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Optimal Cruise Performance of a
Conventional Helicopter

Giulio Avanzini', Emanuele L de Angelis? and Fabrizio Giulietti?

Abstract

This paper presents an analytical framework for investigating the cruise performance of conventional helicopter
configurations. Starting from the analysis of power required in straight and level flight, endurance and range
performance of turbine- and battery-powered rotorcraft are considered, for which it is assumed that fuel consumption
and constant-power battery discharge models are respectively made available. The original contributions of the paper
are represented by (a) a closed-form formulation for expected endurance and range for both classes of vehicles, where
electrical helicopters have not been dealt with in previous studies; (b) the analytical derivation of an accurate estimate
for best endurance and best range airspeeds as a function of relevant system parameters. The approach is validated by
analyzing two reference helicopters, showing good physical insight and better accuracy with respect to other techniques

available in the literature, for the identification of an energy-efficient cruise flight strategy.
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Introduction

The distance and time flown by a fixed-wing aircraft burning
a certain amount of fuel can be analytically determined on
the basis of the well known Breguet range and endurance
equations. > Assuming that thrust specific fuel consumption
(for turbine-powered aircraft) or horsepower specific fuel
consumption (for piston-props) is known and (at least
approximately) independent of the flight condition (airspeed
and altitude), it is possible to easily identify the best
range and best endurance airspeeds, that is, the flight
conditions which maximize cruise performance. Only a few
aircraft parameters are required, namely parabolic drag polar
coefficients, wing loading, specific fuel consumption, and
propeller efficiency (if a propeller is present). Aircraft weight
reduction during cruise is accounted for, typically resulting
in different cruise strategies.’ Conversely, the analysis
of performance for battery-powered aircraft represents a
relatively recent topic of discussion in the community.*>
Weight is constant during cruise and attention is required for
the mathematical modeling of the battery discharge process. ¢

In recent literature, a great deal of interest was devoted
to the analysis and improvement of rotorcraft performance
by reducing required power.” Different solutions were
considered, such as rotor power reduction by means of
variable rotor rate and dynamic twist,® blade extendable
chord,” or by reducing parasite power or interference
between configuration elements.'®!! In particular, variable-
speed rotor studies represent a promising research field
for rotorcraft performance improvement, fuel-consumption
reduction, and engine emissions abatement. As a matter of
fact, the problems related to employing main rotor variable
speed are numerous, and an interdisciplinary approach is
typically required for successfully tackling the resulting
optimization problem. '?

The effect of structural and aerodynamic uncertainties on
the prediction of required power was investigated by Siva et
al.,’’ where an aerodynamic model based on blade element
and momentum theory was used to predict helicopter
performance. Relevant main rotor parameters, such as
blade chord, rotor radius, airfoil lift-curve slope, blade
profile drag coefficient, rotor angular velocity, blade pitch
angle, and blade twist are considered as random variables.
The propagation of these uncertainties to performance
parameters, such as thrust and power coefficients, are then
studied using Monte Carlo simulations.

If on one side most studies typically focus on a single
flight phase, on the other hand a few attempts has also been
made to outline a multiphase formulation. A multi-engine
helicopter sustaining a single engine failure provides such
an example, where the sudden reduction of available power
following the loss of one engine divides the maneuver into
two phases, before and after the failure. Such a scenario
is considered by Visser, ' where an optimal solution for a
take-off maneuver is derived, during which all engines are
operating, and the best possible compromise between the
requirements related to a rejected take-off and a continued
take-off flight maneuver after failure is identified, for any
given engine failure time.

Unmanned aerial vehicles (UAVs), particularly small
battery-powered helicopters, are gaining interest from
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worldwide researchers due to their various advantages,
such as small size, light weight, and low cost. Demand
for these capabilities has increased, in both military and
civil applications, increasing the interest on research aimed
at deriving tools for optimal sizing procedures, accurate
dynamic models, and automated control systems.'>'® A
novel approach for the robust design of a small-scale
unmanned helicopter was presented by Abhiram et al.!’
for efficient hover performance, which was predicted
using a numerical implementation of a refined blade
element momentum theory. Taguchi method was shown
to provide a robust design solution characterized by a
significant reduction in the power required to hover (when
compared to a baseline helicopter design of similar size
and configuration). '® With respect to the analysis of power
requirements and the determination of flight endurance
for a helicopter in hover, preliminary experimental results
were also obtained for a small-scale autonomous platform
designed for Martian exploration.! In such a case, a
unique set of design challenges was addressed, with severe
constraints posed by a low-Reynolds-number, high-Mach-
number flow condition on the rotor blades.

To the best of the authors’ knowledge, little attention was
paid to estimate of global endurance and range performance
of a helicopter as a function of system parameters, especially
in terms of an analytical approach similar to that which
has been available in the fixed-wing aircraft case for
almost a century. Only crude approximations are available
for rotorcraft, even for the case of conventional, single
main rotor helicopters, which represent the most widely
used class of rotorcraft in civil applications.’?! The
objective of the present paper is thus to fill this gap, by
deriving an analytical framework that allows for a physically
consistent and reasonably accurate estimate of helicopter
cruise performance, on the basis of a limited number of
information on the configuration and its powerplant. The
formulas derived for range and endurance immediately
provide a valuable instrument for performance analysis, but
it may be used also for preliminary helicopter sizing, when
vehicle design process is at an early conceptual stage.

