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Abstract

TransMembrane b-Barrel (TMBB) proteins located in the outer membranes of Gram-negative bacteria are
crucial for many important biological processes and primary candidates as drug targets. Structure deter-
mination of TMBB proteins is challenging and hence computational methods devised for the analysis of
TMBB proteins are important for complementing experimental approaches. Here, we present a novel
web server called BetAware-Deep that is able to accurately identify the topology of TMBB proteins (i.e.
the number and orientation of membrane-spanning segments along the protein sequence) and to discrim-
inate them from other protein types. The method in BetAware-Deep defines new features by exploiting a
non-canonical computation of the hydrophobic moment and by adopting sequence-profile weighting of the
White&Wimley hydrophobicity scale. These features are processed using a two-step approach based on
deep learning and probabilistic graphical models. BetAware-Deep has been trained on a dataset
comprising 58 TMBBs and benchmarked on a novel set of 15 TMBB proteins. Results showed that
BetAware-Deep outperforms two recently released state-of-the-art methods for topology prediction, pre-
dicting correct topologies of 10 out of 15 proteins. TMBB detection was also assessed on a larger dataset
comprising 1009 TMBB proteins and 7571 non-TMBB proteins. Even in this benchmark, BetAware-Deep
scored at the level of top-performing methods. A web server has been developed allowing users to ana-
lyze input protein sequences and providing topology prediction together with a rich set of information
including a graphical representation of the residue-level annotations and prediction probabilities.
BetAware-Deep is available at https://busca.biocomp.unibo.it/betaware2.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecom-

mons.org/licenses/by/4.0/).
Introduction

Transmembrane b-barrel (TMBB) proteins are
integral membrane proteins composed by b-
strands spanning the membrane phase and
forming a structural motif that resembles a barrel.1

TMBBs are found in outer membranes of Gram-
negative bacteria, mitochondria and chloroplasts.
In this work, the attention is focalized on Gram-

negative TMBB proteins, which have peculiar
rs. Published by Elsevier Ltd.This is an open acc
structural characteristics.2 Firstly, they include an
even number (between 4 and 36 per chain) of trans-
membrane b-strands, with the N- and C-terminus
always localized in the periplasmic space. Sec-
ondly, all b-strands are antiparallel and adjacent in
the sequence (all-next-neighbors). Thirdly, the con-
nections between b-strands at the periplasmic side
are typically short turns, while in the external side
they include long loops. Finally, residues in
membrane-crossing b-strands show the alternation
ess article under the CC BY license (http://creativecommons.org/licenses/
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of lipid- and pore-facing residues, in a dyad-repeat
pattern.3

TMBB proteins perform a wide range of
functions,4 including membrane anchoring, pepti-
dase activity, cell adhesion, lipase activity, auto-
transporter, signal transduction, general and
specific diffusion of molecules and ions (porins),
efflux pumps. According to the wide range of func-
tions performed by TMBB proteins, they are
encoded by as many as 2–3% of all genes in most
Gram-negative bacteria,3 which confirms their rele-
vance in these organisms. These features make
TMBB proteins attractive for drug discovery,
research on drugs (such as antibiotics) and vac-
cines. However, despite their relevance and the
medical interest, TMBB proteins are largely under-
represented in the Protein Data Bank (PDB).5 This
is mainly due to technical difficulties in the expres-
sion and the crystallization process. Thus, it is of
crucial importance to have reliable computational
methods able to discriminate TMBB proteins in
large datasets of proteins, such as whole genomes
(discrimination task), and to predict the organization
of the protein in themembrane space (protein topol-
ogy i.e. the number and location of membrane-
spanning segments along the sequence and their
orientation with respect to the membrane).
Methods available in literature adopt different

types of machine-learning approaches (e.g.
support vector machines, neural networks, hidden
Markov models and conditional random fields) to
tackle the topology prediction and the
discrimination tasks.6–16 Tools are typically imple-
mented and released either as web servers or stan-
dalone executables.
Here we present BetAware-Deep, a new web

