options for automatically applying opti-
mizations to the generated code. This feature is extremely
useful for physical modeling synthesis, which requires fast

Copyright: c○ 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

code to perform big amounts of computation in real time.

1.1 Physical Modeling in Faust

Given the features stated above, its unique syntax, and the
wide range of functions already available [8], Faust has
been extensively used for implementing physical models.
Smith [9] was among the firsts to exploit it in the con-
text of physical modeling, by implementing simulations
of a virtual electric guitar and various audio effects with
digital waveguides. The latter, along with modal synthe-
sis techniques, were also employed in the context of the
Faust-STK [10], a collection of physical models based on
some of the algorithms in the Synthesis ToolKit [11]. The
Faust Physical Modeling Library was also recently imple-
mented [12]. It contains models of various instrument parts
that can be assembled together, and it introduces a new
bi-directional algebra allowing for the implementation of
coupling between the modules, at the cost of adding a one-
sample delay. In addition, it formalizes a way to generate
custom instrument parts by using mesh2faust, 1 a tool
that performs finite element analysis on a 3D model and
automatically generates a modal physical model.

In addition to modal and waveguide synthesis, mass-
interaction physical models were also implemented in
Faust: this technique consists of modeling physical sys-
tems in the form of lumped mass-spring networks [3].
Faust for mass-interaction was first explored by Berdahl
and Smith with Synth-A-Modeler [13], a tool providing
a high-level graphical environment to generate physical
models by using a combination of mass-interaction and
digital waveguides. More recently, Leonard et al, extend-
ing Berdahl’s work, introduced mi_faust. This project con-
tains the scripter MIMS [14], a high-level, graphical or
command line tool that can be used to describe a physical
model and automatically generate Faust code. 2 Along
with the scripter, mi_faust includes mi.lib, a Faust li-
brary that can be used to assemble mass-interaction models
directly in Faust in a modular way.

As seen above, several works employed Faust for devel-
oping physical models; however, to the authors’ knowl-
edge, Finite Difference Schemes (FDS) synthesis has never
been integrated in this programming language. The im-
plementation of FDS models with imperative languages is

1 ccrma.stanford.edu/~rmichon/pmFaust
2 mi-creative.eu/tool_MIMS-Online_V2.html



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

12

typically achieved using data structures such as vectors and
matrices; which are not available in Faust. This might be
a characteristic that has discouraged users interested in de-
veloping FDSs from trying to use this language. As a mat-
ter of fact, before this work, it was probably easier to code
a FDS model directly in a lower-level language such as
C++ rather than doing it in Faust. As such, this paper has
two purposes: the first one is to introduce a routine for
the development of FDS physical models in Faust, without
making use of arrays; the second one is to provide a tool
that allows for an easier implementation of such models.

2. FINITE DIFFERENCE SCHEMES

FDS synthesis consists in developing a full mathemat-
ical description of the system at hand, usually by em-
ploying partial differential equations, and then discretis-
ing the mathematical model using finite-difference time-
domain (FDTD) methods, thus obtaining a finite differ-
ence scheme. This technique requires more computational
power than other physical modeling methods such as the
ones described in the previous section, and is more prone
to numerical dispersion than, for example, digital waveg-
uides [15]. However, it allows for a better spatial accuracy
if frequency-dependent losses and dispersion are present
[16] and it is more flexible, as FDTD methods do not make
any assumptions on the system’s solution.

FDTD methods essentially work by performing a dis-
cretization of the partial derivative operators. To do that,
first a sampling grid for space and time has to be defined,
thus we can write: 𝑡 = 𝑛𝑘 and 𝑥 = 𝑙ℎ where 𝑛 ∈ N
and 𝑙 ∈ Z. The numbers 𝑘 and ℎ are the sampling steps
of the system for time and space respectively; they are
not independent and are bonded through a stability con-
dition, which depends on the system equations. Given a
system of PDEs in space and time with one-dimensional
solution 𝑢(𝑥, 𝑡), it is possible to define the discrete function
𝑢𝑛
𝑙 which approximates it using the sampling steps above.

Having defined a time grid, the time difference operators
can be written as:

𝛿𝑡+𝑢
𝑛
𝑙 =

𝑢𝑛+1
𝑙 − 𝑢𝑛

𝑙

𝑘
𝛿𝑡−𝑢

𝑛
𝑙 =

𝑢𝑛
𝑙 − 𝑢𝑛−1

𝑙

𝑘

𝛿𝑡·𝑢
𝑛
𝑙 =

𝑢𝑛+1
𝑙 − 𝑢𝑛−1

𝑙

2𝑘

(1)

These are the forward, backward and center difference op-
erators respectively, which approximate the partial deriva-
tive operators. By combining them it is possible to obtain
the definition for the second-order time difference opera-
tor:

𝛿𝑡𝑡𝑢
𝑛
𝑙 := 𝛿𝑡+𝛿𝑡−𝑢

𝑛
𝑙 =

𝑢𝑛+1
𝑙 − 2𝑢𝑛

𝑙 + 𝑢𝑛−1
𝑙

𝑘2
(2)

The first and second order spatial operators are obtained in
a similar way.