The total power required in steady rectilinear level
flight is derived first, following the method presented by
McCormick.?? Analytical expressions for specific endurance
and specific range are then obtained, on the basis of
a simple expression of fuel consumption (for turbine-
driven helicopters), or a constant-power battery-discharge
model (for electrically driven rotorcraft). A few simplifying
assumptions, that will be carefully analyzed, are introduced
for deriving closed-form expressions of range and endurance,
together with the airspeed which maximizes each one of
them.

The derivation of a fully analytical approach based on
physical characteristics of the airframe (rotor geometry,
blade airfoil aerodynamic characteristics, vehicle weight,
and fuselage drag coefficients) represents the major
contribution of the paper, with respect to previous techniques
available in the literature. As an example, Johnson?°
provides two rough estimates of helicopter performance.
In the first case, average values of specific range and
endurance at an intermediate weight between initial and
final weights are derived, which are then multiplied by

the amount of fuel burned, under the assumption that the
total fuel weight is a small fraction of gross weight. A
similar derivation is also proposed by Leishman,?' where
the limitation represented by the assumption of small fuel
fractions is stressed. The second, slightly more accurate,
approach proposed by Johnson is based on the derivation
of a Breguet-like equation, assuming that the specific fuel
consumption is independent of power delivered by the engine
and, as major approximations, rotor thrust equals weight
and the power-to-thrust ratio is independent of weight. In
the derivations discussed in the present paper, the variation
of specific fuel consumption and, more importantly, rotor
blade profile power are instead accounted for, together with
system power, which may play a relevant role in modern
fly-by-wire helicopters or unmanned vehicles with power-
demanding payloads.

As a further contribution, relevant for applications dealing
with electrically driven rotorcraft, a fully electric propulsion
system is also analyzed, where endurance and range
performance depends on the battery discharge process.
To this aim, a recent constant power discharge model is
considered, valid for several types of batteries.® For each
class of vehicles, equipped with either a thermal engine
or a fully electric power system, an applicative example is
considered, which demonstrates the validity of the modeling
approach and of the simplifying assumptions adopted to
obtain closed-form, analytical results. A comparison with the
methods described by Johnson”® and Leishman?' highlights
the improvements in terms of accuracy for 1) the estimate of
endurance and range performance at various airspeeds and 2)
the evaluation of optimal velocities which maximize both of
them.

In what follows, the next section recalls the most relevant
features of the model presented by McCormick?? for the
determination of power required by a conventional single
main rotor helicopter in forward flight, as a function of
airspeed. In Section 3, the framework for the analysis of
range and endurance performance of conventional, single
main rotor helicopters is derived, which is then applied to two
relevant configurations in Section 4. A section of concluding
remarks summarizes the findings of this paper.

Power Required for Cruise Flight

The power required by a helicopter in steady-level flight,

PT:Pp+Pmr+Ptr+Ps

is expressed as the sum of four contributions,?> namely
parasite power F,,, main and tail rotor power, P, and P,
and power required by on-board systems P;. Parasite power
is due to fuselage drag, D, and it is equal to P, = DV =
0.5p f V3, where p is air density and f is referred to as
fuselage equivalent flat plate parasitic area. Power required
by on-board systems, Ps, is assumed to be approximately
constant. Main rotor power, P,,,, is the sum of induced and
rotor blade profile power:

Pmr = i7ld+Pp7’ (H
Induced power is given by P;,q = £ P;q, where the ideal
power P;q = T v; is determined on the basis of momentum
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Figure 1. Side view of rotorcraft platform.

theory applied to an actuator disk as the product of rotor
thrust, 7', and induced speed, v;. The empirical coefficient £
accounts for a multitude of aerodynamic dissipation effects,
including blade tip losses and nonuniform inflow, which are
not detailed in the present formulation. The value of £ is not
necessarily assumed independent of advance ratio, but the
use of a mean value in the range between 1.15 and 1.25
is usually sufficient accurate for preliminary predictions of
power requirements.?! For the aim of the present analysis,
the vertical drag produced by the main rotor downwash on
the fuselage and appendages is also disregarded. According
to Glauert’s hypothesis, the induced velocity and main rotor
thrust are related by the following equation: >

where

Vp = /(vi — V sina)? + (V cos )2 3)

is the flow velocity at rotor disc and « is the angle of attack
of the rotor plane, assumed positive when air impinges on
rotor disc from below (see Fig. 1). Let W = M g be the
gross weight of the aircraft, where M is the mass and g is
the gravitational acceleration. In steady level flight the sum
of forces acting on the rotorcraft in the direction of flight and
along the local vertical provide the equilibrium conditions

D+Tsina=0; W—-Tcosa=0 4)

Thrust required to maintain a steady-level flight at the given
velocity V results from equation (4), such that

T =+W?2+ D? &)

Let A =7 R? be the main rotor disc area, where R is the
rotor radius. When a hovering condition is analyzed, such
that V =0, D =0, and T = W, a closed-form expression
is obtained for the induced velocity from equation (2),
namely v; = v;g = /W/(2p A). In the most general case,
an iterative scheme is required for equation (2), which
typically converges after a few iterations, such as a simple
fixed-point algorithm or a Newton-Raphson approach.?!
Profile power P, is obtained from blade element theory
in the form:
P, =p AV} Cppr (6)

where Vr = Q R is the blade tip speed and (2 is the rotor
angular rate, assumed to be a constant. Let 0 = N, ¢/(7 R)
be the rotor solidity, where IV, is the number of main rotor
blades and c is rotor blade mean chord. The profile power
coefficient, which includes the effects of radial and reverse
flow losses, is written as?!