server for both TMBB detection and topology
prediction. The method underlying BetAware-
Deep consists of a two-step procedure based on
deep learning (Long Short-Term Memory, LSTM)
followed by the application of probabilistic
graphical models for sequence labelling.
Moreover, the method includes the computation of
a profile-weighted hydrophobic moment, a feature
designed to effectively capture the dyad-repeat
pattern, which has been proven to be helpful to
improve TMBB topology prediction.15 Benchmarks
were performed to assess BetAware-Deep perfor-
mance with respect to other state-of-the-art meth-
ods using a new blind dataset specifically
designed for this purpose. In this stringent bench-
mark, our web server reported the best perfor-
mance in topology prediction, outperforming
recent approaches designed for the same task. A
comparative benchmark has been also performed
to assess the ability to discriminate TMBB from
non-TMBB proteins. Even in this case, BetAware-
Deep achieved performances that are comparable
to other methods at the state-of-the-art.
The BetAware-Deep web server provides a user-

friendly interface and allows performing TMBB
2

detection and topology prediction of a user-
submitted query protein. Prediction results include
many different types of information and the
possibility of browsing predicted topology through
an interactive feature viewer. The BetAware-Deep
web server it is freely accessible to the scientific
community at https://busca.biocomp.unibo.
it/betaware2.
Materials and methods

Datasets

The dataset used for training BetAware-Deep
includes two parts: a positive dataset, comprising
bacterial TMBB proteins, and a negative one,
comprising bacterial all-beta, non-TMBB proteins
used to improve the predictor discrimination
capabilities.
The positive dataset, comprising 58 TMBB

proteins, was derived from data deposited at the
MPstruc database (https://blanco.biomol.uci.edu/
mpstruc/). Redundancy among these proteins was
reduced allowing at the most 25% sequence
identity on more than 90% coverage on both
sequences. One representative was then selected
for each cluster. Then, the resulting 58 proteins
were grouped in 10 subsets for cross-validation.
To avoid any residual redundancy between
training/validation/testing sets, sequences were
further clustered using a threshold of 25%
sequence identity at 50% coverage and requiring
proteins clustered together to be in the same
subset.
The negative dataset was obtained from the set of

bacterial all-beta proteins, as annotated in SCOPe.1

A final set of 69 proteins was obtained after reduc-
ing internal redundancy at 25% sequence identity
on a 50% coverage.
To test the method performances in topology

prediction, and to compare them with those
obtained with other state-of-the-art methods, a
blind test set was also compiled. This dataset
comprises 15 TMBB proteins also extracted from
the MPstruc database. Again, internal redundancy
was reduced to 25% sequence identity on a 50%
coverage. Similarly, redundancy was reduced
(using the same thresholds) with respect to
BetAware-Deep training set as well as with
respect to the datasets used for training the two
most recent approaches available in literature,
BOCTOPUS215 and PRED-TMBB2.16 This allowed
us to build an unbiased independent dataset on
which we could compare the different approaches.
We did not consider a splitting based on structural
or distant homology classification because beta-
barrel membrane proteins are separated in few
classes that include proteins with very different
topologies and functions.
Sequences in both training and testing sets were

downloaded fromUniProt17 rather than PDB, to per-
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form training and predictions on the complete pro-
tein sequences. For each protein, a multiple
sequence alignment (MSA) was built running PSI-
BLAST18 for 2 iterations against the UniRef90
database19 (release 2018_03). A sequence profile
representing the frequency of each residue type at
each MSA column was then computed from the
PSI-BLAST output.
Residue-level labeling was performed according

to data available at the Orientations of Proteins in
Membranes (OPM) database,20 which provided
information about the localization of residues with
respect to the membrane plane. Moreover, in order
to characterize complete beta-strands, we also
computed secondary structures using DSSP21 and
combined strand assignments with OPM-
annotated TM strands.
According to our procedure, five different labels

can be assigned to each residue:

� n, non-barrel region, namely the portion of the protein
which precedes or succeeds the TMBB beta-barrel;

� i, inner or periplasmic region;
� o, outer or extracellular region;
� T, trans-membrane region, namely residues embed-
ded in membrane as indicated by OPM;

� E, portion of the beta-strands not classified as trans-
membrane by OPM but contiguous to the OPM-
annotated segment.