2.1 Example 1: 1-D Wave Equation

The discretization of the 1-D wave equation represents the
simplest possible FDS. In the continuous case we have:

𝑢̈(𝑥, 𝑡) = 𝑐2
𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡) (3)

A FDS is given by:

𝛿𝑡𝑡𝑢
𝑛
𝑙 = 𝑐2𝛿𝑥𝑥𝑢

𝑛
𝑙 (4)

If we expand the operators we obtain:

𝑢𝑛+1
𝑙 = 2

(︂
1− 𝑐2𝑘2

ℎ2

)︂
𝑢𝑛
𝑙 −𝑢𝑛−1

𝑙 +
𝑐2𝑘2

ℎ2

(︀
𝑢𝑛
𝑙+1 + 𝑢𝑛

𝑙−1

)︀
(5)

2.2 Example 2: 2-D Wave Equation

The equation above can be extended in multiple space di-
mensions:

𝑢̈(x, 𝑡) = 𝑐2∇2𝑢(x, 𝑡) (6)

if x ∈ R2 a FDS can be written as:

𝛿𝑡𝑡𝑢
𝑛
𝑙,𝑚 = 𝑐2(𝛿𝑥𝑥 + 𝛿𝑦𝑦)𝑢

𝑛
𝑙,𝑚 (7)

where 𝑙,𝑚 are the grid indexes in the two space dimen-
sions. If the medium is isotropic then the two space sam-
pling steps are equal: ℎ𝑥 = ℎ𝑦 := ℎ. The operator expan-
sion then yields:

𝑢𝑛+1
𝑙,𝑚 = 2

(︂
1− 2

𝑐2𝑘2

ℎ2

)︂
𝑢𝑛
𝑙,𝑚 − 𝑢𝑛−1

𝑙,𝑚 +

+
𝑐2𝑘2

ℎ2
(𝑢𝑛

𝑙+1,𝑚 + 𝑢𝑛
𝑙−1,𝑚 + 𝑢𝑙,𝑚+1 + 𝑢𝑙,𝑚−1)

(8)

The space-time dependencies (stencils) of equations (5)
and (8) are depicted in Fig. 1.

Both schemes are linear and explicit; in fact the only un-
known is one future point, which depends on a linear com-
bination of the states of some spatial side points, itself and
its delayed version. For more details on finite difference
schemes, refer to Bilbao [5].

3. FDS IN FAUST

In imperative programming languages, FDSs are typically
implemented using vectors and matrices: each time step is
represented by a matrix of dimension equal to the space
dimension. For instance, in the 2-D wave equation case,
three 2-D matrices would be needed, for time steps 𝑛 +
1, 𝑛, 𝑛 − 1. The time states would then be updated at
audio rate by cycling between the elements and applying
the mathematical equations. Since all this is not possible
in Faust, a different method had to be developed.

3.1 From Mass-Interaction to FDS

As before mentioned, in mi_faust, Leonard et al. intro-
duced a library that allows for the implementation of mass-
interaction physical models in Faust [14]. The mi.lib



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

13

Figure 1. Stencils for the 1-D (top) and 2-D (bottom) wave
equations. The red (top) point in each stencil is the un-
known, the black points are the next points’ states needed
for the update equations

works this way: several mass equation blocks are stacked
in parallel, followed in series by spring-damper equation
ones; the number of these blocks is determined beforehand
by the user when the mesh size is defined. The mass equa-
tions calculate the position of each mass given a force by
discretising Newton’s law: 𝑥̈ = 𝐹/𝑚. These are then fed
into the dampened spring equations (from now on, spring
will be used as a synonym for dampened spring), which
calculates the force produced by each spring block de-
pending on the position of the side masses, using Hooke’s
law and a linear damper equation: 𝐹 = −𝑧(𝑥2 − 𝑥1) −
𝜎 𝑑

𝑑𝑡 (𝑥2 − 𝑥1), where 𝑧 is the spring stiffness and 𝜎 the
damping coefficient. The forces hereby calculated are then
fed back into the mass equations, that output the new mass
positions and so on. Each spring provides a force that only
depends on two masses (the ones at the opposite sides of
the spring) or one mass and a fixed point, which does not
move. A mass position is then updated taking into account
the forces coming from all the springs connected to it. The
connections are previously defined by the user, depending
on his mesh choices. Routing functions are used to bring
the signals to the correct blocks.

