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NONLINEAR PRICE IMPACT AND PORTFOLIO CHOICE

PAOLO GUASONI†

Boston University and Dublin City University

MARKO HANS WEBER‡

National University of Singapore

In a market with price impact proportional to a power of the order flow, we find optimal
trading policies and their implied performance for long-term investors who have constant relative
risk aversion and trade a safe asset and a risky asset following geometric Brownian motion. These
quantities admit asymptotic explicit formulas up to a structural constant that depends only on the
curvature of the price impact function. Trading rates are finite as with linear impact, but are lower
near the target portfolio, and higher away from the target. The model nests the square-root impact
law and, as extreme cases, linear impact and proportional transaction costs.

KEY WORDS: Price Impact, Square-Root Law, Trading Volume.
MATHEMATICS SUBJECT CLASSIFICATION (2010): 91G10, 91G80

JEL CLASSIFICATION: G11, G12

1. INTRODUCTION

The impact of trades on execution prices is a critical determinant of portfolio re-
balancing policies: frictionless models assume a single price, insensitive to sales and
purchases of any size, resulting in policies with infinite trading volume (Merton, 1969).
Models that acknowledge bid-ask spreads preclude trading when a portfolio is near its
target (Constantinides, 1986; Davis and Norman, 1990), whereas linear price impact
models recommend a trading rate proportional to its distance from the target (Guasoni
and Weber, 2017; Moreau et al., 2017). Yet, empirical evidence suggests that price
impact is nonlinear.

This paper examines the implications of nonlinear price impact for optimal portfolio
rebalancing. Our model posits that a one-percent increase in trading speed increases
price impact by α percent. That is, α is the elasticity of price impact to the order
flow – the focus of this paper. At one extreme, α = 1 recovers linear price impact;
at the other extreme, α = 0 reproduces constant proportional bid-ask spreads. All
intermediate values generate nonlinear impact functions, with α = 1/2 corresponding
to the square-root law proposed by several authors (cf. Loeb (1983); Torre and Ferrari
(1998); Grinold and Kahn (2000)).
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FIGURE 1. Optimal trading rates (vertical axis) against current risky
weight (horizontal axis) for α = 1/8 (green), α = 1/4 (blue), and
α = 1/2 (red). Linear impact (α = 1) leads to the linear rate (dotted),
whereas vertical lines (dashed) identify the no-trade region arising
with transaction costs (α ↓ 0). µ = 8%, σ = 16%, γ = 5, λ = 0.1%.

The paper finds the optimal rebalancing strategy, its performance, and the resulting
trading volume for long-term investors with constant relative risk aversion, who trade in
a market with one safe and one risky asset, and constant investment opportunities sum-
marized by a geometric Brownian motion. The main finding is that, in the small price
impact limit, the optimal policy, its performance, and trading volume are all identified,
up to a change in scale and location, by the shape equation

s′α(z) = z2 − cα − α(α+ 1)−
α+1
α |sα(z)|

α+1
α ,(1)

lim
z→−∞

sα(z)

|z|
2α
α+1

= lim
z→+∞

− sα(z)

|z|
2α
α+1

= (α+ 1)α−
α
α+1 ,(2)

an ordinary differential equation, the solution of which consists of the scalar cα and the
shape function sα(z). For α = 1, the shape function is linear, and the model recovers
the optimal policy for linear impact in Guasoni and Weber (2017). In the limit α ↓ 0, the
shape function gives rise to the classical trading policy of Dumas and Luciano (1991)
for bid-ask spreads.

The implications of nonlinear price impact are qualitatively similar to those of linear
impact, but quantitatively skewed towards those of proportional transaction costs. As in
models with linear impact, optimal trading policies yield finite trading rates, but these
rates are lower near the target portfolio, and higher away from the target (Figure 1).
These differences bring the optimal policy closer to its counterpart with proportional
bid-ask spreads, in which the trading rate is zero inside the buy and sell boundaries,
while it is “infinite” (in that portfolio adjustment is instantaneous) outside the bound-
aries. Likewise, the asymptotic long-term distribution of the portfolio weight around
its target is bell-shaped, similar to the normal distribution arising with linear impact,
but less peaked, and closer to the uniform distribution arising with proportional bid-ask
spreads (Janeček and Shreve, 2004).

The significance of these results is fourfold. First, despite the technical challenges
of nonlinear price impact, the resulting portfolio choice problem is nearly as tractable
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as with linear impact, and yields a solution that is less sensitive to the presence of bid-
ask spreads, because nonlinear impact depresses trading when the portfolio lies near
its target, similar to the no-trade regions that are implied by bid-ask spreads. Thus, in
addition to being an empirically documented feature, nonlinear impact is also a flexible
device to mimic the effect of bid-ask spreads. This analogy may be used as a means to
attack problems in which the free-boundary problems arising from bid-ask spreads are
intractable.

Second, our asymptotics show that nonlinear price impact reduces the frictionless
equivalent safe rate by

(3) cαλ
2

α+3

(
γ

(
σ2

2

)3

Ȳ 4(1− Ȳ )4

)α+1
α+3

,

where λ is the price impact for unit trading speed, Ȳ = µ
γσ2 the frictionless target port-

folio, µ and σ the risky asset’s return and volatility, and γ the investor’s risk aversion.
This formula implies, in particular, that the square-root law (α = 1/2) implies a cost
proportional to the 4/7-th power of the impact’s magnitude λ, while for linear impact
and proportional bid-ask spreads it reduces to the performance formulas in Guasoni and
Weber (2017) and Gerhold et al. (2014).

Third, the shape function regulates the drift of trading volume near its frictionless
level and links the parameter α to the shape of the stationary distribution of the portfolio
weight, which interpolates the uniform (α ↓ 0) and Gaussian (α = 1) distributions aris-
ing with bid-ask spreads and linear impact respectively. Finally, the very recent results
of Cayé et al. (2018) on constant risk aversion and asset prices following general diffu-
sions, show that the shape function identified in this paper drives the optimal policies
for nonlinear price impact even in such models, thereby attesting to its central role for
nonlinear impact.

This is the first paper to solve a portfolio choice model with nonlinear price impact,
and we focus on a partial-equilibrium model of a large investor with constant relative
risk aversion. We study power-type impact for any α ∈ (0, 1], as equilibrium models
support different exponents (Kyle, 1985; Garleanu et al., 2009; Gabaix et al., 2006). In
the literature, nonlinear price impact appears mainly in problems of optimal liquidation
(Almgren, 2003; Vath et al., 2007; Schied et al., 2010), which are in fact a special case
of portfolio choice – when the risky assets have no risk premium.

From a mathematical viewpoint, models of nonlinear impact pose challenges similar
to the ones of linear impact – with a few surprises. We focus on investors with a long
horizon (Dumas and Luciano, 1991; Grossman and Zhou, 1993; Guasoni and Robert-
son, 2012; Gerhold et al., 2014; Guasoni and Weber, 2017), thereby obtaining optimal
policies that are insensitive to the investment horizon. The search for explicit formulas
in the small-impact limit departs significantly from the linear case, as nonlinear impact
leads to a singularity in the value function near the target weight, hence to separate scal-
ing behaviors near to and away from the target. A suitable re-normalization of the value
function and its argument removes the dependence on all model parameters except α,
leading to the shape equation (15), which is akin to the corrector equation in Soner and
Touzi (2013), as it describes the scale-free dynamics of the problem’s state variable.

The rest of the paper is organized as follows: the next section contains a brief re-
view of the literature that puts the paper in context. Section 3 describes the model and
discusses existence and optimality results that are necessary for the main asymptotic
results in section 4. Section 5 discusses the model’s implications, comparing them with
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those of proportional bid-ask spreads and linear impact. In section 6 we provide heuris-
tic arguments for the main result and in section 7 we discuss an extension of the model.
All the proofs are deferred to the appendix.

2. LITERATURE REVIEW

Price impact is a broad designation that includes diverse mechanisms in which
traders’ actions affect current or future prices, therefore it is important to clarify the
scope of this paper’s results in this vast literature, which encompasses permanent, tran-
sient, and immediate impacts. This paper focuses on immediate price impact.

The seminal equilibrium model of Kyle (1985), and its extensions to continuous time
(Back, 1992) and risk aversion (Baruch, 2002) among many others, have spearheaded
the equilibrium literature on permanent impact, in which asset prices arise endoge-
nously from the interaction of informed and uninformed traders with market makers. In
this literature, price impact results from the gradual assimilation in prices of insiders’
information, which accumulates over time. The models in Cuoco and Cvitanić (1998),
Bank and Baum (2004), and Bank and Kramkov (2015b,a) also explore different mech-
anisms in which a large investor’s aggregate position affects asset prices, and therefore
price impact is permanent. In the same fashion, Huberman and Stanzl (2004) study a
partial-equilibrium model of permanent impact and conclude that only linear price im-
pact functions are consistent with the absence of quasi arbitrage and price manipulation.

The literature on transient impact specifies partial equilibrium models that capture
the reversion of order books to their steady state in response to imbalances, as in
Obizhaeva and Wang (2013) and Predoiu et al. (2011). Because absence of dynamic
arbitrage rules out exponential decay in combination with nonlinear impact (Gatheral,
2010), the results in Gatheral et al. (2012) focus on linear impact with arbitrary decay.

The literature on immediate impact (sometimes also referred to as temporary or in-
stantaneous) is generally immune to price manipulation and arbitrage issues, as it spec-
ifies partial equilibrium models in which the execution price is less favorable than some
exogenous baseline price: if the latter is arbitrage-free, so is the former. Different
price impact specifications are interpreted as different shapes of infinitely resilient or-
der books, so that the execution price at each time depends only on current trading
speed. (For example, linear impact corresponds to a flat order book, while square-root
impact to a V -shaped book.1)

Much of this literature follows the optimal execution model in Almgren and Chriss
(2001), in which the mean-variance tradeoff is between a quicker execution at a
worse execution price and a slower execution at a more uncertain price. Schied and
Schöneborn (2009) develop a continuous-time version of the liquidation problem with
exponential utility and immediate linear impact in the number of shares traded per unit
of time, a measure of order flow. A similar specification appears in mean-variance mul-
tivariate models of dynamic trading with frictions (Gârleanu and Pedersen, 2013, 2016),
where immediate price impact is linear in the number of shares traded per unit of time
in all securities, in part for tractability. (Gârleanu and Pedersen (2013, 2016) refer to
quadratic transaction costs, yet another name for immediate linear impact.) Collin-
Dufresne et al. (2012) specify linear impact in dollar amounts traded per unit of time,
which leads to a more challenging model.

1The observed order book reflects mostly the activity of high frequency traders. The relevant object for
a price impact model is, instead, the latent order book introduced in Toth et al. (2011), which aggregates the
total intended volume to buy/sell at each time.
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The interest in nonlinear price impact starts from practitioners (Loeb, 1983; Torre
and Ferrari, 1998; Grinold and Kahn, 2000), who posit a square-root law of market
impact as a realistic rule of thumb. Subsequent empirical work by practitioners and
academics confirms the concavity of price impact (Hasbrouck and Seppi, 2001; Plerou
et al., 2002), with some authors reporting a dependence approximately of power type
and with exponents close to α = 1/2 (Almgren et al., 2005; Lillo et al., 2003). Nonlin-
ear impact first appears explicitly in an optimization problem in the optimal execution
model of Almgren (2003) .

3. MODEL AND PRELIMINARIES

3.1. Market and Preferences. The financial market includes a safe asset earning zero
interest rate2, and a risky asset with best quoted price St following the usual Samuelson
model

dSt
St

= µdt+ σdWt,

where Wt is a standard Brownian motion, µ > 0 is the expected excess return, and
σ > 0 is the volatility.3 Unlike frictionless markets, trades in the risky asset are not
realized at the best quote St, but at a less favorable price that reflects adverse movements
during the execution of a large trade. The average price for trading ∆θ shares in the
interval [t, t+ ∆] is specified as

(4) S̃t := St

(
1 + λ

∣∣∣∣St∆θXt∆t

∣∣∣∣α sgn(∆θ)

)
,

where Xt denotes the large investor’s wealth at time t (valuing the risky position at the
best quote St), λ > 0 is a measure of the asset’s illiquidity. The shape parameter α is
the elasticity of price impact with respect to trading volume – the main focus of this
paper.