Gy, = "Tcd (1 Fapt+ gu‘*) LAC,, )
where Cj; is blade airfoil average drag coefficient, u =
V/Vrp is the advance ratio, and AC), .. is the extra rotor
profile power determined by compressibility effects on the
advancing blade. The average drag coefficient is a quadratic
function of the average blade lift coefficient C;, namely

Cy=Cq+kC? )

where Cy, > 0, k > 0, and

Cl:6CT/[a (1+gu2>] ©)

is related to the thrust coefficient Cr =T/(p AVE).

Compressibility effects are approximated by Johnson?! as:

o 0 for My < Myq
(10
where my = 0.007 and mo = 0.052 are model coefficients
and AM, is the amount the advancing blade tip Mach
number M, exceeds the drag divergence Mach number My,
of the airfoil section, that is AM, = My, — My4. In the
present case, it is M = (V + V) /a, where a is the speed
of sound, and M 4, is obtained from tests on 2D blade airfoil.
Tail rotor power is obtained by the same identical
approach followed for the main rotor induced and profile
power components. In a simplified scenario, the tail rotor
thrust magnitude 73, is derived by imposing the equilibrium
condition for rotational motion about the aircraft yaw axis.
Let [, be the length of the lever arm of tail rotor thrust vector
with respect to the yaw-axis, considered to pass through the
rotorcraft center of gravity. The required tail rotor thrust will
be Ty = (Pp + Prr)/(Q ). This assumes that there is no
off-loading of the tail rotor by the vertical fin. Also, the
interference between the main rotor and the tail rotor, and
between the tail rotor and the vertical fin, is neglected in this
preliminary analysis.

AG,,, {m1 (AM,) + ma (AM,)?  for My > My

Performance analysis and optimization

In the present Section, performance analysis and optimiza-
tion in forward flight are addressed for both turbine and
battery-powered conventional helicopter configurations.

Turbine-powered helicopter

In case of internal combustion powerplant, the larger part
of the available turbine shaft power, Pj, is delivered to
the main rotor and the tail rotor by means of dedicated
transmission systems. Power losses are taken into account
by e, and 1, parameters. They represent main and tail
rotor efficiency, respectively, and they are assumed to be
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Figure 2. Powerplant systems for conventional a)
turbine-powered and b) battery-powered single main rotor
helicopters.

approximately constant. The remaining part of the available
power, P,.., supplies accessory subsystems (fuel and oil
pumps, electrical generators, and other auxiliary services)
(see Fig. 2.a). By imposing a steady level flight condition,
required and available power balance equation provides:

R@h:(Pmr+Pp)/nmr+Ptr/77tr+Pacc (11)

Steady level flight performance analysis of a turbine-
powered helicopter, intended as endurance and range
evaluation, requires the specific fuel consumption model to
be a function of the delivered shaft power. Starting from
the analysis presented by Stepniewski and Keys,>® a model
of general validity is derived by Leishman,’! which can
be easily adapted to represent the case of reciprocating
engines, where the fuel flow required by a turboshaft engine
for delivering the shaft power Py; determines a decrease
of rotorcraft weight given by dW/dt = —BSFC Py,
provided BSFC(Psp) = co/Psp, + ¢1 is the Brake Specific
Fuel Consumption. In particular, itis co = N, N Co, Where
N, is the number of operative engines, ¢ and 6 respectively
represent the atmospheric pressure ratio and the temperature
ratio at the considered altitude, while ¢y and c; are positive
coefficients that characterize the particular engine. It is
finally assumed, for simplicity, that engine performance
is not affected by forward speed and that the residual
thrust provided by the exhaust of turbine hot gases can
be disregarded. According to the previous definition, one
obtains:

dt/dW = —1/(BSFC Py,) = —1/(co + ¢1 Po)  (12)

such that the Best Specific Endurance (BSE) condition is
easily found at the minimum shaft power speed, Vp_, .,
which is a well known result in the field of helicopter
performance optimization.?! This condition can be obtained
either graphically on the plot of equation (11) or numerically
by means of a search algorithm, such as the parabolic
search or the simplex method.?*?> An analytical expression
of Vp_ . ., which represents the optimum speed to fly
at minimum auto-rotation rate of descent or maximum
rate of climb, is derived by imposing 0P, /0V = 0.
Because of the presence of a correction term, AC,, = from
equation (10), related to rotor parasite power increment due

to compressibility effects, the expression of 9 Psp, /OV is only
piecewise continuous. Provided that the minimum power
condition is expected to lie well outside of the speed range
where compressibility effects become significant, this aspect
is not relevant in this framework.
The analytical expression of Vp . becomes available

after introducing the following assumptions:

Assumption 1. For sufficiently high forward speeds, the
main rotor induced velocity v; becomes small if compared
to'V. Hence, v; =T /(2 pAV).?

Assumption 2. Tuil rotor power is neglected,”’ Py, ~ 0.

Assumption 3. The main rotor profile power builds slowly
with airspeed, OP,./0V ~ 0, provided that My < Mgyq.
From equations (6)-(10), the (almost) constant value of P,
is evaluated at hover, where:

P2 o2 A2VACy, + 36 kW2
8/)O'AVT

Ppr = Ppry =

Assumption 4. It is assumed that £ f/ (4 A) < 1, which
holds for most practical applications.