If a uniform mesh is considered (namely, a mesh where
each mass is connected with a spring to each neighbour, 2
in 1-D, 4 in 2-D, making up a string in 1-D or a regular
matrix in 2-D), each mass receives a force from a constant
number of springs, except the boundaries. In this case it
is easy, by doing some algebraic calculations, to merge the

mass and spring operations in one block. Given a time dis-
cretization as the one performed in section 2 and applying
operator (2), Newton’s law for a single mass at position 1
in the mesh becomes:

𝑥𝑛+1
1 = 2𝑥𝑛

1 − 𝑥𝑛−1
1 +

𝐹𝑛
1 𝑘

2

𝑚1
(9)

This equation provides the horizontal position of 𝑚1 at
time step 𝑛 + 1. Using the backward operator (1), it is
possible to discretize the force provided by the spring con-
necting 𝑚1 to 𝑚2, which will be applied to 𝑚2:

𝐹𝑛
1→2 = −𝑧1(𝑥

𝑛
2 − 𝑥𝑛

1 )+

− 𝜎1

𝑘
((𝑥𝑛

2 − 𝑥𝑛−1
2 )− (𝑥𝑛

1 − 𝑥𝑛−1
1 ))

(10)

And, for Newton’s third law, the force applied to 𝑚1 will
be 𝐹𝑛

2→1 = −𝐹𝑛
1→2. If we consider a 1-D mesh, the total

force applied to the single mass 𝑚1 will be the sum of the
forces provided by the two side springs: 𝐹𝑛

1 = 𝐹𝑛
0→1 +

𝐹𝑛
2→1. Therefore, it is possible to generalize equation (9)

for a generic mass 𝑚𝑙 not situated at boundaries:

𝑥𝑛+1
𝑙 = 2𝑥𝑛

𝑙 − 𝑥𝑛−1
𝑙 +

𝑘2

𝑚𝑙
{−𝑧𝑗(𝑥

𝑛
𝑙 − 𝑥𝑛

𝑙−1)+

− 𝜎𝑗

𝑘
[(𝑥𝑛

𝑙 − 𝑥𝑛−1
𝑙 )− (𝑥𝑛

𝑙−1 − 𝑥𝑛−1
𝑙−1 )]+

+ 𝑧𝑗+1(𝑥
𝑛
𝑙+1 − 𝑥𝑛

𝑙 )+

+
𝜎𝑗+1

𝑘
[(𝑥𝑛

𝑙+1 − 𝑥𝑛−1
𝑙+1 )− (𝑥𝑛

𝑙 − 𝑥𝑛−1
𝑙 )]}

(11)

where 𝑧𝑗 and 𝜎𝑗 are the stiffness and damping coefficient
for the j-th spring.

If seen from another point of view, what we obtained here
is the update equation for a linear, explicit FDS model. In
fact, in equation (11) the future state (a horizontal position
in this case) of a spatial point is given by a linear combi-
nation of the present and past states of itself and its neigh-
bours. The fact that we started by considering masses and
springs reflects here only in multiplications by the scalar
coefficients 𝑚, 𝑧, and 𝜎.

3.2 Faust Implementation

Having proved that there is a connection between mass-
interaction and FDS, it is now possible to implement a FDS
model in Faust, taking inspiration from the mi_faust ap-
proach. Using equation (11) we can merge the mass and
spring blocks into one: now, each block will output its
state, feed it back and receive in input the states signals
from its neighbours and itself. The Faust syntax allows
us to get the past versions of the states by simply using
the delay operator ’. The compiler automatically allocates
the needed memory; therefore it is not necessary to imple-
ment multiple data structures for saving previous data, as
it is in imperative languages. With this configuration we
are also not limited to implement only equations (11), but
whichever explicit update equation depending on a fixed
number of neighbours’ states. As an example, code listing
1 shows the Faust function for the 1-D wave equation (5):



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

14

Figure 2. Block diagram for a 3-point-long 1-D wave equa-
tion scheme

1 lambda = c*k/h;
2 updateEq(fIn,u_w,u,u_e) =
3 2*(1-lambda^2)*u-u’+lambda^2(u_w+u_e)+fIn;

Listing 1. 1-D wave update equation

This block takes as inputs the left and right neighbours’
current states u_w and u_e, its own current state u and
an external force fIn, and outputs the next state of the
spatial point. Many blocks of this kind can be stacked in
parallel to form meshes of the desired size (as done in list-
ing 2): each one of these can be thought of as a single cell
of the arrays that are usually implemented in imperative
programming languages.

1 build1DScheme(nPoints)=par(i,nPoints,updateEq);

Listing 2. 1-D model builder function

As an example, Fig. 2 shows the Faust diagram for a
3-point-long 1-D wave equation scheme (the scheme was
made very small in order to improve the image readabil-
ity), coded by stacking in parallel the function in listing
1 three times. Here the signal paths described above are
clearly visible. It can be noticed that the side blocks have
an empty connection each; in fact, being at boundaries,
there is no neighbour to take the signal from, so here they
receive a zero value. It is possible to specify a block with a
different equation that takes into account boundary condi-
tions; if this is not done, as in this case, the zero signal au-
tomatically implies a clamped boundary condition. While
the neighbour states are taken from the feedback loop, the
force signals are open connections, these can be calculated
outside the model and sent to the desired block with a se-
lector function or an interpolator. This allows us to excite
the mesh in the proper position.