By the specification in (4), a larger trade ∆θ or a smaller execution time ∆t result
in a higher price impact. The proportional price impact is assumed to be a function of
the wealth turnover St∆θ/Xt, that is the amount traded as a fraction of the investor’s
total wealth. The rationale for this scaling is as follows: empirical work (Engle et al.,
2012; Frazzini et al., 2012) documents that price impact increases with the trade size
as a fraction of daily trading volume Vt, i.e., it is some nonlinear increasing function of
St∆θ/(Vt∆t). Daily trading volume is cointegrated with the market capitalization Mt,
in that the ratio Vt/Mt is long-term stationary (typical long-term averages are of the
order of 1% of market capitalization turned over daily). Furthermore, a large investor’s
wealth Xt is cointegrated with the market capitalization (the ratio Xt/Mt is positive
and bounded from above), which in turn implies that the ratio Vt/Xt is stationary. For
simplicity, (4) further approximates such a ratio with a constant, and section 7 below
discusses an extension of the model to the case of a stochastic ratio, at the expense of
including wealth as an additional state variable.

Passing to continuous time to make the model tractable, we assume that θt, the
number of shares of the risky asset held at time t, is absolutely continuous with respect
to time, and denote by θ̇t its derivative. The resulting self-financing condition requires
that the investor’s cash position Ct = Xt − θtSt evolves as

dCt = −S̃tdθt = −St

(
1 + λ

∣∣∣∣∣ θ̇tStXt

∣∣∣∣∣
α

sgn(θ̇t)

)
dθt.

2A zero rate helps ease notation, but the results remain valid with any constant rate.
3For the case µ < 0, see Remark 2 below.
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Denoting wealth turnover as ut := θ̇tSt
Xt

, routine stochastic calculus derivations lead to
the following joint dynamics of the investor’s wealth Xt := θtSt + Ct and portfolio
weight Yt := θtSt

Xt
,

dXt

Xt
= Yt(µdt+ σdWt)− λ|ut|α+1dt,(5)

dYt = (Yt(1− Yt)(µ− Ytσ2) + ut + λYt|ut|α+1)dt+ Yt(1− Yt)σdWt.(6)

These joint dynamics, obtained through heuristic derivations from the self-financing
conditions, are the starting point of our rigorous treatment. Consider a probability space
(Ω,F , P ), equipped with a Brownian motion Wt and its augmented natural filtration
Ft.

An admissible strategy is defined as a pair (Y0, u) of an initial portfolio Y0 and a
turnover process ut such that the resulting wealth process remains solvent at all times,
in analogy with the frictionless theory.

Definition 1. For X0 > 0 and Y0 ∈ R, an admissible strategy is a process (ut)t≥0,
adapted to Ft, such that

∫ T
0
|ut|1+αdt < ∞ a.s. for all T , and for which the sto-

chastic differential equation (6) has a unique strong solution on (0,∞). For any such
admissible strategy, the corresponding wealth process is

(7) Xu
T = X0 exp

(∫ T
0

(
µYt − σ2

2 Y
2
t − λ|ut|1+α

)
dt+

∫ T
0
σYtdWt

)
.

In this market, the investor’s objective is to maximize the equivalent safe rate, defined
as

(8) ESRγ(u) = lim sup
T→∞

1

T
logE

[
(Xu

T )1−γ] 1
1−γ ,

where 0 < γ 6= 1 denotes the investor’s relative risk aversion.4 This asymptotic ob-
jective focuses on the growth rate of the certainty equivalent of power utility at a long
horizon, while neglecting the dependence on the length of the horizon and preserving
stationarity.

Remark 2. Leverage and short-selling are not admissible because short and levered
positions are insolvent with positive probability.5 In particular, any strategy such that
Yt /∈ [0, 1] for some t is not admissible. If the frictionless target is short (µ < 0), then
full investment in the safe asset – and no trading – is optimal. If the frictionless target
is levered (µ/(γσ2) > 1), then full investment in the risky asset is optimal, again with
no trading.6

3.2. Verification Theorem. The verification theorem 3 identifies the optimal trading
policy and its equivalent safe rate from the solution of the associated ergodic HJB equa-
tion.

4The case with logarithmic utility is analogous. In fact, all results extend to the logarithmic case by
passing to the limit γ → 1 in the statements.

5 This fact follows from (Guasoni and Weber, 2017, Lemma A.2), which carries over to the present setting.
The proof is omitted, as it is similar, replacing− 1

4λ
with− α

α+1
1

λ1/α(α+1)1/α
, and modifying the equation

in the statement of Lemma A.3 to limx→x̄

∫ x
ξ f(z)dz∫ x

ξ |f ′(z)|α+1dz
= 0, the proof of which follows from Hölder’s

inequality with exponent α+ 1.
6The statement of Theorem 2.3 in Guasoni and Weber (2017) carries over to the present setting, and

follows from the validity of Lemma A.2 in Guasoni and Weber (2017).
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Theorem 3. Assume Ȳ := µ
γσ2 ∈ (0, 1). There exists λ∗ > 0 such that for λ ∈ (0, λ∗)

the wealth turnover that maximizes (8) is

(9) û(y) =

∣∣∣∣ q(y)

(α+ 1)λ(1− yq(y))

∣∣∣∣1/α sgn(q(y))

and its equivalent safe rate is

(10) ESRγ(û) = β̂,

where β̂ ∈ (0, µ2

2γσ2 ) and q : [0, 1] 7→ R are the unique pair that solves the ODE

(11)

− β̂ + µy − γ σ
2

2
y2 + y(1− y)(µ− γσ2y)q + α(α+ 1)−

α+1
α

|q|α+1
α

(1− yq)1/α
λ−1/α

+
σ2

2
y2(1− y)2(q′ + (1− γ)q2) = 0

with the boundary conditions

q(0+) = λ
1

α+1 (α+ 1)
1

α+1

(
α+ 1

α
β̂

) α
α+1

,(12)

α

α+ 1
(α+ 1)−1/α |q(1−)|α+1

α

(1− q(1−))1/α
λ−1/α = β̂ − µ+ γ

σ2

2
.

(13)

Note that the boundary conditions (12)-(13) are natural in that the corresponding
values of q(0) and q(1) are the only possible finite limits consistent with (11), as the
coefficient of q′ vanishes for y = 0, 1. Thus, a numerical procedure to solve this system
is to solve an initial value problem for q starting at some arbitrary ȳ ∈ (0, 1) (for
example, ȳ = µ/(γσ2)), and then calibrate the unknown parameters q(ȳ) and β̂ so
that the solution has finite limits in 0 and 1. Such β̂ is the equivalent safe rate of the
problem, while the optimal turnover rate û(y) follows from the function q(y) through
the expression in (9).

The following proposition shows that liquidation can be realized in a short period of
time and at a low cost relative to the final portfolio value. Accordingly, the best quote
of the asset St is assumed constant during the liquidation.

Proposition 4 (Liquidation). Assume St ≡ S constant for t ≥ T . The liquidation
time L(u) = inf{t ≥ 0 : θT+t = 0} of the constant selling policy ut ≡ u < 0

equals L(u) = − log(1−λYT |u|α)
λ|u|α+1 ∼ −YTu and the proportional liquidation cost is

XT−XT+L(u)

XT
= λYT |u|α.

For example, for a selling rate of order O(λ−
1

α+3 ), liquidation time would be of
order O(λ

1
α+3 ) with a liquidation cost of order O(λ

3
α+3 ).

The main results in the next section provide asymptotic formulas for the optimal
trading strategies in the limit of small price impact λ ↓ 0. This analysis departs signif-
icantly from the corresponding results for linear impact, as nonlinear impact of power
type leads to qualitatively different impacts for small (u ∼ 0) and large (u ∼ ∞)
turnover.
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4. MAIN RESULT

This section contains the main result of the paper. The next Theorem calculates the
asymptotic optimal trading policy, its performance, and the dynamics of the portfolio
weight, which are all governed by the scale-free ordinary differential equation (15),
independent of preference and market parameters other than the elasticity of impact α.
The asymptotic policy depends on all other parameters only through the constants

(14) lα :=

[(
σ2

2

)3

γȲ 4(1− Ȳ )4

]α+1
α+3

, Aα =

(
2lα
γσ2

)1/2

, Bα = l
α
α+1
α .

Theorem 5. For α ∈ (0, 1] there exist a unique constant cα > 0 and a unique function
sα ∈ C1(R) that solve

(15) s′α(z) = z2 − cα − α(α+ 1)−
α+1
α |sα(z)|

α+1
α

with the growth conditions7

(16) lim
z→−∞

sα(z)

|z|
2α
α+1

= (α+ 1)α−
α
α+1 and lim

z→+∞

sα(z)

|z|
2α
α+1

= −(α+ 1)α−
α
α+1 .

Recalling that qλ(y) and ûλ(y) are, respectively, the reduced value function and opti-
mal policy in Theorem 3:

(i) The rescaled value function satisfies

(17) lim
λ↓0

qλ(Ȳ + λ
1

α+3 z)λ−
3

α+3 = Bαsα(z/Aα).

(ii) The rescaled trading policy satisfies

(18) lim
λ↓0

λ
1

α+3 ûλ(Ȳ + λ
1

α+3 z) = vα(z) := −
∣∣∣∣Bαsα(z/Aα)

(α+ 1)

∣∣∣∣1/α sgn(z).

(iii) The equivalent safe rate has the asymptotic expansion

(19) ESRγ,α(ûλ) =
µ2

2γσ2
− cαlαλ

2
α+3 + o(λ

2
α+3 ).

(iv) Assume Y0 = Ȳ . The rescaled weight Zλs := λ−
1

α+3 (Yλ2/(α+3)s − Ȳ ) converges
weakly to the process Z0

s defined by8

(20) dZ0
s = vα(Z0

s )ds+ Ȳ (1− Ȳ )σdWs, Z0
0 = 0.

The above theorem summarizes the main attributes of the optimal policy: with non-
linear price impact, the optimal policy is not fully explicit even in the asymptotic
regime, as it depends on the solution sα to the asymptotic equation (15), along with
the long-run dynamics of the portfolio weight in (20). Similarly, the equivalent safe
rate in (19) depends on the constant cα, which does not have a closed-form expression
in terms of α.

Yet, the complexity of the asymptotic policy is limited to the one-time calculation of
cα and sα, while the dependence on all other model parameters is explicit, and in fact

7It is seen immediately that if sα(z) solves (15)-(16), then also −sα(−z) solves (15)-(16). Hence, the
uniqueness of the solution implies that sα(z) = −sα(−z). In particular, one of the growth conditions can
be replaced by sα(0) = 0.

8Note that the weight process Y also depends on λ, though we omit the superscript Y λ for consistency
with the previous sections.
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FIGURE 2. Exact rescaled value function qλ(Ȳ +

λ
1

α+3Aαz)λ
− 3
α+3 /Bα (solid red) and its asymptotic limit sα(z)

(dashed blue), as functions of the rescaled portfolio z, in which 0
represents the frictionless target. The asymptotic function depends
only on α, the exact curve is obtained with µ = 8%, σ = 16%,
α = 1/2, γ = 5, and with λ = 10% (the curves are visually
indistinguishable with λ = 1% or lower).

rather simple, through the constants in (14). In addition, Figure 2 shows that the asymp-
totic approximation is rather accurate for typical parameter values, even for relatively
high λ.9

As nonlinear impact leads to the nonlinear trading rates in Figure 1, it also tilts the
stationary density of the portfolio weight away from the normal distribution implied by
linear price impact. As α declines and nonlinearity increases (Figure 3) the stationary
distribution becomes flatter at the center and thinner-tailed, approaching the uniform
distribution in the limit of transaction costs (α = 0).

The confidence intervals of the portfolio weight Yt are neighborhoods of Ȳ of order
λ

1
α+3 , i.e.,

lim
λ→0

lim
T→∞

1
T

T∫
0

1
{Yt∈[Ȳ−λ

1
α+3 z,Ȳ+λ

1
α+3 z]}

dt =

lim
λ→0

lim
T→∞

λ
2

α+3

T

T/λ
2

α+3∫
0

1{Zλs ∈[−z,z]}ds = limλ→0 µ
λ([−z, z]) = µ0([−z, z]),

where µλ is the invariant measure associated to the process Zλ.

9Note that the small positive value at z = 0 of the exact curve is consistent with the second-order term
in the linear-impact case (Guasoni and Weber, 2017, Remark A.13), and reflects the motive to contrast the
current drift of the portfolio Yt rather than its position relative to the target.
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FIGURE 3. Density (vertical axis) of the invariant measure of the
rescaled risky weight Z0 in Theorem 5(iv) (horizontal axis) for α =
1/8 (green), α = 1/4 (blue), and α = 1/2 (red). Linear impact (α =
1) leads to the normal distribution (dotted) whereas transaction costs
(α ↓ 0) to the uniform distribution (dashed). µ = 8%, σ = 16%,
γ = 5, Ȳ = 62.5%.