Following Assumptions 1-3, the minimum power condi-
tion only depends on variation in main rotor induced power
and parasitic power, provided the power delivered to the
accessory subsystems, Py, is a constant. Then, imposing
0Py, /OV = 0 yields:

3PP [L+Ef/(AAVE—EW?/A=0  (13)

By considering Assumption 4, the following approximation
for BSE airspeed is finally found:?'

_/W4/4§ _‘4/45
Vese = m m—vzo 7]0/14 (14)

which increases with increasing density altitude and disk
loading.

Helicopter endurance in straight and level flight at a given
constant airspeed V' is calculated by numerical integration
of specific endurance in equation (12), expressed as a
function of W, between initial cruise weight, W;, and
final weight, Wy = W; — Wy, provided Wi, is the fuel
weight burned during the cruise flight. Taking into account
Assumptions 1, 2, and 4, a closed-form expression that
approximates the exact endurance is obtained, introducing
the following additional hypothesis:

Assumption 5. For a given cruise speed, the main rotor
profile is poorly affected by weight variation due to
fuel consumption, OP,,/OW = 0. By taking into account
equations (6)-(10), the value of P, is evaluated in the initial
cruise condition, Py, = Py, = P, (W = Wj).

The integration of the specific endurance in equation (12)
under the above mentioned hypotheses gives:

t = [Nnr/ (P2)] [arctan (¢ W; /1))

— axctan (6 W, /1)) 4>
where
6= Ecr/ZpAV) (16)
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and

'(/): CoNmr +C1 (Ppri + Nmr Pacc+pfv3/2) (17)

are a function of speed V. Note from equations (6)-(10) that,
for a given speed, the constant value P, represents an upper
bound to the main rotor profile power P, along the cruise.
This allows to partially compensate the omission of tail rotor
power in Assumption 2 from the analytical computation of
performance indices.

The specific range of a turbine-powered helicopter
is obtained by multiplying the specific endurance in
equation (12) by the airspeed V', namely

dx/dW = —V/(BSFO Psh) = —V/(Co +c Psh) (18)

By taking into account Assumptions 1-4 and approximating
the BSFC as a constant value, not dependent on Py, a
closed-form solution for the Best Specific Range (BSR)
airspeed is obtained by setting to zero the derivative of
equation (18) with respect to V. This leads to:

artVi4+aV+a =0 (19)

where the polynomial coefficients are a4 = f p2, a; =
-P (Pp'ro + Nmer Pacc)’ and ag = —¢ W2/A Let

Ao = —12a4a0; A =2Taya? (20)
and
L ¢ Ayt /AT 1A}
2 21

1 1 Ay
M_2 3a4(L+ L)
It is possible to prove that the fourth order polynomial in
equation (19) always has one pair of complex conjugate
roots. One of the remaining real solutions is negative. The
only real positive solution provides the value of the BSR
airspeed in the form: >

ay

—4M?2 —
]\/[CL4

Vasn =M+ (22)
Remark 1. Assumption 3, which implies that rotor profile
power is considered as approximately constant, allows one
to drop the (discontinuous) contribution to Cj, = due to
compressibility effects at high speed. As a matter of fact, the
best specific range airspeed is expected to lie either below
or close to the lower boundaries of this region, thus causing
a limited error on the validity of the analytical solution for
VBsr derived above (see equation (22)) with respect to
its actual value. The latter can nonetheless be graphically
determined. This aspect will be analyzed in quantitative
terms in the next Section.

Remark 2. Although equation (22) provides the exact
solution to the fourth order polynomial in equation (19), a
more compact yet approximate expression can be envisaged.
To this aim, note that the considered quartic equation can be
written in perturbed form as: >’

eh(V) =g(V) (23)

where

g(V) = fpVi—EW?/A

and
h(V) =p (Ppro + Nmr Pacc) 14

are a function of airspeed V' and e is an artificial perturbation
term, equal to 1 in the complete polynomial in equation (19).
The exact solutions of the perturbed problem is expressed in
terms of a regular perturbation series, in the form

V=Vo+eVi+eVatedVa+... (24)

where the €*V}, functions, defined for k = 1,...,400
define the asymptotic ordering of terms, 1> eV; >
e2Vy > €3 V3 > ... as e — 0. The considered problem also
introduces the leading-order term V[, as the asymptotic
approximation to the exact solution for ¢ — 0, with the
higher order terms in the expansions being considered as
successively smaller corrections to V[ in that limit. The
leading-order problem is evaluated at the limit value € = 0,
namely ¢(Vp) =0, yielding four different solutions. The
only real positive root is given by

N LU e ST 1
204 \[ f/A 0\ f/A

The zeroth-order solution coincides with the approximate
value of the BSR airspeed provided by Leishman,?' where
the contribution due to main rotor profile power is neglected
and the BSF'C is assumed to be a constant, not dependent
on V. In such a framework, the BSR airspeed was found
by simply minimizing the ratio Psp/V, provided that only
main rotor induced and parasitic power are accounted
for. Substituting the regular perturbation series defined by
equation (24) into equation (23) and equating the coefficients
of e-terms with the same degree, allow one to obtain a set
of equations where all V}; functions are uniquely defined. In
the present framework, an approximate solution is sought by
truncating the considered series at the term with & = 2, such
that V ~ Vy + € V; + €2 V5. It is straightforward to obtain