The routing function is an essential part of the algorithm,
and can be implemented using the Faust route primitive,
which allows to drive the correct signals into the wanted
spots in an optimised way. Code listing 3 shows the rout-
ing used for the algorithm in Fig. 2. Here nPoints=3
is the number of blocks (points) stacked in parallel and
nInputs=4 is the number of inputs for each block. The
primitive is designed so that the number of connections is
1-indexed: if a connection is numbered zero, or falls out-
side the maximum number of connections specified as an
argument, a zero value is sent. This feature allows us to im-
plement the “empty” connections for the boundaries shown

above; the functions F, W, C, E take care of doing
this.

1 routing(nPoints,nInputs) =
2 route(nPoints+nPoints, nPoints*nInputs,
3 par(x, nPoints, connections(x)))
4 with
5 {
6 connections(x) =
7 P(x)+nPoints, F(x),
8 P(x), E(x-1),
9 P(x), C(x),

10 P(x), W(x+1);
11 P(x)=x+1;
12 F(x)=(1+0+(x*nInputs))*(x>=0)*(x<nPoints);
13 W(x)=(1+1+(x*nInputs))*(x>=0)*(x<nPoints);
14 C(x)=(1+2+(x*nInputs))*(x>=0)*(x<nPoints);
15 E(x)=(1+3+(x*nInputs))*(x>=0)*(x<nPoints);
16 };

Listing 3. Routing function for 1-D wave equation.

The same algorithm structure can be employed for coding
2 or 3-D models. Listing 4 shows the Faust implementation
for the 2-D wave update equation obtained in (8).

1 lambda = c*k/h;
2 updateEq(fIn,u_n,u_s,u,u_w,u_e) =
3 2*(1-2*lambda^2)*u-u’+lambda^2*(u_e+u_w+u_n+

u_s)+fIn;

Listing 4. 2-D wave update equation.

Again, many copies of this block can be stacked in par-
allel to form a 2-D mesh. Faust does not provide multi-
dimensional structures such as matrices; therefore, this op-
eration is not as straightforward as it was before. A nested
for-loop can be simulated by nesting two par iterations, re-
sulting in a piece of code that looks similar to what is used
in imperative languages for parsing matrices:

1 build2DScheme(X,Y) = par(x,X,par(y,Y,updateEq));

Listing 5. 2-D model builder function

where X and Y are the total number of points in the 𝑥 and
𝑦 dimensions. Nevertheless, this algorithm will not form
a 2-D structure; on the contrary, it will unroll it and build
a 1-D block sequence with length X*Y, where consecutive
rows are put one after the other. Hence, the code above is
only useful to keep the double indexing convention.

Not having multi-dimensional structures is only a partial
issue; in fact, with a proper routing, it is possible to drive
the correct feedback signals into the right blocks. The rout-
ing function for the 2-D wave equation can be implemented
as in listing 6:

1 routing2D(X, Y, nInputs) =
2 route(X*Y*2, X*Y*nInputs,
3 par(x, X, par(y, Y, connections(x,y))))
4 with
5 {
6 connections(x,y) =
7 P(x,y) + X*Y, F(x,y),
8 P(x,y), S(x,y-1),
9 P(x,y), N(x,y+1),

10 P(x,y), C(x,y),
11 P(x,y), E(x-1,y),
12 P(x,y), W(x+1,y);
13 P(x,y)=x*Y+y+1;
14 F(x,y)=(1+0+(x*Y+y)*nInputs)*(x>=0)*(x<X)*(y

>=0)*(y<Y);
15 N(x,y)=(1+1+(x*Y+y)*nInputs)*(x>=0)*(x<X)*(y

>=0)*(y<Y);
16 S(x,y)=(1+2+(x*Y+y)*nInputs)*(x>=0)*(x<X)*(y

>=0)*(y<Y);
17 C(x,y)=(1+3+(x*Y+y)*nInputs)*(x>=0)*(x<X)*(y

>=0)*(y<Y);



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

15

18 W(x,y)=(1+4+(x*Y+y)*nInputs)*(x>=0)*(x<X)*(y
>=0)*(y<Y);

19 E(x,y)=(1+5+(x*Y+y)*nInputs)*(x>=0)*(x<X)*(y
>=0)*(y<Y);

20 };

Listing 6. Routing function for 2-D wave equation.

Again, X and Y are the number of points in the two spatial
dimensions, and nInputs=6 is the number of inputs of
each block.

Comparisons between these algorithms coded in Faust
and the same versions in Matlab showed that the outcom-
ing data was exactly the same; therefore it is possible to
state that this method allows us to solve explicit finite dif-
ference schemes.