5. IMPLICATIONS

5.1. Trading Strategies. Theorem 5 (ii) identifies the optimal wealth turnover (or
trading rate) as

(21) ûλ(y) ∼ −λ−
1

α+3

∣∣∣∣∣Bαsα(λ−
1

α+3 (y − Ȳ )/Aα)

(α+ 1)

∣∣∣∣∣
1/α

sgn(y − Ȳ ).

This formula means that, at the first order, the optimal policy is to buy when the weight
is below the frictionless target Ȳ and to sell when it is above, as with linear impact.
However, turnover is not proportional to the distance of the current weight y from the
target Ȳ , as the function |sα|1/α is generally nonlinear.

Figure 1 displays the typical shape of the optimal trading policy for different elas-
ticity α: as the elasticity α declines from the linear value of one to the null level that
approximates a bid-ask spread, the trading rate declines to zero near the frictionless
target, while rapidly increasing away from the target. Indeed, as α ↓ 0, the trading
rate converges to zero for the values of y that lie inside the no-trade region arising with
bid-ask spreads (Gerhold et al., 2014), while diverging to plus infinity in the buy-region
and to minus infinity in the sell-region.

The shape of the trading rate is a natural consequence of the concavity of the friction:
As low trading rates have a proportionally large impact on the execution price, while
high rates lead to higher – but proportionally lower – impact, it is rational for an investor
to tolerate small deviations from the target by trading very slowly (vα(z) ∝ z

1
α for z

near 0), while reacting aggressively as the portfolio weight strays significantly from the
target (vα(z) ∝ z

2
1+α for z near ±∞). Equivalently, the portfolio weight has more

frequent small deviations, but much less frequent large deviations from the target.
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5.2. Equivalent Safe Rate. Theorem 5 (iii) implies that nonlinear impact reduces the
equivalent safe rate by

(22) cα

[(
σ2

2

)3

γȲ 4(1− Ȳ )4

]α+1
α+3

λ
2

α+3 .

The factor λ
2

α+3 reflects the cost of higher illiquidity. Such an order of magni-
tude admits a simple heuristic explanation, in analogy to the one offered by Rogers
(2004) for proportional transaction costs, noting that illiquidity costs stem partly from
the displacement of the portfolio weight from its target and partly from trading costs
themselves. The displacement cost from keeping a portfolio weight at a distance
ε from the frictionless proportion Ȳ is of order ε2: indeed, if Yt ≡ Ȳ + ε, then
1
T logE[X1−γ

T ]
1

1−γ = µ2

2γσ2 − γ
2σ

2ε2.
To keep the portfolio weight at a distance of order ε from Ȳ , an investor should trade

at a speed proportional to ε−1, as it is gleaned from equation (6): with ut = k · ε−1 the
processZε = ε−1(Yε2s−Ȳ ) converges in law as ε ↓ 0 to the invariant distribution ofZ0

t

in (20). The trading cost of such strategy ut ≡ k · ε−1 is thus λ|ut|1+α = λ|kε−1|1+α.
Thus, the sum of displacement and trading costs has the form

Cε2 + λε−1−α

for some constant C. Minimizing such an objective with respect to ε yields ε ∝ λ
1

α+3 ,
whence the overall illiquidity cost is of the order of λ

2
α+3 , in accordance to (22) (which,

in addition, yields the correct constant). Put differently, displacement and trading costs
are of the same order under the optimal trading policy, which otherwise may be im-
proved by increasing the negligible cost to reduce the leading-order cost.

The constant cα (see Figure 4) reflects the shape of the asymptotic trading policy,
which depends on α alone through the function sα.10 The factor [(σ2/2)3γȲ 4(1 −
Ȳ )4]

α+1
α+3 accounts for the effects on performance that the asset’s volatility has on an

investor who keeps a portfolio close to the target weight Ȳ . These effects are minimal
when the target is close to full investment in either the safe or the risky asset (Ȳ = 0, 1),
hence the resulting portfolio has low volatility and requires little rebalancing.

Interestingly, the elasticities 2/(α+3) and (α+1)/(α+3) sum to one, which means
that simultaneously multiplying the risk aversion, expected return, and illiquidity λ by
the same factor, results in a cost also multiplied by the same factor, regardless of the
nonlinearity α. This parameter, however, regulates the impact of the illiquidity λ rela-
tive to the combined effect of expected return and risk aversion. Whereas with linear
impact the two elasticities are equal, which means that doubling illiquidity is equivalent
to doubling both risk aversion and the expected return, the impact of doubling illiquid-
ity is larger with nonlinear impact, reaching an elasticity of 2/3 in the limit case of
transaction costs.

5.3. Trading Volume. Nonlinearity of price impact also controls the dependence of
trading volume on the illiquidity parameter λ. The starting point for the analysis of
trading volume are equations (18) and (20), which describe the asymptotic turnover vα
and the dynamics of the resulting portfolio.

10To compute numerically cα, calculate the solution to equation (15) with initial condition sα(0) = 0

and a sufficiently small guess for cα. If the guess for cα is too small, then there exists z̄ such that the solution
sα(z) is increasing on (z̄,+∞). By increasing cα, the point z̄ converges to +∞. The correct guess cα is
the smallest coefficient such that sα(z) is decreasing on (0,+∞).
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FIGURE 4. The universal constant (0, 1] 3 α 7→ cα.

Regardless of the nonlinearity, turnover vα increases with both risk aversion γ and
volatility σ, confirming the intuition that risk aversion induces more trading through
more active rebalancing.11 Trading volume, measured by unsigned turnover (cf. Gua-
soni and Weber (2017)) is asymptotically inversely proportional to the width of the
confidence intervals of the portfolio weight Yt, as shown by the next proposition.

Proposition 6. Assume Ȳ ∈ (0, 1). Then

|ET | := lim
T→∞

1

T

T∫
0

|ûλ(Yt)|dt = Gα

[(
σ2

2

)3

γȲ 4(1− Ȳ )4

] 1
α+3

λ−
1

α+3 +o(λ−
1

α+3 ),

where the constant Gα depends only on α

(23) Gα = 1
2

1−exp

(
− 2

(α+1)1/α

∫∞
0
|sα(s)|1/αds

)
∫∞
0

exp

(
− 2

(α+1)1/α

∫ x
0
|sα(s)|1/αds

)
dx
.

Thus the equivalent safe rate loss is

(24) LOS(λ) ∼ Nαλ|ET |α+1,

where also Nα := cαG
−(α+1)
α depends only on α.

Note that (24) extends to nonlinear impact the performance relations in Gerhold et al.
(2014) and Guasoni and Weber (2017) for proportional transaction costs and linear
impact respectively. The exponent α + 1 reflects the fact that higher volume leads
to higher costs proportionally to quantities (whence 1), and less than proportional to
impact (whence α).

The following proposition shows that the appropriately scaled trading volume pro-
cess has a weak limit.

11vα(z) increases as γ increases because |sα(z)| is increasing in |z|, Bα increasing in γ and Aα de-

creasing in γ. Aα is increasing in σ, but because |sα(z)| ∼ K1|z| for small |z| and |sα(z)| ∼ K2|z|
2α
α+1

for large |z|, the effect of σ on Bαsα(z/Aα) is always positive. In particular, vα(z) is increasing in σ.



NONLINEAR PRICE IMPACT AND PORTFOLIO CHOICE 13

Proposition 7. Assume Ȳ ∈ (0, 1). As λ ↓ 0, the processes (λ
1

α+3 ûλ(Zλ))λ≥0 con-
verge weakly to the process Vs := vα(Z0

s ), which has the dynamics

dVs = b(Vs)ds+ a1/2(Vs)dWs,

where b(v) = v′α(v−1
α (v))v + 1

2v
′′
α(v−1

α (v))Ȳ 2(1 − Ȳ )2σ2 and a(v) =

(v′α(v−1
α (v)))2Ȳ 2(1 − Ȳ )2σ2. Thus, b(v) ∼ −2(α + 1)−1α−1/2A−1

α B
α+1
2α
α v

3−α
2 and

a(v) ∼ 4(α+ 1)−2α−1A−2
α B

α+1
α

α Ȳ 2(1− Ȳ )2σ2v1−α for large v.

The invariant density of the trading volume process Vs is proportional to
exp(

∫ x
0

2b(s)
a(s)

ds)

a(x) . It follows from Proposition 7 that for large v it is asymptotically equiv-
alent to

f × exp(−g|v|α+3
2 )

|v|1−α
, for some f, g > 0.

Thus, the trading volume generated by the rebalancing activity of one large investor
has fatter tails than the normal distribution, but still exponentially decaying in (a power
of) the trade size. By contrast, Gabaix et al. (2003, 2006) investigate the distribution
of trade sizes in aggregate microstructure data, and find tails with power decay, which
they explain as arising from the actions of a population of funds with assets distributed
according to an assumed power law.

This observation suggests that aggregate volume patterns largely depend on the
cross-sectional variation among market participants rather than on the time-series vari-
ation for each participant, which has rather different statistical properties.

5.4. Linear Impact and Bid-Ask Spreads. The formulas in Theorem 5 recover the
familiar results on linear impact for α = 1 and on proportional bid-ask spreads in the
limit α ↓ 0. Linear price impact follows as a straightforward special case, for which
both the shape function sα(z) and the constant cα have simple explicit expressions.
Substituting such expressions in Theorem 5 in turn leads to the asymptotic formulas for
optimal policies, their performance, and trading volume derived by Guasoni and Weber
(2017).

Lemma 8. In Theorem 5, c1 = 2 and s1(z) = −2z.

In the limit α ↓ 0, price impact degenerates to a market with proportional bid-ask
spreads, for which the asymptotics are discussed in Gerhold et al. (2014). In the notation
of this paper, the asymptotic analysis in the transaction cost literature solves models for
α = 0 and then studies the small-cost regime λ ↓ 0. By contrast, this paper studies the
regime λ ↓ 0 while holding α > 0 constant, and a natural question is whether the limit
α ↓ 0 of these asymptotics coincides with the asymptotics with α = 0 in the transaction
cost literature. As we show, the answer is affirmative.

The next lemma identifies the limits of sα, cα in Theorem 5.

Lemma 9. In Theorem 5, c0 := limα→0 cα =
(

3
2

)2/3
and

s0(z) := lim
α→0

sα(z) =


1, z ∈ (−∞,−√c0],

z3/3− c0z, z ∈ (−√c0,
√
c0),

−1, z ∈ [
√
c0,+∞).

The next lemma shows that, as α ↓ 0, the optimal trading rate converges to 0 inside
the no-trade region [z−, z+], to −∞ in the sell region [z+,+∞], and to +∞ in the
buy-region [−∞, z−].
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Lemma 10. Define z+ :=
(

3
2γ Ȳ

2(1− Ȳ )2
)1/3

and z− := −z+. For α ↓ 0, the

optimal strategy vα(z) converges to 0 on (z−, z+), to +∞ on (−∞, z−), and to −∞
on (z+,+∞).

6. HEURISTICS

The proof of Theorem 5 is technical and deferred to the appendix, as it requires a
careful analysis of the convergence of the rescaled value functions to their universal
limit. Yet, an informal derivation of the main statement illustrates the main scaling
arguments at work.

Denoting by v(t, x, y) = E
[
X1−γ
T

1−γ |Xt = x, Yt = y
]

the value function of the finite-
horizon utility maximization problem, similar arguments as those for linear impact
(Guasoni and Weber, 2017) lead to the Hamilton-Jacobi-Bellman equation

vt+y(1−y)(µ−σ2y)vy +µxyvx+
σ2y2

2

(
x2vxx + (1− y)2vyy + 2x(1− y)vxy

)
+ max

u

(
−λx|u|α+1vx + vy

(
u+ λy|u|α+1

))
= 0.

Next, using the ansatz v(t, x, y) = x1−γ

1−γ e
(1−γ)(β(T−t)+

∫ y
y0
q(z)dz)

, maximizing over u,

and setting c(λ) := µ2

2γσ2 − β yields

(25)

− γσ
2

2
(Ȳ − y)2 + c(λ) + y(1− y)(µ−γσ2y)q+α(α+ 1)−

α+1
α

|q|α+1
α

(1− yq)1/α
λ−1/α

+
σ2

2
y2(1− y)2(q′ + (1− γ)q2) = 0.

Passing to the limit λ→ 0 and guessing that limλ→0 qλ(y) = 0, leads to

γσ2

2
(Ȳ − y)2 = lim

λ→0
α(α+ 1)−

α+1
α |qλ|

α+1
α λ−1/α,

and hence to the first order approximation

(26) q(1)(y) = λ
1

α+1 (α+ 1)
1

α+1

(
α+ 1

α

γσ2

2

) α
α+1

|Ȳ − y|
2α
α+1 sgn(Ȳ − y).