(25)

PTo + T]m’(‘ PCLCC

Vi =
' AfpVi

(26)
and
Vo= —VE/ (2Vh)

with the result that, after restoring the artificial perturbation
parameter to 1, the approximate second-order BSR airspeed
becomes:

€2))

Ppr[, + D Pace
4fpV$
2
( pTO + nmr Pacc)
2 V02

Vesr=Vo |1+
(28)

As a final contribution, the range of a turbine-powered
helicopter during a constant speed cruise is obtained by
multiplying the endurance ¢ in equation (15) by the airspeed
V', such that

T = e V/ (@10)] [arctan (¢ W; /1)

— axctan (6 Wy /1)) @



Battery-powered electric helicopter

In the case of battery-powered helicopters, typically
represented by small-scale remotely piloted rotorcraft, the
power generated by the battery pack, P, is first reduced
by an amount equal to Py = F,),, which represents the total
power required for avionics and possible payload. The net
power is then reduced by losses within the electric driving
system made of a speed regulator and the electric motor(s) by
the efficiency 7. (see Fig. 2.b), assumed to be approximately
constant. In the end, the available shaft power is distributed to
the main and tail rotor by the above mentioned transmission
system. The total power requested from the battery packs for
cruise flight thus becomes:

Py = (Pnr + Pp) / (Ne Nmr) + Per/ (Ne Ner) + P,y (30)

where P, is the power delivered to avionics and payload
systems. It can be noted that, for a helicopter in a steady
speed condition with a given gross weight W, the battery
power P, is a constant. In the work by Avanzini et al.®
a novel formulation for constant-power battery discharge
process is proposed, where discharge time ¢ is expressed as
a function of discharged capacity and absorbed power. Let
I = 1I(t) be the current provided by the battery pack and
C = C(t) be the discharged capacity at time ¢, obtained as

o) = /0 I(s)ds 31)

Assuming P, > 0, discharge time is expressed in the form

t = AP C = M(Por + By) / (e thr)

(32)
+Pt7“/ (ne ntr) + Papp c?

where coefficients A > 0, v < —1, and 0 < 8 < 1, deter-
mined experimentally at the given ambient temperature,
depend on battery technology, aging, and pack configuration.

It is clear from equation (32) that best endurance condition
is obtained by flying at the minimum required battery
power speed. Taking into account Assumptions 1-4, provided
P, is a constant, it follows that the minimum battery
power condition can be thus determined by the variation
in main rotor induced power and parasitic power, such that
the corresponding approximate value of airspeed is still
indicated by equation (14).

The range of an electrically-driven helicopter is obtained
by multiplying the endurance ¢ in equation (32) by the
airspeed V', namely

= AV P C? = AV [(Pur + Pp) / (e 1y

(33)
Jr“DtT/ (776 ntr) + Pap]’y ch

The optimal value for the best range airspeed is obtained by
equating to zero the derivative of range = in equation (33)
with respect to V. Taking into account Assumptions 1-4, this
yields:

f p2(1 +37) VA4 2 p(Ppry + Me Nmr Pap)V

—&(y-1)W?/A=0 e

The fourth order polynomial in equation (34) has the
same structure of equation (19), provided the constant

coefficients are now given by a4 = fp?(1+37), a; =
2 p(Pyry 4 Ne Nmr Pap), and ag = —&(y — 1) W2 /A, Tt is
easy to prove that equation (34), which can be numerically
solved, provides one pair of complex conjugate roots and
only one real positive solution is available, corresponding
to the best range airspeed, in the same form introduced in
equations (20)-(22).

Remark 3. Although an analytical solution to the
fourth order polynomial in equation (34) is available,
an approximate expression can be evaluated, with a
procedure similar to that already discussed in the case of
turbine-powered helicopters. To this aim, the considered
quartic equation is written in perturbed form as e h(V) =
g(V), where g(V)=fp*(1+37)V*~£&(y - HW?/A
and h(V') = =2 p(Ppr, + e Nmr Pap) V. It is then assumed
that the exact real positive solution to the perturbed problem
is expressed in terms of regular perturbation series, where
the leading-order solution is obtained from the unperturbed
equation g(Vp) = 0, namely

4
\/2,0/1\/ f(1+37) /A

The approximate solution is thus sought by considering only
the first-order terms of the regular perturbation series, such
that V =~ V[) 4+ € V1. One obtains:

4€(y—1)
f(L+37v)/A
(35)

Ppro + Ne Mmr Pap
2fp(L+39)Vg
with the result that, after restoring the artificial perturbation

parameter to 1, the approximate first-order best range
airspeed for a battery-powered helicopter is:

Vi= (36)

Ppro + Ne Nmr Pap
2fp(1+37)Vg

Ver~ Vo |1 - (37)
If v = —1, the ideal situation in which discharge time is
inversely proportional to absorbed power is recovered.® In
such a particular case, the zeroth-order solution identified
by equation (35) exactly matches the approximate result
obtained in equation (25) for the same class of rotorcraft.

Numerical Validation

The analytical framework proposed for cruise performance
analysis and optimization is validated by means of numerical
simulations for two test cases, related to different classes of
rotorcraft. Results are discussed for a conventional turbine-
powered medium-lift rotorcraft (hereinafter referred to as
“Helicopter 17) and for a small-scale radio controlled
electric platform (referred to as “Helicopter 2”), for which
fuel consumption and battery-pack model parameters are
respectively provided.