The explicit introduction of the extended strand
class allows to better model the uncertainty
around TM-segment edges using DSSP
annotations. Residues of proteins belonging to the
negative set are all labelled with the n label (see
Supplementary Materials Figure S1 for a graphical
representation of the labelling strategy adopted).
Finally, to assess performance in the

discrimination task, we adopted a large dataset
including 1009 TMBB proteins and 7571 non-
TMBB proteins, previously introduced to evaluate
performance of Pred-TMBB216 in the same task.
All datasets can be downloaded from the

BetAware-Deep web server at: https://busca.
biocomp.unibo.it/betaware2/datasets.

Overview of BetAware-Deep approach

BetAware-Deep implements a new approach for
tackling both TMBB detection and topology
prediction tasks. Compared to our previous
release (BetAware, based on extreme learning
machines and conditional random fields14),
BetAware-Deep introduces several different
improvements. These include: (i) the application,
for the first time in this field, of a deep recurrent net-
work to scan input sequences; (ii) the definition of a
new feature based on profile-weighted hydrophobic
moment to capture the typical TMBB dyad-repeat
pattern; (iii) the adoption of a extended labelling
approach which takes into consideration non-
barrel regions as well as ambiguity around borders
3

of transmembrane b-strand segments; (iv) two
brand-new and updated datasets for training and
independently testing the method.
The approach implemented in BetAware-Deep

consists of two cascading prediction steps (see
Supplementary Figure S3 for a graphical
representation of BetAware-Deep workflow). In
the first step, a deep learning architecture is
implemented to predict the probability for each
residue of the query protein sequence of being
localized into one of the five possible
compartments: non-barrel region (n), periplasmic
side (i), extracellular side (o), transmembrane
beta-strand segment (T) and extended
transmembrane beta strand (E). In the second
step, these probabilities are processed in order to
predict the final protein topology using a
probabilistic sequence labelling approach (a
detailed description is in the following and for
additional details refer to Supplementary Material).
One of themain novelties introduced in BetAware-

Deep is the adoption of a sequence profile-weighted
hydrophobic moment capturing the dyad-repeat
pattern. The hydrophobic moment22 measures the
alternance between hydrophobic and hydrophilic
residues in a short protein segment, given a specific
angle separating sidechains along the backbone.
Fixing this angle to 180� and considering a segment
of 5 residues, the hydrophobic moment is computed
according to Eq. (1):

c ¼
X5

n¼1

H½Rn �ð�1Þn
�����

����� ð1Þ

where H½Rn � is the hydrophobicity score for residue R in
position n observed in the protein sequence. Here, we
adopted the White&Wimley hydrophobic scale for the
transfer of unfolded chains into octanol.23

This canonical definition of the hydrophobic
moment (here, referred to as Unweighted
Hydrophobic Moment [UHM]) is extended to
include evolutionary information contained in a
sequence profile: instead of using the
hydrophobicity score for each residue in the
primary sequence, all residues observed in a
specific column of a multiple sequence alignment
are taken into consideration. In mathematical
terms, this means applying a simple weighting
scheme as follows:

c ¼
X5

n¼1

X

R2 A;C ;D ;:::;Yf g
P ½Rn �H½Rn �ð�1Þn

�����

����� ð2Þ

where the inner summation is taken over all possible
residues R, and H Rn½ � and P ½Rn � are, respectively, the
hydrophobicity score and the frequency for residue R in
position n given the sequence profile. Here, this non-
canonical computation of the hydrophobic moment is
referred to as Profile-Weighted Hydrophobic Moment
(PWHM). Since it is likely that the moment value is
higher at the center of a transmembrane segment and
lower at the edges, we assign to each position the
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maximum moment value in the 3-residue window
centered on the position. This choice allows smoothing
the hydrophobic moment signal along the sequence,
possibly increasing the value at the TM segment edges.
The hydrophobic moment calculated as

described above is then concatenated to the
sequence profile itself (ending up with a 21-
dimensional encoding of each residue) and it is
given as input to the first step method. This step is
implemented using a Bidirectional Long Short-
Term Memory (BLSTM) model.24 The Long Short-
TermMemory (LSTM)25 is a type of recurrent neural
network well-suited for analysing sequential data.
What distinguishes a LSTM from other types of
recurrent networks is the ability to better handle
vanishing gradient issues. Indeed, thanks to the
special gated architecture, the LSTM learns to
neglect sequence positions not relevant for the
problem at hand, allowing the gradient to flow
unchanged along these positions.25 BLSTM repre-
sents a further improvement of this model. It
belongs to the family of bidirectional RNNs,26

whose basic idea is to duplicate the recurrent layer,
the first scanning the input sequence left-to-right
and right-to-left, respectively. This model has been
successfully applied for the first time in speech
recognition.24 The specific BLSTM architecture
adopted in this work is described in detail in Supple-
mentary Materials and graphically shown in
Figure S4.
As mentioned above, the output provided by the