For α ∈ (0, 1], the function q(1)(y) is sublinear and the derivative explodes in Ȳ , even
as the solution of the HJB equation is bounded and has bounded derivative. This ob-
servation suggests that to achieve nontrivial asymptotics it is necessary to “zoom in”
close to the Merton proportion Ȳ , i.e. to rescale qλ(y) both on the horizontal and on
the vertical axis.

For y far from Ȳ , the dominant term in (25) is −γσ
2

2 (Ȳ − y)2, which yields the
approximation (26). Instead, for y = Ȳ the dominant term is c(λ) in view of the guess
qλ(Ȳ ) = 0 (a zero trading rate at the Merton proportion). In particular, if c(λ) =
O(λd), setting in (25) y = Ȳ , it follows that q′λ(Ȳ ) = O(λd). The two dominant terms
(for y far from Ȳ and for y = Ȳ ) match when y ∼ Ȳ − c(λ)1/2.

Setting y = Ȳ − c(λ)1/2 in (26) yields q(1)(Ȳ − c(λ)1/2) = O(λ
1

α+1 + αd
α+1 ). On

the other hand, as q′λ(Ȳ ) = O(λd), qλ(Ȳ − c(λ)1/2) ∼ −q′λ(Ȳ )× c(λ)1/2 = O(λ
3d
2 ).

From the relation 3d
2 = 1

α+1 + αd
α+1 , the correct guess d = 2

α+3 follows. Therefore,
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assuming c(λ) = c̄λ
2

α+3 and substituting y = Ȳ + λ
1

α+3 z and rλ(z) = qλ(y)λ−
3

α+3 in
equation (25), yields

(27)

−γσ
2

2
z2λ

2
α+3 +c̄λ

2
α+3−γσ2y(1−y)zλ

4
α+3 rλ+

σ2

2
y2(1−y)2(r′λλ

2
α+3 +(1−γ)r2

λλ
6

α+3 )

+ α(α+ 1)−
α+1
α

|rλ|
α+1
α

(1− yrλλ
3

α+3 )1/α
λ

2
α+3 = 0.

Dividing the equation by λ
2

α+3 and passing to the limit as λ ↓ 0, it follows that r0(z) :=
limλ→0 rλ(z) satisfies the equation

−γσ
2

2
z2 + c̄+

σ2

2
Ȳ 2(1− Ȳ )2r′0 + α(α+ 1)−

α+1
α |r0|

α+1
α = 0.

Absorbing the parameters µ, σ and γ in the coefficients through the substitution
sα(w) = r0(Aαw)

Bα
, the asymptotic HJB equation (15) follows. Likewise, reformulating

the boundary conditions (12)-(13) for qλ in terms of sα yields the asymptotic growth
conditions (16).

7. MODEL EXTENSION

The arguments in the paper can be extended to more general specifications of the
price impact function, as to account for dependence on a stationary process. Assume
that the average execution price for the large investor is

St

(
1 + λK(ξt)

∣∣∣∣St∆θXt∆t

∣∣∣∣α) ,
where ξ is an additional exogenous state variable and 0 < mK ≤ K(ξ) ≤ MK , and ξ
follows the SDE

(28) dξt = µξ(ξt)dt+ σξ(ξt)dBt,

where µξ, σξ are smooth functions and Bt is another Brownian motion that has corre-
lation ρ with Wt.

The coefficientK(ξt) captures both the investor’s size and the time-variation in illiq-
uidity. Under this interpretation, the model introduced in Section 3 assumes a constant
proportion between the daily trading volume and investor’s wealth, where the constant
of proportionality is incorporated into the parameter λ.

Passing to continuous time and applying Itô’s Lemma yields the dynamics of the
wealth process X and of the risky weight Y ,

dXt

Xt
= Yt(µdt+ σdWt)− λK(ξt)|ut|α+1dt,

dYt = (Yt(1− Yt)(µ− Ytσ2) + ut + λK(ξt)Yt|ut|α+1)dt+ Yt(1− Yt)σdWt.

As in Definition 1, a strategy (Y0, u) is admissible if the resulting wealth process,
i.e.,

Xu
T = X0 exp

(∫ T
0

(
µYt − σ2

2 Y
2
t − λK(ξt)|ut|1+α

)
dt+

∫ T
0
σYtdWt

)
,

remains solvent at all times.12

12 If 0 < mK ≤ K(ξ) ≤ MK , then the same arguments in Remark 2 apply to the extended model. In
particular, any strategy such that Yt /∈ [0, 1] for some t is not admissible.
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The following verification theorem identifies the optimal trading policy and its equiv-
alent safe rate in the extended model from the solution of the associated ergodic HJB
equation.

Theorem 11. Assume Ȳ := µ
γσ2 ∈ (0, 1). Let the process (ξt)t≥0 satisfy (28) for

some continuous functions µξ, σξ : E 7→ R, where E ⊂ R is a bounded open set and
P (ξt ∈ E a.s. for all t) = 1. Let K : E 7→ R be bounded from above and away from 0
(i.e., there are mK ,MK ∈ R such that 0 < mK ≤ K(ξ) ≤MK for all ξ ∈ E).

Assume that Q(y, ξ) ∈ C2([0, 1] × E) (i) is bounded, (ii) satisfies the conditions
Qy(1, ξ) < 0 < Qy(0, ξ) for ξ ∈ E and yQy(y, ξ) < 1 for (y, ξ) ∈ [0, 1] × E, (iii) is
such that σξ(ξ)Qξ(y, ξ) is bounded, and (iv) solves the partial differential equation

− β̂ + µy − γσ2

2
y2 + y(1− y)(µ− γσ2y)Qy +

σ2

2
y2(1− y)2(Qyy + (1− γ)Q2

y)

+ µξ(ξ)Qξ +
σ2
ξ (ξ)

2

(
(1− γ)Q2

ξ +Qξξ
)

+ σρσξ(ξ)y(1− y) ((1− γ)QyQξ +Qyξ)

+ σρσξ(ξ)y(1− γ)Qξ + α(α+ 1)−
α+1
α

|Qy|
α+1
α

(1− yQy)1/α(K(ξ)λ)1/α
= 0

(29)

for some β̂ ∈ R. Then for sufficiently small λ the optimal trading policy and its equiv-
alent safe rate for the problem (8) are

û(y, ξ) =
∣∣∣ Qy(y,ξ)

(α+1)λK(ξ)(1−yQy(y,ξ))

∣∣∣1/α sgn(Qy(y, ξ)), ESRγ(û) = β̂.(30)

7.1. State-dependent Asymptotics. The asymptotic expansions extend to the state-
dependent illiquidity K(ξ) as follows. Denote by β̂ = µ2

2γσ2 − c(λ). As the frictionless
limit corresponds toQ(y, ξ) = c(λ) = 0, it is reasonable to conjecture that bothQ(y, ξ)
and c(λ) vanish with λ, and hence that the Hamilton-Jacobi-Bellman equation (29)
converges to

(31)
γσ2

2
(y − Ȳ )2 = lim

λ→0
α(α+ 1)−

α+1
α

|Qy|
α+1
α

(1− yQy)1/α(K(ξ))1/α
λ−1/α.

This expression in turn suggests for y far from Ȳ an expansion of the form

Q(y, ξ) = λ1/(α+1)Q(1)(y, ξ) +Hλ(ξ),

with which, for small λ, equation (29) reduces to

|Q(1)
y (y, ξ)| = K(ξ)

1
α+1 (α+1)

1
α+1

(
α+ 1

α

γσ2

2

) α
α+1

((Ȳ −y)2 +Ā(ξ)+yB̄(ξ))
α
α+1 ,

where

Ā(ξ) = −µ(ξ)Hλ
ξ (ξ)− σ2(ξ)

2
((1− γ)Hλ

ξ (ξ)2 +Hλ
ξξ(ξ)),

B̄(ξ) = −σρσ(ξ)(1− γ)Hλ
ξ (ξ).

In view of the boundary conditionsQy(1, ξ) ≤ 0 ≤ Qy(0, ξ), it follows that miny((Ȳ −
y)2 + Ā(ξ) + yB̄(ξ)) = 0. As the minimum is attained at y∗ = Ȳ − B̄(ξ)

2 , Hλ
ξ satisfies

the ordinary differential equation

(32) 0 = Ā(ξ) + Ȳ B̄(ξ)− B̄(ξ)2

4
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with the solution Hλ
ξ ≡ 0 corresponding to a frictionless market, which suggests that

Hλ
ξ is null at the first order, and hence that

(33) |Q(1)
y (y, ξ)| = K(ξ)

1
α+1 (α+ 1)

1
α+1

(
α+ 1

α

γσ2

2

) α
α+1

|Ȳ − y|
2α
α+1 .

Consider now the asymptotic expansion close to Ȳ , applying the substitutions

z :=
y − Ȳ
λ1/(α+3)

, Q(y, ξ) := λ4/(α+3) ×Rλ(z, ξ) +Hλ(ξ).(34)

For small λ, writing β̂ = µ2

2γσ2 − lλ2/(α+3), equation (29) reduces to
(35)

−γσ
2

2
z2+l+Cλ(ξ)+

σ2

2
Ȳ 2(1−Ȳ )2Rλzz+

α

α+ 1
(α+1)−1/α|Rλz |

α+1
α K(ξ)−1/α = 0,

where Cλ(ξ) := −(Ā(ξ) + B̄(ξ)Ȳ )λ−2/(α+3). Through the state-dependent change of
variable obtained by

(36) Aα =

(
2lα
γσ2

)1/2

K(ξ)
1

α+3 , Bα = l
α
α+1
α K(ξ)

3
α+3 ,

the ordinary differential equation reduces again to the same shape equation (15) (with
the same constant lα). In summary, the shape equation continues to describe the optimal
trading strategy even when liquidity is stochastic, as liquidity level affects the scaling,
but not the shape of the trading response.

APPENDIX A

A.1. Proof of Theorem 3. Recall the HJB equation

(37)

q′ =
2

σ2y2(1− y)2

(γσ2

2
(Ȳ −y)2−c+γσ2y(1−y)(y−Ȳ )q−σ

2

2
y2(1−y)2(1−γ)q2

− α(α+ 1)−
α+1
α

|q|α+1
α

(1− yq)1/α
λ−1/α

)
=: f(y, q),

where c := µ2

2γσ2 − β.
The proof of Theorem 3 begins with some useful properties of equation (37). Lemma

13 shows the existence of a bounded solution to (37) with positive limit in 0 and negative
limit in 1. The boundary conditions in 0 and 1 are required to prove in Lemma 16 that
the process Yt lives in the interval [0, 1]. Lemma 17 provides a bound for the investor’s
utility. Finally, Theorem 3 follows from these results.

Lemma 12. Assume that c ∈ (0, µ2

2γσ2 ), where c may depend on λ. Then:

(i) There exists K > 0 such that f(y,±Kλ
1

α+1 ) < 0 on (0, 1) for λ small enough.

(ii) For λ small enough, the set of points (y, h) ∈
(

0, Ȳ −
√

2
γσ2 c

)
× (0,Kλ

1
α+1 )

such that f(y, h) = 0 is the graph of a differentiable strictly decreasing function

y → h(y). The same holds true for the set of points (y, h) ∈
(
Ȳ +

√
2
γσ2 c, 1

)
×

(−Kλ
1

α+1 , 0) such that f(y, h) = 0.
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(iii) The limits of function h(y) in 0 and in 1 satisfy

h(0+) = λ
1

α+1 (α+ 1)
1

α+1

(
α+ 1

α
β

) α
α+1

,

α(α+ 1)−
α+1
α

|h(1−)|α+1
α

(1− h(1−))1/α
λ−1/α = β − µ+ γ

σ2

2
.

Proof.