4. FDS LIBRARY

In the previous section, a method for implementing FDS
physical models in Faust has been introduced and it was
showed that what is usually achieved with array indexing
can be equivalently accomplished in Faust by specifying
signals routings. However, we can say without a doubt
that coding FDSs this way is not as straightforward as
it is in imperative languages. The main difficulty comes
from the routing function, which can become very com-
plicated for some models. In fact, the examples reported
above are the simplest ones to implement, and things can
become more intricate when a larger number of neighbours
is needed. Moreover, these functions have to be re-written
from scratch for each scheme. On the other hand, routing
functions are not needed in languages where data struc-
tures are available, as they are replaced by explicit signal
indexing. This makes Faust not competitive, at the mo-
ment, when it comes to implement FDS synthesis. For this
reason, a second goal was set, consisting in the develop-
ment of a library, fds.lib, allowing for a faster imple-
mentation of FDSs in Faust. Since this aims to be an in-
troductory work and the intention was to give a coherent
structure to the code, it was decided to only focus on linear
and explicit schemes, leaving the implementation of other
kind of simulations for future work. While it may seem a
limitation, it has to be considered that linear schemes are
sufficient for many cases of musical interest [5]; in fact, the
majority of FDS models that run in real-time nowadays are
of this kind, and Faust is specifically oriented towards the
development of real time applications.

4.1 Cellular Automata

A cellular automaton (CA) is an algorithm that operates
on a grid of cells, which can be in a finite number of states.
For each cell, a set of cells is defined and called neighbour-
hood: at each time step 𝑡, the next state of a cell is deter-
mined by its present state and the state of its neighbours.
The rule determining the new state is called transition rule
and can be linear or nonlinear. The number of neighbours
is defined by a coefficient 𝑟, called the neighbourhood ra-
dius; this indicates the number of cells at each side of the
current cell that are taken into account. For instance, if
𝑟 = 1 and the scheme is 1-D, the transition rule will de-

Figure 3. Scheme of a 1-D CA algorithm with transition
rule G

pend on the current cell, one cell on the right and one on
the left. Therefore, a neighbourhood is made of (2𝑟+ 1)𝐷

elements, where 𝐷 represents the scheme dimension.
If we consider a 2-D system, we can call the system’s

state at time 𝑡 Φ𝑡; therefore the i-th, j-th single cell’s state
can be written as 𝜑𝑡

𝑖,𝑗 . We can then define a transition rule
𝐺 that brings Φ𝑡 to Φ𝑡+1 such that 𝐺 : Φ𝑡 ↦→ Φ𝑡+1. If 𝐺
is linear we can write:

𝜑𝑡+1
𝑖,𝑗 =

𝑟∑︁
𝛼=−𝑟

𝑟∑︁
𝛽=−𝑟

𝑎𝛼,𝛽𝜑
𝑡
𝑖+𝛼,𝑗+𝛽 (12)

where 𝑎𝛼,𝛽 are the coefficients of the rule. A cellular au-
tomaton can be completely defined by its radius 𝑟 and a
transition rule; moreover, if the latter is linear, the coeffi-
cient matrix A and 𝑟 are only needed. As an example, Fig.
3 depicts the scheme of a simple 1-D cellular automaton al-
gorithm, made of 𝑁 cells, radius 𝑟 = 1 and transition rule
𝐺. For more details on cellular automata refer to [17, 18].

It is straightforward to identify a connection between
FDSs and CA; in fact, several studies have been published
on this topic [17]. Some of them have a general focus on
the simulation of PDEs [19, 20], and others more particu-
larly on the discretization of waveforms equations [21,22].
Both FDSs and CA deal with an evolution of state vari-
ables on a discrete space-time grid, with the only differ-
ence being the fact that cellular automata operate on dis-
crete states, while differential equations look for a contin-
uous domain solution. However, in computer simulations
numerical solutions are always discrete, since the proces-
sors’ resolution is limited by the number of bits. Express-
ing a FDS as a CA might seem counter intuitive. In fact,
the latter are mostly used with a small number of states
(sometimes even 2), as they allow us to obtain complex
behaviour from very simple rules [23], while in the case
of PDEs simulation we deal with an enormous number of
possible states. Nevertheless, the CA formalism allows us
to obtain a standardized way for expressing FDS in Faust,
as it will be shown in the next section.