BLSTM model for each position in the input
sequence is a set of five Per-Residue Probabilities
(PRPs) of being localized into one of the possible
compartments relative to the membrane (n,i,o,T
and E). PRPs are then positionally combined to
the sequence profile (leading to a 25-dimensional
encoding of each residue) and passed to the
second BetAware-Deep predictive step. At this
stage, we apply Grammatical-Restrained Hidden
Conditional Random Fields (GRHCRFs), a
discriminative probabilistic model already used in
the first version of BetAware and fully described in
general terms by Fariselli and co-workers.27 The
GRHCRF model, depicted as a finite-state automa-
ton in Figure S5, allows to predict the protein topol-
ogy in agreement with a regular grammar defined
over structural constraints known for TMBB pro-
teins. The prediction phase in the GRHCRF model
consists in the identification of the most probable
path along the model given the input sequence.
This is achieved using the Posterior-Viterbi
dynamic-programming algorithm.27

As a final step, the five-class topology (labels: n,i,
o,T and E) predicted by the GRHCRF model is
mapped to a canonical three-class scheme
(labels: i, o and T) by mapping label n to i and
label E to T.
Discrimination of TMBB from non-TMBB proteins

in BetAware-Deep is based on the number of
predicted transmembrane segments. Specifically,
4

BetAware-Deep predicts a protein as a TMBB if
the number of TM segments is at least 4. This
choice builds on the fact that the number of
segments in known Gram-negative bacteria
TMBBs ranges from 4 to 36.
Model selection and evaluation procedure

Optimal input encodings, parameters and
hyperparameters of the two machine-learning
methods included in BetAware-Deep were
estimated using a cross-validation procedure.
Each run of cross validation was carried out using
eight subsets for training, one for validation and
one for testing. BLSTM training procedure was
stopped when the validation loss ceased to
decrease for at least 20 epochs. Analogously, the
validation set was used to establish the number of
iterations used to train the GRHCRFs. Once
optimized over the validation set, prediction was
performed over the testing set.
Blind test predictions were carried out training

both machine-learning steps using the complete
training set and using a small fraction of it for
validation (specifically used for early stopping of
the BLSTM model).
Topology prediction has been evaluated using the

following scoring measures:

� three-class accuracy (Q3);
� the Segment OVerlap measure (SOV), evaluating
how well predicted segments in the three classes
cover observed segments;28

� the Protein OVerlap measure (POV), namely the
number of proteins with completely correct predicted
topology. Here, a topology prediction is considered
correct if the number of TM segments is correct and
the overlap between observed and corresponding
predicted segments is above a given threshold;

� NTM, defined as the number of proteins with the cor-
rect number of predicted TM segments.

Discrimination of TMBB from non-TMBB proteins
was assessed using standard binary classification
measures, including: Matthew’s Correlation
Coefficient (MCC), Specificity (Spe) and
Sensitivity (Sen).
The BetAware-Deep web server

BetAware-Deep is released as a public web
server accessible at https://busca.biocomp.unibo.
it/betaware2. The server home page provides a
very simple interface allowing the user to either
paste a protein sequence in FASTA format or to
upload an external FASTA file. The server accepts
a single protein sequence per job.
After submission, the user is automatically

redirected to the page where results will appear.
After job completion, the server output is shown.
In Figure 1 the BetAware-Deep result page is

https://busca.biocomp.unibo.it/betaware2
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Figure 1. The BetAware-Deep result page. (a) This panel reports summary information about the submitted job and
aggregated prediction results including predicted protein localization, overall TMBB probability, number of TM
segments and their average length. (b) This panel reports detailed information about predicted TM b-strands,
including begin and end positions, length and average predicted probability scores. (c) This panel reports detailed
topology annotation using an interactive feature viewer. Users can zoom-in and visualize areas of interest along the
protein sequence. All results can be downloaded in JSON and CSV formats.
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shown for the input protein Adhesin YadA from
Yersinia enterocolitica (UniProt: A1JUB7).
BetAware-Deep output page is divided into three