(i) Substitute q = ±Kλ
1

α+1 in equation (37) and expand around λ = 0. It follows
that f(y,±Kλ

1
α+1 ) = 2

σ2y2(1−y)2

(
γσ2

2 (Ȳ − y)2 − c− α(α+ 1)−
α+1
α K

α+1
α

)
+

o(1). The claim follows immediately if K is chosen large enough.
(ii) Because for λ sufficiently small ∂

∂q [σ2y2(1 − y)2f(y, q)] < 0 on {Ȳ } ×
[0,Kλ

1
α+1 ] and f(Ȳ , 0) < 0, also f(Ȳ , q) < 0 for q ∈ [0,Kλ

1
α+1 ]. An

explicit calculation shows that ∂2

∂y2 [σ2y2(1 − y)2f(y, q)] > 0 on [0, 1] ×
[−Kλ

1
α+1 ,Kλ

1
α+1 ] for λ sufficiently small. In particular, for any q ∈ [0,Kλ

1
α+1 ],

the function σ2y2(1 − y)2f(y, q) is strictly convex on [0, 1]. Therefore, if
limy→0+ σ2y2(1 − y)2f(y, q̃) < 0, where q̃ ∈ [0,Kλ

1
α+1 ], then σ2y2(1 −

y)2f(y, q̃) < 0 for y ∈ [0, Ȳ ]. Instead, if limy→0+ σ2y2(1− y)2f(y, q̃) > 0, then
there exists a unique h̃(q̃) := ỹ ∈ [0, Ȳ ] such that f(ỹ, q̃) = 0. It is verified imme-

diately that h̃(0) = Ȳ −
√

2
γσ2 c. Because f(y, 0) > 0 and f(y,Kλ

1
α+1 ) < 0 on

(0, Ȳ −
√

2
γσ2 c), it follows that h(y) := h̃−1(y) defines a strictly decreasing posi-

tive function on (0, Ȳ −
√

2
γσ2 c). The same arguments applied on (Ȳ +

√
2
γσ2 c, 1)

prove the second part of the claim.
(iii) It is enough to solve the equation limy→0+ σ2y2(1 − y)2f(y, h(y)) = 0, resp.

limy→1− σ
2y2(1 − y)2f(y, h(y)) = 0, for h(0+), resp. h(1−), where f(y, q) is

defined in (37).

�

Lemma 13. Assume Ȳ = µ
γσ2 ∈ (0, 1). There exists λ∗ > 0 such that for λ ∈ (0, λ∗)

and for a certain c(λ) ∈ (0, µ2

2γσ2 ) the equation (37) has a unique solution q : [0, 1] 7→
R with boundary conditions q(0+) = h(0+) > 0 and q(1−) = h(1−) < 0, where
h(·) is defined in Lemma 12. Furthermore, c(λ) is a continuous increasing function on
(0, λ∗) and limλ→0 c(λ) = 0.

Proof. The proof follows the same lines as the proof of Lemma A.8 in Guasoni and
Weber (2017) and is broken into the following steps:

(i) for a fixed c < µ2

2γσ2 , there exists a unique solution q0(·) to (37) with limit in 0

equal to h(0+);
(ii) for a fixed c < µ2

2γσ2 − µ + γ
2σ

2, there exists a unique solution q1(·) to (37) with
limit in 1 equal to h(1−);

(iii) if c ≤ 0, then q0(·) > 0 > q1(·);
(iv) for a fixed c > 0, there exists λ̃ > 0 such that q0(y) < q1(y) on their common

domain for λ ∈ (0, λ̃);
(v) by continuity, there exists c(λ) ∈ (0, µ2

2γσ2 ) such that q0(·) = q1(·) on (0, 1). The
function c(λ) is continuous, increasing and limλ→0 c(λ) = 0.
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Let h(y) be as in Lemma 12, i.e., f(y, h(y)) = 0, and letDh :=
(

0, Ȳ −
√

2
γσ2 c

)
∪(

Ȳ +
√

2
γσ2 c, 1

)
be its domain. Denote by q(y; ȳ, w̄) the solution to (37) with initial

condition q(ȳ) = w̄.

Remark 14. For every y ∈ (0, 1), limq→( 1
y )− f(y, q) = −∞. Thus, every solution to

(37) starting below the curve 1
y must remain below this curve.

Step (i).
The slope field in equation (37) satisfies limy→0+

σ2y2

2 f(y, q) = µ2

2γσ2 − c− α(α+

1)−
α+1
α |q|α+1

α λ−1/α. In particular, if c < µ2

2γσ2 , i.e., if β > 0, and y is sufficiently

close to 0, then f(y, q) > 0 for q > λ
1

α+1 (α + 1)
1

α+1
(
α+1
α β

) α
α+1 = h(0+). Con-

sider a solution q̃(y) to (37) such that q̃(·) ≥ h(·), it follows that q̃ has a limit in 0.
Assume the limit k := q̃(0+) is finite. Then limy→0 y

2q̃′(y) = 2
σ2 ( µ2

2γσ2 − c − α(α +

1)−
α+1
α |k|α+1

α λ−1/α). The mean-value theorem implies that q̃(y)−q̃(0+) = yq̃′(η) for
some η ∈ [0, y], multiplying both sides by y and passing to the limit y ↓ 0, it follows that
y2q̃′(y) converges to zero. Hence, k satisfies µ2

2γσ2−c−α(α+1)−
α+1
α |k|α+1

α λ−1/α = 0

and k ≥ h(0+), and therefore k = h(0+).
Define q0(y) := inf{q̃(y) : q̃(·) solves (37), q̃(·) ≥ h(·) on Dh ∩ (0, Ȳ )} for y ∈

Dh ∩ (0, Ȳ ). Note that for any ȳ ∈ Dh ∩ (0, Ȳ ) the function q(y; ȳ, q0(ȳ)) coincides
with q0(y) on Dh ∩ (0, Ȳ ). In other terms, q0(·) is a solution to (37). Next, assume by
contradiction that limy→0 q0(y) = +∞. Then there exist y1 sufficiently close to 0 and
w1 such that q0(y1) > w1 > h(0+) > h(y1). Because h is a subsolution to (37), it
follows that q0(·) > q(·; y1, w1) > h(·) on Dh ∩ (0, Ȳ ), contradicting the minimality
of q0. Therefore, limy→0 q0(y) = h(0+) = λ

1
α+1 (α+ 1)

1
α+1

(
α+1
α β

) α
α+1 .

To prove uniqueness, note that ∂
∂q [σ2y2(1− y)2f(y, q)] < 0 on [0, ε]× [0,Kλ

1
α+1 ]

for ε and λ sufficiently small. Hence, for any solution q̃(·) to (37) such that 0 < q̃(·) <
q0(·), it holds that q̃′(y) > q′0(y) on (0, ε). It follows that q̃(·) and q0(·) cannot have the
same limit in 0. Analogously, any solution q̃(·) > q0(·) to (37) cannot have the same
limit in 0 as q0(·).
Step (ii).

This part of the proof follows the same lines as in the proof of Step (i). Anal-
ogous arguments as in Step (i) prove that for any solution q̃(·) to (37) such that
q̃(·) ≤ h(·) the limit limy→1 q̃(y) is either h(1−) or −∞. Define q1(y) := sup{q̃(y) :
q̃(·) solves (37), q̃(·) ≤ h(·) on Dh∩ (Ȳ , 1)} for y ∈ Dh∩ (Ȳ , 1). The function q1(·) is
also a solution to (37). Assume by contradiction that limy→1 q1(y) = −∞. Then there
exist y2 sufficiently close to 1 and w2 such that q1(y2) < w2 < h(1−) < h(y2).
Because h is a subsolution to (37), it follows that q1(·) < q(·; y2, w2) < h(·) on
Dh ∩ (Ȳ , 1), contradicting the maximality of q1. Hence, limy→1 q1(y) = h(1−).
Uniqueness follows as in Step (i), after noting that ∂

∂q [σ2y2(1 − y)2f(y, q)] > 0 on

[1− ε, 1]× [−Kλ
1

α+1 , 0] for ε and λ sufficiently small.
Step (iii).

If c ≤ 0, then f(y, 0) ≥ 0 for y ∈ (0, 1). This implies that q0(·) > 0 and q1(·) < 0.
Step (iv).
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The functions q0,λ(y) := q0(y)λ−
1

α+1 and q1,λ(y) := q1(y)λ−
1

α+1 solve the equa-
tion

q′λ =
2λ−

1
α+1

σ2y2(1− y)2

(γσ2

2
(Ȳ − y)2 − c− α(α+ 1)−

α+1
α

|qλ|
α+1
α

(1− yq)1/α

+ λ
1

α+1 [γσ2y(1− y)(y − Ȳ )qλ − λ
1

α+1
σ2

2
y2(1− y)2(1− γ)q2

λ]
)

=: fλ(y, qλ).

First, observe that from Lemma 12(i) it follows that q1,λ(·) > −K. Because γσ2

2 (Ȳ −

y)2 − c− α(α + 1)−
α+1
α
|qλ|

α+1
α

(1−yq)1/α < −ε1 for (y, qλ) ∈ [Ȳ − ε2, Ȳ + ε2]× [−K,K]

for some ε1 > 0, ε2 > 0 and with K as in Lemma 12(i), limλ→0 fλ(y, qλ) = −∞
uniformly on [Ȳ − ε2, Ȳ + ε2]× [−K,K]. In particular, for λ sufficiently small, either
there exists y∗ < Ȳ − ε2 such that limy→y∗ q0,λ(y) = −∞ or there exists y∗ ∈
[Ȳ − ε2, Ȳ + ε2] such that q0,λ(y∗) = −K. Recalling that q1,λ(·) > −K, this proves
the claim.
Step (v).

Because q0(·) and q1(·) depend continuously on c, there exists c(λ) ∈ (0, µ2

2γσ2 ) such
that q0(·) = q1(·) on (0, 1). This solution satisfies the properties of the statement.

To prove that c(λ) is increasing, consider λ1 < λ2 and define c1 := c(λ1) and
c2 := c(λ2). We make the dependence of the slope field function f(y, q), resp. a
solution q, on λ and c explicit by writing fλ,c(y, q), resp. qλ,c. Because fλ1,c2(y, q) <

fλ2,c2(y, q), qλ1,c2
0 (0) < qλ2,c2

0 (0) and qλ1,c2
1 (1) > qλ2,c2

1 (1), it follows that qλ1,c2
0 <

qλ2,c2
0 = qλ2,c2

1 < qλ1,c2
1 . Thus, c(λ1) = c1 < c2 = c(λ2).

Assume c(λ) is not continuous in λ̄. Then there exists an ε > 0 and a sequence
λn ↓ λ̄ such that |c(λ̄) − c(λn)| > ε. For a sufficiently large n, qλn(0) < qλ̄(0),
fλn < f λ̄ and qλn(1) > qλ̄(1), which leads to a contradiction. Thus, c(λ) must be
continuous.

Assume now by contradiction that lim supλ→0 c(λ) = c∗ > 0. It follows that there
exists a sequence λn ↓ 0 such that c(λn) > c∗

2 for all n and q0(·) = q1(·) for λ = λn.
This contradicts the claim in Step (iv) of the proof. Hence, limλ→0 c(λ) = 0. �

Remark 15. Let h(y) be as in Lemma 12 and letDh be its domain. From the definition
of q0(y) and q1(y) in the proof of Lemma 13, it follows that the function q(y) in Lemma
13 satisfies

q(y) = inf{q̃(y) : q̃(·) solves (37), q̃(·) ≥ h(·) on Dh ∩ (0, Ȳ )} for Ȳ > y ∈ Dh

(38)

q(y) = sup{q̃(y) : q̃(·) solves (37), q̃(·) ≤ h(·) on Dh ∩ (Ȳ , 1)} for Ȳ < y ∈ Dh.
(39)

Lemma 16. Let u(y) be a bounded continuous function on [0, 1] such that u(0) > 0
and u(1) < 0. For λ small enough the process with dynamics

dYt = Yt(1− Yt)(µ− Ytσ2)dt+ (u(Yt) + λYt|u(Yt)|α+1)dt+ Yt(1− Yt)σdWt,

Y0 = y ∈ (0, 1)

takes values in [0, 1] almost surely for all t.

Proof. The claim follows from Lemma 24 below for K(ξ) = 1. �
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Lemma 17. Let β̂ and q(y) be as in Theorem 3, define Q(y) :=
∫ y

q(z)dz. For any
admissible strategy there exists a probability P̂ , equivalent to P , such that the terminal
wealth XT satisfies

(40) E[X1−γ
T ]

1
1−γ ≤ X0e

β̂T+Q(y)EP̂ [e−(1−γ)Q(YT )]
1

1−γ

and equality holds for the optimal strategy û in (9).

Proof. The claim follows from Lemma 25 below for K(ξ) = 1. �

Proof of Theorem 3. Let c(λ) and q be as in Lemma 13 and define β̂ = µ2

2γσ2 − c(λ).

The function û(y) =
∣∣∣ q(y)

(α+1)λ(1−yq(y))

∣∣∣1/α sgn(q(y)) has the same sign as q(y), which
is positive in 0 and negative in 1. Hence, Lemma 16 implies that Yt ∈ [0, 1] for all t > 0.
Thus, as Q is bounded in [0, 1], it follows that limT→∞

1
T logEP̂ [e−(1−γ)Q(YT )]

1
1−γ =

0. This relation, combined with Lemma 17, yields

lim
T→∞

1

T
logE[X1−γ

T ]
1

1−γ ≤ β̂,

where equality holds for the strategy û. Uniqueness follows from the optimality of
β̂. �

A.2. Proof of Theorem 5. Lemma 18 shows the monotonicity of the function q(y)
defined in Lemma 13. This property is used in the proof of Proposition 19, which is the
crucial ingredient to make the heuristic scaling argument in Section 6 rigorous. Lemmas
20 and 22 establish the existence of a solution sα(z) to the reduced HJB equation (15).
Finally, in the proof of Theorem 5, we show that the appropriately rescaled solution
q(y) defined in Lemma 13 converges to sα(z).