4.2 The Library

The cellular automata formalism can help us coding stan-
dard routing functions for different space dimensions, that
properly route the needed neighbours’ signals relying only
on the information provided by a predefined radius 𝑟.
Moreover, as it was decided to focus on linear schemes,
the transition function for the CA can be simply defined by
some coefficient matrices. Contrary to cellular automata,
a FDS usually depends on delayed versions of the neigh-
bours’ states; therefore, a time coefficient 𝑡 had to be also



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

16

taken into account, which indicates how much steps back
in time are needed (i.e., if 𝑡 = 1 it means that the maxi-
mum delay needed for a neighbour state is 1 sample). With
a little abuse of notation, we can express the operation per-
formed by each cell (point) in a 𝐷-dimensional scheme as:

𝑢𝑛+1
x =

∑︁
[A0 ⊙N𝑟(𝑢

𝑛
x)+

+A1 ⊙N𝑟(𝑢
𝑛−1
x )+

+ · · ·+A𝑡 ⊙N𝑟(𝑢
𝑛−𝑡
x ) ] + 𝐹𝑖𝑛

(13)

where x = (𝑥1, . . . , 𝑥𝐷) represents a spatial multi-index,
depending on the scheme dimension 𝐷, N𝑟(𝑢

𝑛
x) is a ma-

trix containing the states of the neighbourhood of 𝑢x at
time step 𝑛, A𝑖 are the coefficient matrices for each de-
layed version of the states, 𝐹𝑖𝑛 is an external signal used to
interact with the mesh, the operator ⊙ represents element-
wise matrix multiplication and the non-indexed sum indi-
cates a summation over all the matrix entries. Both N𝑟 and
A𝑖 contain (2𝑟 + 1)𝐷 elements. The next paragraphs will
detail how this approach can be used to build a FDS model
with fds.lib.

4.2.1 Defining the Model

In order to code a new model, the user needs to provide:
a neighbourhood radius 𝑟, a time coefficient 𝑡, the num-
ber of scheme points (size of the mesh) and the coefficient
matrices relative to each point. The latter then need to
be ordered in parallel to build a coefficients scheme, sim-
ilarly to what was done in listings 2 and 5. This opera-
tion allows us to provide different coefficients for differ-
ent scheme points, which is essential both for providing
boundary conditions other than the clamped ones, and for
building physical models with spatially-varying character-
istics. As an example, listings 7 and 8 show the definition
of the coefficient matrices for equations (5) and (8).

1 r=1; t=1; lambda=c*k/h;
2 A=2*(1-lambda^2); B=lambda^2; C=-1;
3 midPoint=B,A,B;
4 midPointDel=0,C,0;
5 leftPoint=0,A,2*B;
6 leftPointDel=0,C,0;
7 scheme(nPoints) = leftPoint,leftPointDel,
8 par(i,nPoints-1,midPoint,midPointDel);

Listing 7. 1-D wave equation coefficient matrices

In this code a different coefficient matrix has been set to
the leftmost point, in order to apply a Neumann free con-
dition. Since the order of the points goes from left to right,
the boundary condition is placed first inside the scheme
function. Notice that the matrix for the non-delayed states
is placed first; this order is very important for the correct
functioning of the scheme.

1 r=1; t=1; lambda=c*k/h;
2 B = lambda^2;
3 A = 2*(1-2*lambda^2); C = -1;
4 midPoint = 0,B,0,
5 B,A,B,
6 0,B,0;
7 midPointDel = 0,0,0,
8 0,C,0,
9 0,0,0;

10 scheme(X,Y) = par (i, X,
11 par(j,Y, midPoint,midPointDel));

Listing 8. 2-D wave equation coefficient matrices

In this case no boundary conditions have been specified;
therefore clamped conditions are implied.

Looking at the code, a visual similarity between the coef-
ficient matrices midPoint and midPointDel and the
stencils in Fig. 1 might be identified. In fact, what we de-
fined here are exactly the coefficients to be applied to the
black points in the stencils. In the 2-D case, the CA neigh-
bourhood is necessarily squared; therefore, zeros need to
be placed at the corner points in this equation case, as seen
in listing 8.

4.2.2 Model Construction

Once the coefficients are defined, the user can simply call
model1D or model2D in order to obtain a fully working
physical model. These functions take as inputs the number
of points, the radius 𝑟, the time coefficient 𝑡 and the coeffi-
cients scheme, and build a model with the same technique
detailed in section 3. The built model will have open con-
nections for the forces (or for a generic external signal),
one for each scheme point, and will output each point’s
current state. Interpolation functions can be used in order
to correctly select the zone of the mesh to excite or to read
the signal from. Fig. 4 depicts the block diagram for a 3
points long version of the scheme in listing 7, built with
model1D. This diagram will produce the same C++ code
as the one represented in Fig. 2.

4.2.3 Interpolation

The library provides linear interpolation operators in 1
and 2 dimensions: linInterp1D and linInterp2D,
which can be used to drive the force to the correct blocks.
The index can be a float number varying at run time. These
are essentially Faust implementations of the 𝐽(𝑥𝑖) oper-
ator, the linear interpolator described by Bilbao [5], not
scaled by the spatial step, and work in a similar way as
the Faust function selectoutn (included in the Faust
basics library), except that they have the same number of
input/output connections; and allow us to use float indexes.
The library provides also stairs selectors functions, which
only permit to use integer indexes: these are useful in case
interpolation is not needed and require less computational
power. All these functions are present also in an “out” ver-
sion that sums all the outcoming signals together, in order
to get a mono output signal.