parts. On the panel placed on the top-left corner
(panel (a) in Figure 1), general information about
the submitted job is reported, including the unique
Job ID internally assigned by BetAware-Deep,
submission time, protein accession and length
as extracted from the input FASTA. In the same
table, summary prediction results are also
reported, including BetAware-Deep predicted
localization (Outer membrane TMBB when the
number of predicted TM segments predicted by
BetAware-Deep is greater or equal to 4, Other,
non-TMBB otherwise) and corresponding overall
prediction probability. This probability is
internally computed by BetAware-Deep as the
average probability assigned to each predicted
membrane-spanning residue by the GRHCRF
model (see Supplementary Materials for details).
The number of predicted TM segments and
their average length is reported.
On the panel on the top-right corner (panel (b) in

Figure 1), the list of predicted TM segments is
shown along with details about individual strands,
including begin and end positions in the
sequence, segment length and mean TM-strand
probability score.
5

On the bottom of the page (panel (c) in Figure 1),
residue-level topology annotation is reported by
means of an interactive feature viewer. In particular,
the protein primary sequence is shown along with
two annotation tracks: the protein topology
track, reporting the alternation of periplasmic,
transmembrane and extracellular segments along
the sequence and the TM probability track,
reporting per-residue transmembrane probabilities.
The user can highlight and zoom-in specific
regions along the sequence by selecting an area
of interest. Moreover, clicking on the strand
number reported in the table placed top-right, the
visualization is automatically centered on the
selected strand.
Job results can be downloaded in two different

formats: a JSON file, reporting the complete job
result, and a CSV file providing residue-level
annotation of topology (including per-residue
probabilities).
Results

Predictive performance of BetAware-Deep

BetAware-Deep was tested by adopting a 10-fold
cross-validation procedure over the positive training
set, which includes 58 TMBB proteins, in order to



Table 1 Cross-validation results over the positive training
set (58 proteins) obtained with different BLSTM input
encodings.

BLSTM input encoding Q3 SOV POV NTM

PROFILE 83% 91% 35 39

PROFILE + UHM 81% 92% 37 40

PROFILE + PWHM 88% 95% 40 46

All models tested use a sequence profile as input. For models

PROFILE + UHM and PROFILE + PWHM, sequence profile

has been combined with an unweighted and profile-weighted

hydrophobic moment, respectively (see Methods for details).

Q3: three-class accuracy. SOV: Segment Overlap. POV:

number of correctly predicted topologies. NTM: proteins with

correct number of predicted transmembrane segments.
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compare performances obtained with different input
encodings provided to the first-step BLSTM
(Table 1). Specifically, we assessed and
compared the following models:

� a baseline model, exploiting only the sequence profile
(labelled as PROFILE in Table 1);

� a model trained using sequence profile combined
with unweighted hydrophobic moment (PROFILE +
UHM in Table 1);

� the final model using sequence profiles and profile-
weighted hydrophobic moments (PROFILE + PWHM
in Table 1).

Both models incorporating the hydrophobic
moment feature outperform the baseline model
(reaching 35/58 of POV and 39/58 of NTM).
However, the highest scores are obtained when
the PWHM is included. In fact, this input improves
performances up to 40 correct topologies and NTM

to 46. Moreover, it reports the highest SOV (95%)
and accuracy (88%). These results show that the
PWHM feature has the best discrimination ability,
as also highlighted by ROC curves obtained using
weighted and unweighted moments as direct
predictors for TM residues (see Supplementary
Materials, Figure S2). Given these results we
adopted the model trained on profile and PWHM
as the final one.
Table 2 Comparative benchmark of different methods in topo

Method Topology Prediction

Q3 SOV POV

BetAware-Deep 80% 94% 10

BOCTOPUS2 65% 68% 8

PRED-TMBB2 71% 80% 6

BetAware 60% 55% 4

HHomp – – –

Results for topology prediction were generated using a blind test co

from a previous study16 was adopted. For topology prediction, Q3

OVerlap, number of proteins with correctly predicted topology;

transmembrane segments. For discrimination, Sen: sensitivity, por

portion of correctly predicted negative examples; MCC: Matthew’s C

BetAware-Deep were taken from 16.