Lemma 18. For λ sufficiently small, the solution q(y) to (37) defined in Lemma 13 is
strictly decreasing.

Proof. Recall that the function h(y) defined in Lemma 12(ii) is decreasing and such
that f(y, h(y)) = 0. From Remark 15 it follows that q(y) > h(y) on (0, Ȳ ) ∩ Dh and
q(y) < h(y) on Dh ∩ (Ȳ , 1), whence q(y) decreases on Dh.

An explicit calculation shows that ∂2

∂y2 [σ2y2(1 − y)2f(y, q)] > 0 on [0, 1] ×
[−Kλ

1
α+1 ,Kλ

1
α+1 ] for λ sufficiently small. Assume by contradiction that q(y) is not

monotonic on (0, 1). Then there exist y1 < y2 < y3 such that w1 = q(y1) = q(y2) =
q(y3) ∈ (h(1−), h(0+)) and f(y1, w1) = q′(y1) ≤ 0, f(y2, w1) = q′(y2) ≥ 0, and
f(y3, w1) = q′(y3) ≤ 0. Because either f(0+, w1) > 0 or f(1−, w1) > 0, this contra-
dicts the convexity of f(y, w1) as a function of y. Hence, q(y) is strictly decreasing on
(0, 1). �

Proposition 19. 0 < lim infλ→0
c(λ)

λ
2

α+3
≤ lim supλ→0

c(λ)

λ
2

α+3
< +∞.

Proof. Let λn be a positive null sequence such that c(λn)

λ
2

α+3
n

has a limit. Let y∗,n :=

Ȳ −
√

2
γσ2 (1 + ε)c(λn) and ỹn ∈

(
Ȳ −

√
2
γσ2 c(λ), Ȳ +

√
2
γσ2 c(λ)

)
be the only

point such that q(ỹn) = 0.
By definition, the solution q(·; ỹn, 0) to (37) has to coincide with the solution q with

limit h(0+) in 0. Near y = Ȳ , the derivative of q(·) is determined by c(λ). We show
that if c(λ) were to converge to 0 too fast, then the value of q(·; ỹn, 0) in y = y∗,n
would be too low to coincide with the solution q with limit h(0+) in 0, leading to a
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contradiction. Conversely, if the convergence of c(λ) to 0 were too slow, then the value
of q(·; ỹn, 0) in y = y∗,n would be too large. Formally, the proof is broken into two
steps.

(i) Suppose that limn→∞
c(λn)

λ
2

α+3
n

= 0 and find a contradiction.

Up to a subsequence, assume that ỹn ≤ Ȳ (if such a subsequence does not exist,
consider the same argument at y∗n = Ȳ +

√
2
γσ2 (1 + ε)c(λn)).

In Step (i) we prove that if limn→∞ c(λn)λ
− 2
α+3

n = 0, then q(·) is dominated near
y = Ȳ by a linear function with slope of order −c(λ). A solution to (37) with initial
condition q(ỹn) = 0 and such a growth rate near y = Ȳ is increasing at y = y∗,n < ỹn,
contradicting the monotonicity of q(·) proven in Lemma 18.

First, we prove that for sufficiently small λn and a constant K > 0 to be chosen,
k(y) := −Kc(λn)(y − Ȳ ) > q(y) on (y∗,n, ỹn). It is clear that k(ỹn) > q(ỹn) = 0,
so it is enough to show that f(y, k(y)) > k′(y) on (y∗,n, ỹn). Substituting q = k(y)

in f(y, q) from (37), and because |y − Ȳ | ≤ |y∗,n − Ȳ | =
√

2
γσ2 (1 + ε)c(λn) on

(y∗,n, ỹn), it follows that for some constants A0 > 0, A1, A2, A3 independent of λ

f(y, k(y)) > A0(0− c(λ)−A1Kc(λ)2 −A2K
2c(λ)3 −A3K

α+1
α c(λ)

3
2
α+1
α λ−

1
α )

= −A0c(λ)

(
1 +A1Kc(λ) +A2K

2c(λ)2 +A3K
α+1
α

(
c(λ)

λ
2

α+3

)α+3
2α

)
.

Thus, q(y) < k(y) forK = A0(1+δ) and sufficiently small λ. In particular, q(y∗,n) <

k(y∗,n) = A4c(λ)3/2, for some A4 > 0 independent of λ. To conclude the first part
of the proof it suffices to show that σ

2

2 (y∗,n)2(1 − y∗,n)2f(y∗,n, q(y∗,n)) > 0, which
would lead to a contradiction, as q(y) is a decreasing function by Lemma 18.

Setting y = y∗,n in (37) and recalling that q(y∗,n) < A4c(λ)3/2, we find constants
B1, B2, B3 independent of λ such that

(41)
σ2

2
(y∗,n)2(1−y∗,n)2f(y∗,n, q(y∗,n)) > εc(λ)+B1c(λ)2+B2c(λ)3+B3c(λ)

3
2
α+1
α λ−1/α

= c(λ)

(
ε+B1c(λ) +B2c(λ)2 +B3

(
c(λ)

λ
2

α+3

)α+3
2α

)
,

and for sufficiently small λ the last part is larger than c(λ) ε2 > 0.
(ii) Assume that limn→∞

c(λn)

λ
2

α+3
n

= +∞ and find a contradiction.

Up to a subsequence, assume that ỹn ≥ Ȳ (if such a subsequence does not exist, it
is sufficient to consider the same argument at y∗n = Ȳ +

√
2
γσ2 (1 + ε)c(λ)). This part

of the proof is divided in two.
(ii.a) There exists a subsequence nk such that

(42) lim
k→∞

|q(y∗,nk)|α+1
α λ

−1/α
nk

c(λnk)
= +∞.

In Step (ii.a) we prove that if limn→∞ c(λn)λ
− 2
α+3

n = +∞, then the solution q(·)
to (37) with initial condition q(ỹn) = 0 has a growth rate near y = Ȳ such that q(y∗,n)

is so large that the term |q(y∗,n)|α+1
α λ−1/α in the HJB equation (37) dominates the term

c(λ).
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If there is C1 > 0 independent of λ such that eventually q(y∗,n)2 ≥ C1c(λn)3, then
to conclude it is enough to note that

|q(y∗,n)|α+1
α λ

−1/α
n

c(λn)
≥ C

α+1
2α

1

(
c(λn)

λ
2

α+3
n

)α+3
2α

.

Thus, up to a subsequence, assume that q(y∗,n)2 < C1c(λn)3. With this assumption,

and also using the monotonicity of q(y), on the interval (Ȳ −
√

2
γσ2 (1− ε)c(λ), Ȳ ) it

follows that for some constant C2

σ2

2
y2(1− y)2q′(y) < (1− ε)c(λ)− c(λ) + 0 + C2c(λ)3 + 0.

Thus, there is C3 > 0 such that q′(y) < −C3c(λ) on (Ȳ −
√

2
γσ2 (1− ε)c(λ), Ȳ ) for

sufficiently small λ. Thus,

q(y∗,n) = −
∫ ỹn

y∗,n

q′(y)dy ≥ −
∫ Ȳ

Ȳ−
√

2
γσ2

(1−ε)c(λ)

q′(y)dy

>

∫ Ȳ

Ȳ−
√

2
γσ2

(1−ε)c(λ)

C3c(λ)dy = C3

√
2

γσ2
(1− ε)c(λ)3/2.

This leads to the inequality

|q(y∗)|α+1
α λ−1/α

c(λ)
≥ C

α+1
α

3

(
2

γσ2
(1− ε)

)α+1
2α

(
c(λn)

λ
2

α+3
n

)α+3
2α

,

which proves the claim.
(ii.b) For some δ ∈ (0, Ȳ ) and sufficiently small λ

q(δ) > λ
1

α+1 (α+ 1)
1

α+1

(
α+ 1

α

(
µ2

2γσ2
− c(λ)

)) α
α+1

= q(0).

This inequality contradicts Theorem 3, thereby concluding the proof.
In Step (ii.b) we prove that if in the HJB equation (37) the term |q(y)|α+1

α λ−1/α

dominates the term c(λ) at y = y∗,n, then q(·) is larger than h(0+) near 0.

Fix a large constant K > 0. As limn→∞
|q(y∗,n)|

α+1
α λ−1/α

n

c(λn) = +∞, for sufficiently
small λ,

|q(y∗,n)|
α+1
α λ−1/α > Kεc(λn) = K

(
γσ2

2
(y∗,n − Ȳ )2 − c(λn)

)
.

Define y1,n := inf{y ∈ (0, Ȳ ) : −σ
2

2 y
2(1−y)2(1−γ)q2(y) > γσ2

2 (y−Ȳ )2−c(λn)} >
0, with the usual convention inf ∅ = +∞. Assume that eventually y1,n < y∗,n. Then
there exist D1, D2, D3 > 0 such that for sufficiently small λn

q(y1,n) > q(y∗,n) > D1(c(λn)λ1/α
n )

α
α+1 > D2λ

3
α+3
n ,
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where the third inequality follows from the assumption limn→∞
c(λn)

λ
2

α+3
n

= +∞ and the

second inequality from (42). In particular,

|q(y1,n)|
α+1
α λ−1/α

n = q(y1,n)2|q(y1,n)|
1−α
α λ−1/α

n > D3q(y1,n)2λ
− 4
α+3

n

> −Kσ2

2
y2

1,n(1− y1,n)2(1− γ)q2(y1,n) = K

(
γσ2

2
(y1,n − Ȳ )2 − c(λn)

)
.

If eventually y1,n < y∗,n, let y2,n be equal to y1,n. Otherwise, up to a subsequence,
y∗,n < y1,n and then define y2,n := y∗,n. In both cases,

|q(y2,n)|
α+1
α λ−1/α > K

(
γσ2

2
(y2,n − Ȳ )2 − c(λn)

)
and y2,n ≤ y1,n. Choose δ such that δ < y2,n for every n. Thus, on the interval
(δ, y2,n),

(43)
σ2

2

1

16
q′(y) ≤ σ2

2
y2(1− y)2q′(y) <

γσ2

2
(y − Ȳ )2 − c(λn) + 0− σ2

2
y2(1− y)2(1− γ)q2 − α(α+ 1)−

α+1
α |q|

α+1
α λ−1/α

n

≤ 2[
γσ2

2
(y − Ȳ )2 − c(λn)]− α(α+ 1)−

α+1
α |q|

α+1
α λ−1/α

n ,

where the first inequality follows from y2(1 − y)2 ≤ 1
16 , the second from y < Ȳ and

q > 0, the third from y2,n ≤ y1,n and the definition of y1,n. Define q̃(y) on (δ, y2,n) as
the solution of the Cauchy problem

q̃′(y) = f̃(y, q̃(y))

: =
32

σ2

(
2

[
γσ2

2
(y − Ȳ )2 − c(λ)

]
− α(α+ 1)−

α+1
α |q̃|

α+1
α λ−1/α

)
,

q̃(y2,n) = q(y2,n).

The inequality (43) implies that q′(y) < f̃(y, q(y)). Thus, q̃(y) < q(y) on (δ, y2,n).
Define the function k(y) by

|k(y)|
α+1
α λ−1/α = K

[
γσ2

2
(y − Ȳ )2 − c(λ)

]
.

To conclude the proof it remains to show that k(y) is a subsolution for q̃(y) on (δ, y2,n),
which implies that k(δ) < q(δ). In particular, if K is chosen sufficiently large, the
contradiction follows.

Thus, it remains to show that f̃(y, k(y)) < k′(y) on (δ, y2,n), i.e.

2

σ2δ2(1− δ)2

(
2− α(α+ 1)−

α+1
α K

)[γσ2

2
(y − Ȳ )2 − c(λ)

]
<

λ
1

α+1K
α
α+1

α

α+ 1

[
γσ2

2
(y − Ȳ )2 − c(λ)

]− 1
α+1

γσ2(y − Ȳ ).

This is equivalent to

2(α+ 1)

αγσ4δ2(1− δ)2

1

K
α
α+1

(
α(α+ 1)−

α+1
α K − 2

)
> λ

1
α+1 (Ȳ−y)

[
γσ2

2
(y − Ȳ )2 − c(λ)

]−α+2
α+1

.
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In other words, there are E1, E2 > 0 independent of λ and K such that

(44) E1
(E2K − 2)

α+1
α+2

K
α
α+2

> λ
1

α+2 (Ȳ − y)
α+1
α+2

[
γσ2

2
(y − Ȳ )2 − c(λ)

]−1

=: r(y).