4.2.4 Routing

The functions route1D and route2D are used to route
the forces, the coefficients scheme and the neighbours’ sig-
nals in the correct places. These are essentially versions of
the functions reported in listings 3 and 6, modified to be
automatically built starting from the values 𝑟 and 𝑡, and to
include also the coefficients matrices in the routing. The
routing functions take as input, in this order: the coeffi-
cients block, the feedback signals and the forces. In return
they provide for each scheme point (in order): the force
signal, the coefficient matrices, and the neighbours’ sig-
nals.



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

17

Figure 4. Block diagram for a 3 points long 1-D wave equation scheme, built with the library functions

4.2.5 Scheme Operations

As done previously in section 3, the actual equa-
tions are calculated inside some scheme points blocks
stacked in parallel. The calculation is performed by the
schemePoint function, which is built based on 𝑟, 𝑡 and
𝐷. This function takes as inputs (in order): the force,
the coefficient matrices and the neighbours’ signals and
outputs the next point state according to equation (13).
The functions buildScheme1D and buildScheme2D
are used to stack in parallel the proper number of scheme
points.

4.2.6 Interaction Models

Even if only linear schemes were considered, nonlinear in-
teraction models can be implemented. The library provides
two force functions: a bow and a hammer. The first one is
based on the formulation of the Helmholtz motion by Bil-
bao, the second one is modeled as a dampened oscillator
interacting with the mesh in a nonlinear way [5]. Both
models need to be coupled with the scheme, in particu-
lar, the hammer model involves solving another FDS (the
oscillator) in parallel with the mesh. Coupling can be im-
plemented by placing another feedback loop outside the
model which drives back the mesh and the oscillator out-
puts; the interpolation functions can be used to pick the
desired output signal from the mesh. Then, the two sig-
nals are used to calculate the force, which is subsequently
sent as an input to the mesh and the hammer again. The
hammer oscillator is integrated inside the hammer func-
tion, so that the two force models can be implemented with
the same structure. The bow block takes as an input (in or-
der): the bow velocity, the force scaling coefficient, the
nonlinear parameter and the time step. The hammer block
takes, in order, the force scaling coefficient, the oscillator
frequency 𝜔2

0 , the oscillator damping coefficient 𝜎0, the
hammer stiffness parameter, the nonlinear parameter, the
time step and the initial distance between the hammer and
the mesh. Both blocks output a force times a scaling coef-
ficient.

5. DISCUSSION & FUTURE WORK

The fds.lib library comes with a few examples serv-
ing as use-cases (in particular for what concerns the use
of the interaction models) and ready-to-use virtual instru-
ments. The modular structure of the library makes it con-
venient for different purposes. On one hand, the user inter-
ested in implementing standard linear schemes can simply
write an equation with the desired numerical coefficients
and use the model construction functions to easily obtain
a working mesh. On the other hand, the library functions
can be employed or modified individually to obtain a dif-
ferent result. For instance, the scheme point function could
be easily adapted for calculating nonlinear equations, with
the only constraint being that the nonlinearities would still
need to depend only on the neighbors’ states.

The 1-D schemes that were tested performed reasonably
well: the CPU load, on an Intel i7-4710HQ processor, was
always less than 10% even with a high number of points
(schemes with up to 400 points compile and run even on
the Faust online IDE). Nevertheless, more systematic per-
formance tests need to be conducted in the future. The
2-D schemes, however, presented an issue. The gener-
ated C++ code is completely unrolled, resulting in very
long algorithms. As a result, if the number of points is
too high, the C++ compiler crashes, an issue similar to the
one encountered by Barkati et al. [24]. Our experiments
showed that the GCC compiler could not handle meshes
with more than 20-by-20 points, which is not enough for
many models. This is an issue inherent to the Faust com-
piler, which needs to be addressed in order to make Faust
a complete language for coding FDSs. One way to solve
this problem would be to make the compiler able to recog-
nize the parallel structures inside the code and roll them up
in the process of translation into C++. However, this topic
needs to be more thoroughly investigated. Possible future
work includes the implementation of initial conditions for
the mesh points and, in the long run, support for implicit
schemes.



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

18

6. CONCLUSIONS

This work aimed at introducing FDS synthesis in Faust.
First, a routine for coding linear explicit physical models
in a functional programming way was presented. Then,
an overview on the connection between FDS and CA was
provided, and the fds.lib was introduced: a library that
takes advantage of this connection to ease the development
FDSs. Together, the two tools allow users interested in
implementing these models to exploit Faust potentialities
in terms of code translation, optimization and wrapping
system. The performances reported by 1-D schemes are
promising; however, more methodical tests need to be per-
formed. On the contrary, Faust presented several limita-
tions for compiling 2-D models; these may be addressed
by modifying the Faust compiler, making it able to recog-
nize parallel structures.

7. REFERENCES

[1] G. De Poli and D. Rocchesso, “Physically-based sound
modelling,” Organised Sound, vol. 3, pp. 61–76, 04
1998.