6

Table 2 reports a comparative analysis of the
performance in topology prediction and
discrimination obtained with different available
methods. Beside BetAware-Deep, tested methods
include BOCTOPUS2,15 PRED-TMBB2,16 the pre-
vious version of our BetAware14 and HHomp10 (for
discrimination only). For topology prediction, meth-
ods were compared on the blind test set defined
in this work and comprising 15 TMBB proteins.
For discrimination, a larger dataset from a previous
study16 comprising 8580 proteins (1009 out of
which are TMBBs) was adopted.
Comparative results confirm BetAware-Deep

ability in correctly predicting protein TM topology.
Indeed, BetAware-Deep achieves 10/15 on both
POV and NTM as well as high values for SOV
(94%) and accuracy (80%). The improvement with
respect to the previous version of the method
(BetAware) is substantial (6 and 5 proteins in POV
and NTM, respectively, and significantly higher
SOV and accuracy scores).
These results show that BetAware-Deep is the

best-performing method for topology prediction
also when compared with recently developed
approaches available in literature. Indeed,
BetAware-Deep outperforms all other tools
assessed for topology prediction in all reported
indexes, with the only exception of NTM for which
PRED-TMBB2 reports a slightly higher value. The
comparative benchmark performed here is
somewhat hampered by the limited number of
TMBB proteins available. As a consequence of
this, only few proteins can be used to effectively
and unbiasedly compare the different methods.
Moreover, some of the methods are not able to
handle specific classes of TMBB (e.g. multimeric
ones), which can also lead to underestimation of
their performances. In any case, our results
highlights that BetAware-Deep well-compares with
other tools at the state-of-the-art in topology
prediction.
Finally, discrimination results show that

BetAware-Deep performs at the level of other
state-of-the-art methods, having an MCC of 0.91,
slightly lower but comparable to those achieved by
logy prediction and discrimination.

Discrimination

NTM Sen Spec MCC

10 98.12% 97.53% 0.91

8 98.12% 98.81% 0.93

11 91.87% 99.14% 0.92

5 67.29% 99.87% 0.8

– 97.73% 99.95% 0.98

mprising 15 TMBB proteins. For discrimination, a test set taken

: three-state accuracy; SOV: Segment OVerlap; POV: Protein

NTM: number of proteins with correct number of predicted

tion of correctly predicted positive examples; Spec: specificity,

orrelation Coefficient. Discrimination results for all methods but
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PRED-TMBB2 and BOCTOPUS2 (0.92 and 0.93,
respectively). The only method outperforming all
others is HHomp. This method is based on a
precomputed database of profile HMMs of
putative TMBBs. For a new sequence in input, the
method builds a profile HMM and then compare it
with the database. Hence, HHomp is limited to the
discrimination of TMBBs belonging to previously
discovered families. This strategy is radically
different from the ones pursued by methods such
as BetAware-Deep, BOCTOPUS2 or PRED-
TMBB2, which are instead grounded on pure
machine learning-based predictive approaches.
Conclusions

In this paper we present a web server
implementing BetAware-Deep, a new method
based on deep-learning approaches for
discrimination and topology prediction of
prokaryotic transmembrane beta-barrel proteins
form sequence. BetAware-Deep takes advantage
of evolutionary information and a profile-weighted
computation of the hydrophobic moment to
capture the distinctive dyad-repeat pattern of TM
beta-barrel proteins. When compared with other
state-of-the-art approaches on a non-redundant
independent dataset our method achieved the
best performance in the topology prediction task.
In discrimination, our BetAware-Deep
performance are comparable to those reported by
other approaches.
As other methods available,15,16 BetAware-Deep

is well-suited for analyzing TMBB proteins from
Gram-negative bacterial species. This class of pro-
teins does not include other types of TMBB e.g.
eukaryotic TMBB (like the Voltage-dependent anion
channel) or beta-sheet pore-forming toxins, which
have non-canonical topologies.
The BetAware-Deep web server (https://busca.

biocomp.unibo.it/betaware2) is freely available for
the scientific community. The user interface has
been designed having in mind usability and
accessibility. The output provided includes all
relevant information and can be easily exported to
standard interoperable formats like JSON and CSV.
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