A simple calculation shows that r′(y) > 0 on (0, y∗,n). Thus, r(y) ≤ r(y∗,n) on
(δ, y2,n), where

r(y∗,n) = λ
1

α+2

(
2

γσ2
(1 + ε)c(λ)

) α+1
2(α+2)

(εc(λ))−1 = E3

(
λ

2
α+3

c(λ)

) α+3
2(α+2)

↓ 0,

with E3 > 0. If K is large enough, the left-hand side in (44) is well defined and strictly
positive. As r(y) converges to 0 on (δ, y2,n) uniformly in λ, for sufficiently small λ
inequality (44) holds true. This concludes the proof. �

Lemma 20. There exists a unique solution to

(45) y′(x) = f(x, y(x)) := −ax2 + b+ c|y(x)|p,
with a, b, c > 0 and p ≥ 2, such that

(46) lim
x→∞

y(x)

(acx
2)1/p

= 1.

Proof. The function g(x) := (acx
2 − b

c )
1/p, defined on (

√
b/a,+∞), is such that

f(x, g(x)) = 0. For x̄ ∈ (
√
b/a,+∞) consider the solution y(x; x̄, g(x̄)) with initial

condition (x̄, g(x̄)) and define y∗(x) := sup{y(x; x̄, g(x̄)) : x̄ ∈ (
√
b/a,+∞)}. The

solution y∗ satisfies (46) by analogous arguments as in Lemma 7.6 in Liu et al. (2017).
To show uniqueness, define for any d > 0 the functionw(x; d) = y∗(x)+dx2/p, and

observe that it is a subsolution to (45) for x ≥ x̄ and x̄ large enough, i.e., w′(x; d) ≤
f(x,w(x; d)). As y∗(x) solves (45), this inequality is equivalent to

2d

p

x
2−p
p

y∗(x)
≤ c

∣∣∣∣1 +
dx2/p

y∗(x)

∣∣∣∣p − c.
As x → +∞, the left-hand side converges to 0 and the right-hand to
c
(∣∣1 + d

a1/p

∣∣p − 1
)
> 0. Thus, if x̄ is chosen sufficiently large, the inequality holds

true and w(x; d) is a subsolution for any d > 0. In particular, let y2(x) > y∗(x)
be a solution to (45) and choose d∗ such that y2(x̄) = y∗(x̄) + d∗x̄

2/p. Then
y2(x) ≥ w(x; d∗) = y∗(x) + d∗x

2/p for x ≥ x̄ and y2(x) cannot satisfy (46). As
any solution smaller than y∗(x) is also – for large x – smaller than g(x) and thus even-
tually decreasing, thereby proving uniqueness. �

Remark 21. The function y(x) in Lemma 20 is such that

y(x) = inf{y∗(x) : y∗(·) solves (45), y∗(·) ≥ g(·) on ((b/a)1/2,∞)}

for x > (b/a)1/2, where g(x) := (acx
2 − b

c )
1/p.

Proof. Define the two functions y1, y2 as y1(x) := sup{y(x; x̄, g(x̄)) :

x̄ ∈ (
√
b/a,+∞)} and y2(x) = inf{ỹ(x) : ỹ(·) solves (45), ỹ(·) ≥

g(·) on ((b/a)1/2,∞)}. Because g(x) is increasing, y(x; x̄, g(x̄)) < g(x) on (x̄, x̄+ ε)
for some ε. Assume that y1(x) > y2(x). Then there exist x̄ and ỹ(x) such that
y1(x) > y(x; x̄, g(x̄)) > ỹ(x) > y2(x), leading to a contradiction. Now, assume
that y2(x) > y1(x). It suffices to show that y1(·) > g(·) to obtain a contradiction from
the minimality of y2(·). Hence, assume by contradiction that there exists x̃ such that
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y1(x̃) = g(x̃). Then y(x̃ + ε; x̃ + ε, g(x̃ + ε)) = g(x̃ + ε) > y1(x̃ + ε) for some ε,
contradicting the maximality of y1(·). �

The heuristic argument that leads to the approximation (26) suggests that the normal-
ized value function sα(z) should grow as (α+ 1)α−

α
α+1 |z|

2α
α+1 sgn(−z) for z → ±∞.

Indeed

Lemma 22. There exist a unique constant cα > 0 and a unique solution sα(z) to the
corresponding equation (15) such that

lim
z→−∞

sα(z)

|z|
2α
α+1

= (α+ 1)α−
α
α+1 and lim

z→+∞

sα(z)

|z|
2α
α+1

= −(α+ 1)α−
α
α+1 .

Proof. From Lemma 20, it follows that for any parameter c in equation (15) there are
unique solutions sl(z, c) and sr(z, c) such that

lim
z→−∞

sl(z, c)

|z|
2α
α+1

= (α+ 1)α−
α
α+1 and lim

z→+∞

sr(z, c)

|z|
2α
α+1

= −(α+ 1)α−
α
α+1 .

Note that if s∗(z) solves (15), also the function −s∗(−z) is a solution. In particu-
lar, from the uniqueness result in Lemma 20, sr(z, c) = −sl(−z, c). For c ↓ 0,
eventually sl(0, c) > sr(0, c), and thus sl(z, c) > sr(z, c). In addition, for any z,
limc→+∞ sl(z, c) = −∞ and limc→+∞ sr(z, c) = +∞. Thus, for c ↑ +∞ eventu-
ally slα(z, c) < srα(z, c). It follows that slα(z, cα) = srα(z, cα) for some constant cα
. Because ∂sl

∂c (z, c) < 0, such a constant is unique. From slα(z, cα) = srα(z, cα) =

−slα(−z, cα), it follows that slα(0, cα) = 0. �

Proof of Theorem 5. The substitutions y = Ȳ + λ
1

α+3 z and rλ(z) = qλ(y)λ−
3

α+3 in
equation (11) yield

− γσ2

2
z2λ

2
α+3 + c(λ) +

σ2

2
y2(1− y)2(r′λλ

2
α+3 + (1− γ)r2

λλ
6

α+3 )+(47)

− γσ2y(1− y)zλ
4

α+3 rλ + α(α+ 1)−
α+1
α

|rλ|
α+1
α

(1− yrλλ
3

α+3 )1/α
λ

2
α+3 = 0.

Divide the equation by λ
2

α+3 and consider a sequence λn such that c(λn)λ
− 2
α+3

n has
limit c̄. By taking the limit in equation (47), it follows that r0(z) := limλn→0 rλn(z)
satisfies

−γσ
2

2
z2 + c̄+

σ2

2
Ȳ 2(1− Ȳ )2r′0 + α(α+ 1)−

α+1
α |r0|

α+1
α = 0.

The additional substitution sα(w) = r0(Aαw)
Bα

yields

−w2 + c∗ + s′ + α(α+ 1)−
α+1
α |s|

α+1
α = 0,(48)

where c∗ = c̄

[(
σ2

2

)3

γȲ 4(1− Ȳ )4

]−α+1
α+3

.

Let h(y) be defined as in Lemma 12 and let Dh be its domain. On (−∞,−c1/2∗ ) ∪
(c

1/2
∗ ,+∞) the function λ

− 3
α+3

n B−1
α h(Ȳ + λ

1
α+3
n Aαw) converges to g(w) :=(

w2 − c∗
) α
α+1 (α+ 1)α−

α
α+1 sgn(−w) for λn ↓ 0. In view of Remark 15, the solution
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q(y) to (11) satisfies (38)-(39), and thus sα(w) satisfies

sα(w) = inf{s̃(w) : s̃(·) solves (48), s̃(·) ≥ g(·) on (−∞,−c1/2∗ )} w < −c1/2∗

sα(w) = sup{s̃(w) : s̃(·) solves (48), s̃(·) ≤ g(·) on (c
1/2
∗ ,∞)} w > c

1/2
∗ .

By Remark 21, these conditions are equivalent to

lim
w→−∞

sα(w)

|w|
2α
α+1

= (α+ 1)α−
α
α+1 and lim

w→+∞

sα(w)

|w|
2α
α+1

= −(α+ 1)α−
α
α+1 .

Finally, Lemma 22 proves that there exists a unique constant c∗ = cα and a unique so-
lution sα(w) such that both these conditions are satisfied. In particular, this means that
the constant c∗ does not depend on the sequence λn chosen initially, that rλ(z) con-

verges to Bαsα(z/Aα) and that limλ→0 c(λ)λ−
2

α+3 = cα

[(
σ2

2

)3

γȲ 4(1− Ȳ )4

]α+1
α+3

,

proving part (i) and (iii) of the Theorem.
The asymptotics for û in part (ii) of the Theorem follow directly from the relation

between û(y) and q(y) found in Theorem 3. The drift and diffusion coefficients of Zλs
converge pointwise to vα(z) and Ȳ (1 − Ȳ )σ, hence part (iv) follows from Theorem
11.1.4 in Stroock and Varadhan (1979). �

A.3. Calculations for α = 1 and α ↓ 0.

Proof of Lemma 8. It suffices to check that s1(z) = −2z and c1 = 2 solve equation
(15) with the growth conditions in Lemma 22. �

Lemma 23. Let gα(z, s) = z2 − cα − α(α + 1)−
α+1
α |s|α+1

α and define hα(z) :=(
z2 − cα

) α
α+1 (α+ 1)α−

α
α+1 sgn(−z) (i.e. gα(z, hα(z)) = 0). Then

lim
α→0

gα(z, s) =

{
z2 − c0, |s| ≤ 1,

−∞, |s| > 1,
and lim

α→0
hα(z) =

{
1, |z| ≤ −c1/20 ,

−1, |z| ≥ c1/20 .

Proof. The limits follow directly from the expressions of gα and hα. �

Proof of Lemma 9. For all α, sα(0) = 0. Thus, for α ↓ 0, sα(z) converges to z3/3−cz,
for some c > 0 and for z such that z3/3−cz ≤ 1. As limα→0 hα(z) = 1 for z ≤ −c1/2,
and because sα(z) = inf{s∗(z) : s∗(·) solves (15), s∗(·) ≥ hα(·) on (−∞,−c1/2)},
the limit has to satisfy limα sα(−c1/2α ) = 1. From the relation −c3/20 /3− c0(−c1/20 ) =

1 it follows that c0 =
(

3
2

)2/3
. �

Proof of Lemma 10. Recall that vα(z) = −
∣∣∣Bαsα(z/Aα)

α+1

∣∣∣1/α sgn(z). As limα→0(α +

1)/Bα = 1, limα→0 vα(z) = 0 if |s0(z/A0)| < 1. For each α and z ≤ −Aα
√
cα, note

that

vα(z) =

∣∣∣∣Bαsα(z/Aα)

α+ 1

∣∣∣∣1/α ≥ ∣∣∣∣Bαhα(z/Aα)

α+ 1

∣∣∣∣1/α =
B

1/α
α

α
1

α+1

|z2/A2
α − cα|

1
α+1 ↑ +∞.

Similarly, if z ≥ Aα
√
cα, then limα→0 vα(z) = −∞. On the other hand

limα→0 vα(z) = +∞ if |s0(z/A0)| > 1. A short calculation shows that {|s0(z/A0)| <
1} = {|z| < Aα

√
cα} is equivalent to

z ∈

(
−
(

3

2γ
Ȳ 2(1− Ȳ )2

)1/3

,

(
3

2γ
Ȳ 2(1− Ȳ )2

)1/3
)
.

�
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A.4. Proof of Theorem 11. The proofs proceed through several lemmas. Lemma 24
shows that under an appropriate trading strategy the process Yt lives in the interval
[0, 1]. Lemma 25 provides the crucial tight bound for the investor’s utility. Theorem 11
uses this bound, together with the boundedness of Yt, to prove long-horizon optimality.

Lemma 24. Let u(y, ξ) be a bounded continuous function on [0, 1] such that u(0, ξ) >
0 and u(1, ξ) < 0 for all ξ ∈ E. Under the assumptions of Theorem 11, for λ small
enough the process with dynamics

dYt = Yt(1− Yt)(µ− Ytσ2)dt+ (u(Yt, ξt) + λK(ξt)Yt|u(Yt, ξt)|α+1)dt

+ Yt(1− Yt)σdWt

Y0 = y ∈ (0, 1)

takes values in [0, 1] almost surely for all t.