Turbine-powered helicopter

Helicopter 1 is a four-bladed, medium-lift utility helicopter
powered by N, =2 turboshaft engines. Relevant data
are summarized in Table 1. Power contributions required
in straight-and-level flight at different airspeeds for an
operating altitude of 1585 m are detailed in Fig. 3.
This plot is derived assuming that equilibrium conditions
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Table 1. Parameters for Helicopter 1 (turbine-powered
rotorcraft).

Parameter Symbol Value Units
Relevant aircraft data
Initial gross weight Wi 71157.1 N
Flat plate drag area f 2.137 m?
Air density @ 1585 m p 1.0492 kgm™3
Speed of sound @ 1585 m a 334.16 ms~!
Rotor shafts distance Ly 99 m
Powerplant
Number of engines N, 2
Available fuel weight Wiuel 9806.6 N
Fuel flow model coefficients Co 0.106 Ns—!

o 4.06-1077 Nw-1s™!
Accessory gearbox req. power Pee 8 kW
Main rotor transmission eff. N 0.9
Tail rotor transmission eff. Nir 0.9
Main rotor (tail rotor)
Number of blades Ny 4(4)
Radius R 8.23(1.68) m
Chord c 0.52(0.24) m
Solidity o 0.0802 (0.1852)
Speed Q 256.4(1189.3) rpm
Blade profile drag coefficients Cyq, 0.008 (0.008)

k 0.008 (0.008)
Induced power factor I3 1.15 (1.15)
Drag divergence Mach number?® Myq 0.8 (0.8)

in equation (4) are satisfied at each airspeed for W =
W;, with a main rotor disk angle of attack equal to
a = arcsin (—D/T), provided T is given by equation (5)
and tip speed is constant for both main and tail rotor.
Downwash velocity at rotor disk, v;, is obtained from
equations (2) and (3) by means of a Newton-Raphson
iterative scheme with 0.05%-error stop criterion.?! Induced
velocity at hover, v;g = /W;/(2pA) = 12.62 m/s, with
rotor disk area A = 7 R? = 212.8 m?, is the starting guess
value for fast convergence of the iterative scheme. The
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Figure 3. Power required in forward flight with W = W
(Helicopter 1, data source: Ballin®).

total shaft power required to the turbine engines decreases
rapidly as speed increases from zero as a result of the
drop in the induced power, reaching a minimum at V =
Vp,... = 151 km/h. As speed increases beyond Vp, , , the
(increasing) contribution of airframe drag to total required
power becomes predominant with respect to induced power,
and the total shaft power rapidly grows with V. The resulting
power estimate is consistent with available experimental data
for the same helicopter, >’ with acceptable accuracy.

There exists a point, at a speed higher than that for
minimum shaft power, where the ratio V/ Py}, is maximized
(or, equivalently, the ratio Psy/V is minimized). This
point is graphically determined by drawing a line passing
through the origin of the axes, tangent to the P, vs
V' curve, as represented in Fig. 3. Letting Py, = D¢y V,
where D, can be defined as the equivalent total rotorcraft
drag at a given airspeed V, the point where V/Ps,
is maximized is representative of the best “lift-to-drag”
condition, (L/Deq)maz, Where “lift” L = T cos a (that is,
the thrust component along the local vertical) equates
aircraft weight. For W = W; this point is located at V =
‘/Y(L/D)maz = 200.8 km/h.
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Figure 4. a) Downwash velocity as obtained from iterative
computation and according to Assumption 1; b) main rotor
profile power (Helicopter 1).

Figure 4.a shows a comparison between downwash
velocity obtained by numerical computation and the
approximate value determined according to Assumption 1.
Results are normalized with respect to the downwash
velocity at hover, v;,. As v; becomes small if compared to
V', the approximation proposed in Assumption 1 appears
to be reasonable, when forward speed is sufficiently high.
This implies that the closed-form expressions derived for
endurance and range of a turbine-powered helicopter provide
accurate results only for sufficiently high forward speeds
(higher than approximately 70 km/h, for Helicopter 1). On
the other hand, if performance optimization is sought, best
endurance and best range conditions are effectively located
in the high speed range, providing a fuel-efficient cruise
flight which results to be accurately identified by the obtained
analytical solutions.

Figure 4.b shows the behavior of main rotor profile power
as a function of forward speed, with curves parametrized in
terms of aircraft gross weight. Assuming that a quantity of
fuel equal to Wyyer = 9806.6 N is burned, corresponding
to 1000 kg, the final helicopter weight Wy = 61 350.4 N is
obtained. It can be noted how the variation of profile power
determined by fuel consumption (which causes a 13.8%
total weight loss) is less than 5% for all the considered
cruise speeds, a variation which, in addition, always accounts
for less than 1% of total required power. This allows one
to assume that profile power does not depend significantly
on actual helicopter weight during cruise flight, at any
considered airspeed V. Hence, Assumption 5 is retained
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Figure 5. Specific endurance for W = W; (Helicopter 1).

and it is possible to assume P, = Py, = P, (W =W})
for the analytical computation of cruise endurance and
range. In Figure 4.b the onset of drag rise phenomenon is
also depicted, occurring at about V' = 167 km/h, where the
advancing blade tip Mach number equals Mgy = 0.8.