[2] J. Smith, “Physical modeling using digital waveg-
uides,” Computer Music Journal, vol. 16, p. 74, 1992.

[3] C. Cadoz, A. Luciani, and J. L. Florens, “Cordis-
anima: A modeling and simulation system for sound
and image synthesis: The general formalism,” Com-
puter Music Journal, vol. 17, no. 1, pp. 19–29, 1993.

[4] J. Adrien, “The missing link: modal synthesis,” Repre-
sentations of Musical Signals, 1991.

[5] S. Bilbao, Numerical Sound Synthesis. Chichester,
UK: John Wiley & Sons, Ltd, 2009.

[6] S. Bilbao, C. Desvages, M. Ducceschi, B. Hamilton,
R. Harrison-Harsley, A. Torin, and C. Webb, “Physical
modeling, algorithms, and sound synthesis: The ness
project,” Computer Music Journal, vol. 43, no. 2-3, pp.
15–30, 11 2020.

[7] Y. Orlarey, D. Fober, and S. Letz, “FAUST : an Effi-
cient Functional Approach to DSP Programming,” in
New Computational Paradigms for Computer Music,
E. D. France, Ed., 01 2009, pp. 65–96.

[8] R. Michon, J. Smith, and Y. Orlarey, “New Signal Pro-
cessing Libraries for Faust,” in Linux Audio Confer-
ence, Saint-Etienne, France, 05 2017, pp. 83–87.

[9] J. O. Smith, “Virtual electric guitars and effects using
faust and octave,” in Proc. 6th Int. Linux Audio Conf.
(LAC2008), vol. 33, no. 3, Toronto, Canada, 01 2008,
p. 1–10.

[10] R. Michon and J. Smith, “Faust-stk: A set of lin-
ear and nonlinear physical models for the faust pro-
gramming language,” in Proceedings of the 14th Inter-
national Conference on Digital Audio Effects, DAFx
2011, Paris, France, 01 2011, pp. 199–204.

[11] P. Cook and G. Scavone, “The synthesis toolkit (stk),”
in Proceedings of the ICMC, Beijing, China, 10 1999.

[12] R. Michon, J. Smith, C. Chafe, G. Wang, and
M. Wright, “The Faust Physical Modeling Library: a
Modular Playground for the Digital Luthier,” in Inter-
national Faust Conference, Mainz, Germany, 07 2018.

[13] E. Berdahl and J. Smith, “Modular and open-source
sound synthesis using physical models,” in Proceed-
ings of the Linux Audio Conference, Stanford, USA,
05 2012.

[14] J. Leonard, J. Villeneuve, R. Michon, and Y. Orlarey,
“Formalizing mass-interaction physical modeling in
faust,” in Proceedings of the Linux Audio Conference,
Stanford, USA, 03 2019.

[15] C. Erkut and K. Matti, “Digital waveguides versus
finite difference structures: Equivalence and mixed
modeling,” EURASIP Journal on Advances in Signal
Processing, vol. 2004, pp. 1–12, 06 2004.

[16] C. Erkut and M. Karjalainen, “Finite difference method
vs. digital waveguide method in string instrument mod-
eling and synthesis,” Proceedings of the International
Symposium on Musical Acoustics (ISMA-02), Mexico
City, 2002, 12 2002.

[17] P. Narbel, “Qualitative and quantitative cellular au-
tomata from differential equations,” Lecture Notes in
Computer Science, vol. 4173, pp. 112–121, 10 2006.

[18] X.-S. Yang and Y. Young, Cellular Automata, PDEs,
and Pattern Formation. Chapman & Hall/CRC, 09
2005, ch. 18, pp. 271–282.

[19] B. Strader, K. Schubert, E. Gomez, J. Curnutt, and
P. Boston, “Simulating spatial partial differential equa-
tions with cellular automata.” in Proc. International
Conference on Bioinformatics & Computational Biol-
ogy, BIOCOMP, Las Vegas Nevada, USA, 07 2009, pp.
503–509.

[20] G. Y. Vichniac, “Simulating physics with cellular au-
tomata,” Physica D: Nonlinear Phenomena, vol. 10,
no. 1, pp. 96 – 116, 1984.

[21] D. N. Ostrov and R. Rucker, “Continuous-valued cel-
lular automata for nonlinear wave equations,” Complex
Systems, vol. 10, pp. 91–119, 1996.

[22] D. Barkley, “A model for fast computer simulation of
waves in excitable media,” Physica D: Nonlinear Phe-
nomena, vol. 49, no. 1, pp. 61 – 70, 1991.

[23] S. Wolfram, “Cellular automata as models of complex-
ity,” Nature, vol. 311, pp. 419–424, 1984.

[24] K. Barkati, H. Wang, and P. Jouvelot, “Faustine: A
vector faust interpreter test bed for multimedia signal
processing,” 06 2014, pp. 69–85.