At the considered altitude, atmospheric pressure ratio in
standard conditions is given by § = p(h)/psr = 0.8258,
whereas temperature ratio is such that § = © /0 g, = 0.9642
(temperature © is expressed in Kelvin.2!). Given ¢, = 0.106
N/s, the proposed fuel consumption model is identified by
parameters ¢y = N, 5v0cy =0.171 N/s and ¢; = 4.06 -
10~7 N/(Ws). Based on the definition in equation (12),
the variation of specific endurance with V' is depicted in
Fig. 5, for the initial helicopter weight. The BSE condition
for W = W, is obtained by flying at the minimum shaft
power speed, identified by Vpsg = Vp,,,, = 151 km/h,
where Py, = 768.09 kW and |dt/dW |, = 2.069 s/N
(diamond marker in Fig. 5). The approximate value of BSE
speed according to equation (14) is 159.75 km/h (square
marker), which results into an estimate of specific endurance
equal to |dt/dW|, .. = 2.066 s/N, with a +5.8% error in
the determination of Vg g, but only a —0.15% error for the
specific endurance.

In Fig. 6 the exact endurance in steady level flight is
reported for different values of airspeed (gray solid line),
given the same quantity of usable fuel, as obtained from
numerical integration of specific endurance by trapezoidal
rule, with 0.005 kg integration step.?” In the same figure,
the exact specific endurance curve is reported for both the
initial and the final weight (black solid lines). It is evident
that, going from W; to the final weight W, the BSE speed
moves to a lower value, that is Vg (W) = 139.7 km/h,
providing improved punctual performance. Three constant-
speed cruise programs can be thus envisaged, with the aim
to obtain the best performance: 1) the helicopter is flown
at constant speed Vpgg(W;), thus maximizing the specific
endurance in the initial condition; 2) the helicopter is flown
at constant speed Vpggr (W), thus maximizing the specific
endurance in the final condition; 3) the mission is performed
at a constant speed that maximizes the overall cruise
endurance, namely Vg = 145 km/h, such that t = ¢,,,4, =
353 min. In this latter case, cruise speed lies in between
VBSE(Wf) and VBSE(Wi)» namely VBSE(Wf) < Vg <
Vese(W;), and it is equal to the airspeed that maximizes

min

specific endurance at an intermediate rotorcraft weight
WEhep = 65969 N~ (W; + W;)/2. Hence, the exact value
of best endurance airspeed Vg can be determined with
excellent accuracy from the value of Vg (Wa, g), evaluated
for the average weight, Wy, = (W; + W;)/2 = 66254
N. For the present test case, Vpsp(Wayg) = 145.5 km/h,
with a difference of only +0.34% with respect to the
exact value, Vpg. Finally, the exact endurance curve is
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Figure 6. Endurance analysis and optimization (Helicopter 1).

compared to the one obtained by the approximate closed-
form expression provided by equations (15)-(17). In this
respect, the estimation error remains satisfactory for all
forward speeds, reaching a maximum value of only 4.5% at
the end of the considered speed range.

Based on the definition in equation (18), the exact
specific range curve in the initial condition is reported
in Fig. 7 as a function of forward speed V. The BSR
speed for W = W, is exactly identified by Vpgsr = 229
km/h, where Py, = 1039.9 kW and |dz/dW| =
107.2 m/N (diamond marker in Fig. 7). The approximate
value to the BSR speed according to equation (22) is
237.3 km/h, with about +3.6% estimation error (square
marker). The corresponding approximate value of the BSR
is |da/dW]|,, ., = 107 m/N, which results into an estimation
error smaller than —0.2%. The zeroth-order approximation
provided by equation (25) coincides with the solution
obtained by Leishman, 2! with a BSR airspeed of 210.2 km/h,
which underestimates the exact value by as much as 8.2%
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Figure 7. Specific range for W = W, (Helicopter 1).
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(circle marker). The best specific range estimate exactly at
this point is 106.2 m/N, with an error in the order of —0.9%.
Finally, the approximate value obtained in equation (28)
as a second-order perturbation to the zeroth-order solution
is 237.2 km/h (practically equal to the value obtained by
equation (22)), with about +3.6% speed estimation error,
and a corresponding underestimate of best specific range by
about —0.2%.

Fig. 8 depicts the distance flown in steady level flight
for different values of airspeed and the given amount
of usable fuel, as obtained from numerical integration of
specific range (gray solid line). In the same figure, the
exact specific range curve is also reported for both the
initial and the final weight configurations (black solid lines).
As for flight endurance, the speed that maximizes the
overall cruise range, Vpr = 225 km/h, lies in between
Vesr(Wy) = 219.9 km/h and Vpsr(W;) = 229 km/h, that
is Vesr(Wy) < Vpr < Vesr(W;), and it is equivalent to
the speed that would maximize the specific endurance for an
intermediate rotorcraft weight W} ¢, = 66842 N ~ (W; +
Wy)/2. Once again, Vgp can be well approximated by
evaluating Vpgr(Wawg) = 224.5 km/h, with an error equal
to about —0.2% with respect to Vpg.

Finally, the exact range curve is compared to that obtained
by the approximate closed-form expression provided in
equations (16), (17), and (29). Note that the exact range curve
is fairly flat near Vg, such that flying at speeds different
than Vppr does not result into significant performance
degradation. For example, the cruise range obtained by flying
at 210.2 km/h (BSR speed for W = W;, according to the
best range solution derived by Leishman?®') is equal to
1070.4 km. When flying at 237.2 km/h (that is, the BSR
speed for W = W;, according to the proposed second-order
approximation in equation (28)), a range of about 1072.4
km is obtained, which is only 0.2% bigger than the former
value. In this latter case, however, the helicopter is flying at a
higher speed, such that the considered cruise mission can be
completed with a significant reduction of required flight time
(about 34 min, corresponding to —11.2%). In view of this
consideration, it is evident that a more accurate estimation of
best range speed with respect to the (underestimated) results
proposed in literature, allows one to improve the overall
mission and performance capabilities.
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Figure 8. Range analysis and optimization (Helicopter 1).
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Table 2. Parameters for Helicopter 2 (battery-powered
rotorcraft).
Parameter Symbol Value Units
Relevant aircraft data
Weight w 2844 N
Flat plate drag area f 0.014 m?
Air density @ 100 m p 12133 kgm™3
Rotor shafts distance lir 0.68 m
Powerplant
Number of engines N, 1
Battery nominal capacity Co 5 Ah
Battery model coefficients A 24.95
ol -1.021
B8 0.9664
Avionics and payload req. power P,y 6 W
Electric systems eff. Ne 0.75
Main rotor transmission eff. Thmr 0.92
Tail rotor transmission eff. Nir 0.9
Main rotor (tail rotor)
Number of blades Ny 2(2)
Radius R 0.57(0.12) m
Chord c 0.036 (0.024) m
Solidity o 0.0402 (0.1273)
Speed Q 2200 (9900) rpm
Blade profile drag coefficients Cyq, 0.008 (0.008)
k 0.008 (0.008)
Induced power factor 13 1.2(1.2)
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Figure 9. a) Battery power required in straight-and-level flight;
b) cruise endurance (Helicopter 2).

Battery-powered helicopter

Helicopter 2 is a two-bladed, small-scale radio-controlled
helicopter powered by a brushless high-speed electric motor.
Relevant data are summarized in Table 2, including the
parameters necessary to identify the constant power battery-
discharge model.® In particular, a battery pack made of a
series connection of 6 Lithium-Polymer cells is discharged
to the 80% of nominal capacity Cy = 5 Ah, such that C' =
0.8Cy =4 Ah.

The total battery power required for Helicopter 2 in
straight-and-level flight at an operating altitude of 100 m is
reported in Fig. 9.a. Please note that compressibility effects
are not included in the model of Helicopter 2, given the
expected flight envelope of a small size electrical helicopter.
Again, downwash velocity, v;, is obtained by means of
Newton-Raphson iterative approach, provided that the value
at hover is v = /W/(2pA) =3.39 m/s, where A=
7 R? = 1.02 m?. In Fig. 9.b the exact endurance is reported
as a function of airspeed. Provided that vehicle weight



10

24 T T

best range condition
(1st-order approx.)

22 b

21} 204 1

20+ 202 o
€
S 19t 20 / AN |
x To.8

181 745 / 75 1

755 “pest range condition
(quartic polynomial

best range condition approx.)
(exact)

best range condition
(Oth-order approx.)

14 I I I I
50 55 60 65 70 75 80 85

airspeed [km/h]

Figure 10. Cruise range (Helicopter 2).

is now constant (no fuel is burned and battery weight is
independent of the state of charge), best endurance is simply
obtained by maximizing battery discharge time, flying at
the minimum required power condition, which is exactly
identified by Vpg = Vp . = 38.60 km/h, with P, , =
267.82 W, and t,,4, = 19 min (diamond marker). Taking
into account Assumptions 1-4, the approximate value of
best endurance airspeed according to equation (14) is 40.09
km/h, which overestimates the exact value by +3.9% (square
marker).

The range available flying at different airspeed, calculated
according to equation (33), is plotted in Fig. 10. Best range
speed is Vpr = 75.46 km/h, where VP;Y is maximized,
with Py, = 352.54 W, and 2,4, = 18.03 km (diamond
marker). The approximate value to best range airspeed
according to equation (22), adapted to the case of a (constant
weight) battery-powered helicopter, is 75.14 km/h, with a
—0.4% error (square marker in the zoomed figure view).
The zeroth-order approximation in equation (35) gives 52.49
km/h, underestimating the exact value by more that 30%
(circle marker). Finally, the approximate value obtained from
equation (37) as a first-order perturbation to the zeroth-order
solution is 81.81 km/h, overestimating Vg g by only 8.4%
(hexagon marker).

Conclusions

Range and endurance performance of turbine-powered
conventional helicopters in forward flight is analyzed.
Best endurance and best range conditions are derived in
terms of cruise airspeed and compared to long-standing
results available in literature. A reasonably accurate model
for engine specific fuel consumption is introduced, easily
adapted to the case of piston engine rotorcraft. When rotor
profile power, main rotor induced power and parasitic power
contributions are accounted for, a fully analytical framework
is derived, which provides results more accurate than those
obtained from available methods. Closed-form expressions
are obtained for both endurance and range of a constant
speed cruise and a given amount of usable fuel.

The resulting performance analysis tools are at one time
simple and of general validity, easily extended to the case
of battery-powered helicopters. To this aim, a recent model
for battery discharge time during a constant-power discharge

process is adopted. The approach is quantitatively validated
by means of two test cases, namely a medium-lift utility
helicopter powered by two turboshaft engines and a small
scale battery-powered rotorcraft. Results are compared with
those available in the literature, showing that more accurate
results can be obtained, with closed-form expressions which
depend on a limited set of relevant system parameters.
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