Proof. The claim follows from results on the stochastic invariance of diffusions (Fil-
ipovic and Mayerhofer, 2009, Lemma B.1), which require in the present model that the
drift of Yt is positive at y = 0 and negative at y = 1. In both cases, the drift reduces to
u(Yt, ξt) + λK(ξt)Yt|u(Yt, ξt)|α+1, which has the same sign of u(Yt, ξt) for λ small
enough, as 0 < mK < K(ξt) < MK . �

Lemma 25. Let β̂ and Q(y, ξ) be as in Theorem 11. For any admissible strategy there
exists a probability P̂ , equivalent to P , such that its terminal wealth XT satisfies

(49) E[X1−γ
T ]

1
1−γ ≤ X0e

β̂T+Q(y,ξ)EP̂ [e−(1−γ)Q(YT ,ξT )]
1

1−γ

and equality holds for the optimal strategy û in (30).

Proof. Define

log
dP̂

dP
:= (1− γ)

∫ T

0

Ysσ(1 +Qy(1− Ys))dWs + (1− γ)

∫ T

0

QξσξdBs

− (1− γ)2

2

∫ T

0

(σ2Y 2
s (1+Qy(1−Ys))2 +Q2

ξσ
2
ξ+2ρσσξYs(1+Qy(1−Ys))Qξ)ds.

Because ut is admissible, Yt ∈ [0, 1] for all t (see Footnote 12). The process dP̂dP satisfies
Novikov’s condition because Yt ∈ [0, 1] and in view of the boundedness assumptions
onQ(y, ξ) and its derivatives. Hence, P̂ is an equivalent probability measure. It suffices
to check that

X1−γ
T ≤ X1−γ

0 e(1−γ)(β̂T+Q(y,ξ))e−(1−γ)Q(YT ,ξT ) dP̂

dP

for γ < 1, and the reverse inequality for γ > 1. Thus, both cases follow from the
inequality

(50) logXT − logX0 −
1

1− γ
log

dP̂

dP
≤ β̂T −Q(YT , ξT ) +Q(y, ξ) .

Recall now the self-financing condition

dXt

Xt
= Yt(µdt+ σdWt)− λK(ξt)|ut|α+1dt,

dYt = (Yt(1− Yt)(µ− Ytσ2) + ut + λK(ξt)Yt|ut|α+1)dt+ Yt(1− Yt)σdWt.



NONLINEAR PRICE IMPACT AND PORTFOLIO CHOICE 29

Itô’s formula implies that∫ T

0

(Qy(Yt, ξt)(Yt(1− Yt)(µ− Ytσ2) + ut + λK(ξt)Yt|ut|α+1)(51)

+
1

2
Qyy(Yt, ξt)Y

2
t (1− Yt)2σ2)dt+

∫ T

0

Qy(Yt, ξt)Yt(1− Yt)σdWt

+

∫ T

0

(Qξ(Yt, ξt)µξ(ξt) +
1

2
Qξξ(Yt, ξt)σ

2
ξ (ξt))dt+

∫ T

0

Qξ(Yt, ξt)σξ(ξt)dBt

+

∫ T

0

Qyξ(Yt, ξt)Yt(1− Yt)σρσξ(ξt)dt = Q(YT , ξT )−Q(y, ξ)

and

(52) logXT − logX0 =

∫ T

0

(
Ytµ− λK(ξt)|ut|α+1 − Y 2

t σ
2

2

)
dt+

∫ T

0

YtσdWt.

Replacing (51) and (52) in (50) yields∫ T

0

(
Ytµ− λK(ξt)|ut|α+1 − Y 2

t σ
2

2

)
dt−

∫ T

0

YtσQy(1−Yt)dWt−
∫ T

0

QξσξdBt

+
1− γ

2

∫ T

0

(σ2Y 2
t (1 +Qy(1− Yt))2 +Q2

ξσ
2
ξ + 2ρσσξYt(1 +Qy(1− Yt))Qξ)dt

≤
∫ T

0

(β̂ −Qy(Yt(1− Yt)(µ− Ytσ2) + ut + λK(ξt)Yt|ut|α+1)

− 1

2
QyyY

2
t (1− Yt)2σ2 −Qξµξ(ξt)−

1

2
Qξξσ

2
ξ (ξt)−QyξYt(1− Yt)σρσξ(ξt))dt

−
∫ T

0

QyYt(1− Yt)σdWt −
∫ T

0

QξσξdBt.

As the stochastic integrals on both sides are equal, it remains to prove that, for all u ∈ R,

yµ− λK(ξ)|u|α+1 − y2σ2

2
+

1− γ
2

(σ2y2(1 +Qy(1− y))2 +Q2
ξσ

2
ξ

+ 2ρσσξy(1 +Qy(1− y))Qξ) ≤ β̂ −Qy(y(1− y)(µ− yσ2) + u+ λK(ξ)y|u|α+1)

− σ2

2
Qyyy

2(1− y)2 −Qξµξ −
σ2
ξ

2
Qξξ −Qyξy(1− y)σρσξ.

Rearranging the terms, this inequality is equivalent to

σ2
ξ

2
((1− γ)Q2

ξ +Qξξ) + σρσξy(1− y)(Qyξ + (1− γ)QyQξ) + σρσξ(1− γ)yQξ

+
σ2

2
y2(1− y)2((1− γ)Q2

y +Qyy)− β̂ + µy − γ

2
y2σ2 + µξQξ

+ y(1− y)(µ− γσ2y)Qy + λK(ξ)|u|α+1(yQy − 1) +Qyu ≤ 0.

Under the condition yQy < 1 assumed in the Theorem, the maximum of the terms in

the last line is α(α+1)−
α+1
α

|Qy|
α+1
α

(1−yQy)1/α(K(ξ)λ)1/α
, and therefore the inequality follows

from the HJB equation (29). Furthermore, the inequality becomes an equality for the
optimal control û, obtained by maximizing the above terms. �

Proof of Theorem 11. Let β̂ and Q be the solution to (29). Because the function

û(y, ξ) =
∣∣∣ Qy(y,ξ)

(α+1)λK(ξ)(1−yQy(y,ξ))

∣∣∣1/α sgn(Qy(y, ξ)) has, by definition, the same sign
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as Qy(y, ξ), which is positive in 0 and negative in 1 by assumption, Lemma 24 implies
that Yt ∈ [0, 1] for all t > 0. Thus, as Q is bounded in [0, 1] × E, it follows that
limT→∞

1
T logEP̂ [e−(1−γ)Q(YT ,ξT )]

1
1−γ = 0. This relation, combined with Lemma

25, yields

lim
T→∞

1

T
logE[X1−γ

T ]
1

1−γ ≤ β̂,

where equality holds for the strategy û. �

A.5. Proofs of Remaining Results.

Proof of Proposition 4. As St is constant for t ≥ T , wealth and risky weight follow the
dynamics

dXt

Xt
= −λ|u|α+1dt, dYt = (u+ λYt|u|α+1)dt

for t ≥ T . In other words,

XT+t = XT e
−λ|u|α+1t, YT+t =

1− eλ|u|α+1t

λ|u|α
+ YT e

λ|u|α+1t.

It follows that YT+L(u) = 0 and XT−XT+L(u)

XT
= λYT |u|α. �

Lemma 26. For λ∗ sufficiently small and any p ≥ 1, the absolute moment E|Zλs |p is
uniformly bounded in s and λ ≤ λ∗.

Proof. The processes Zλ have drift of the form λ
1

α+3uλ(Ȳ + λ
1

α+3 z) + g1(z), with
g1(z) bounded, and rλ(z) := λ−

3
α+3 qλ(Ȳ + λ

1
α+3 z) = C|z|

2α
α+1 sgn(−z) + g2(z),

with C > 0 and g2(z) bounded. Thus, from the definition of uλ(·), the dynamics of the
process Zλs is rewritten as

dZλs = (aλ(Zλs ) + bλ|Zλs |
2

α+1 sgn(−Zλs ))ds+ σλ(Zλs )dWs,

where aλ(·), bλ > 0 and σλ(·) are uniformly bounded in λ. Consider now the family
of processes Uλ with dynamics dUλs = (a∗λ(Uλs ) − bλUs)ds + σλ(Uλs )dWs, where
a∗λ(u) := aλ(u) + bλ(|u|

2
α+1 sgn(−u)) +u)1|u|≤1. Applying the comparison principle

to the squares of Zλ and Uλ, it follows thatE|Zλs |p ≤ E|Uλs |p. To prove thatE|Uλs |p is
uniformly bounded in s and λ for any p ≥ 1, note that the process Uλt solves Uλt e

bλt =

U0 +
∫ t

0
ebλsa∗λ(Uλs )ds+

∫ t
0
ebλtσλ(Uλs )dWs. Hence,

E|Uλt |pepbλt ≤ 3p|U0|p + 3pE

∣∣∣∣∫ t

0

ebλsa∗λ(Uλs )ds

∣∣∣∣p + 3pE

∣∣∣∣∫ t

0

ebλsσλ(Uλs )dWs

∣∣∣∣p
≤ C1 + 3pE

∫ t

0

epbλs
∣∣a∗λ(Uλs )

∣∣p ds+ 3pE

∣∣∣∣∫ t

0

e2bλs
∣∣σλ(Uλs )

∣∣2 ds∣∣∣∣p/2
≤ C1 + C2(epbλt − 1) + C3(e2bλt − 1)p/2,

where the second inequality follows from Jensen’s inequality and the Burkholder-
Davis-Gundy inequality. Thus, E|Uλt |p ≤ K uniformly in s and λ. �

Lemma 27. Let µλ be the invariant measure for the process Zλs and µα the invariant
measure for the process Z0

s . Then the family (µλ)λ>0 converges weakly to µα as λ ↓ 0.

Proof. Because Lemma 26 yields that E|Zλs |2 ≤ K uniformly in s and λ, the family
of transition probabilities (πλs )s≥0,λ>0 associated to the processes Zλ is tight. In par-
ticular, the family of invariant measures (µλ)λ>0 is tight. Tightness implies that there
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is a sequence of measures µλn (henceforth µn) that converges to a measure µα. It re-
mains to show that µα is the invariant measure for Z0, i.e. that for any bounded φ(z),∫
R Ptφ(x)µα(dx) =

∫
R φ(x)µα(dx), where Pt is the transition operator associated to

Z0. Note that

∣∣∣∣∫
R

(φ− Ptφ)µα(dx)

∣∣∣∣ ≤ ∣∣∣∣∫
R
φdµα −

∫
An

φdµn
∣∣∣∣+

∣∣∣∣∫
An

(φ− Pnt φ) dµn
∣∣∣∣

+

∣∣∣∣∫
An

(Pnt φ− Ptφ) dµn
∣∣∣∣+

∣∣∣∣∫
An

Ptφdµ
n −

∫
R
Ptφdµα

∣∣∣∣ ,

where An := [−Ȳ λ−
1

α+3
n , (1 − Ȳ )λ

− 1
α+3

n ]. The first and the last terms converge to 0
because µn converges weakly to µα. The second term is 0, because µn is invariant for
Pnt . It remains to show that the third term converges to 0. The family µn is tight, so for
each ε there is a set Aε such that µn(An \Aε) < ε for all n.

∣∣∣∣∫
An

(Pnt φ− Ptφ) dµn
∣∣∣∣ ≤ ∫

Aε

|Pnt φ− Ptφ| dµn +

∫
An\Aε

|Pnt φ− Ptφ| dµn

≤ sup
x∈Aε

|Pnt φ− Ptφ|+ 2||φ||∞ε.

As supx∈Aε |P
n
t φ− Ptφ| converges to 0, the thesis follows. �

Proof of Proposition 6. Recall that the stationary density of Z0
s equals

Gαexp{
∫ x

0
2b(s)
s2(s)ds}/s

2(x), where b(z) = vα(z), s(z) = Ȳ (1 − Ȳ )σ and Gα is
a normalizing constant to be found. For the following calculations, observe that
AαB

1/α
α

Ȳ 2(1−Ȳ )2σ2 = 1. That Gα = Mα
Ȳ 2(1−Ȳ )2σ2

Aα
, where Mα only depends on α, fol-

lows from

1 =

∫
R
µα(dx) =

K

Ȳ 2(1− Ȳ )2σ2

∫
R

exp

{∫ x

0

2vα(s)

Ȳ 2(1− Ȳ )2σ2
ds

}
dx

=
2K

Ȳ 2(1− Ȳ )2σ2

∫ ∞
0

exp

{
− 2AαB

1/α
α

Ȳ 2(1− Ȳ )2σ2(α+ 1)1/α

∫ x/Aα

0

|sα(s)|1/αds

}
dx

=
2AαK

Ȳ 2(1− Ȳ )2σ2

∫ ∞
0

exp

{
− 2

(α+ 1)1/α

∫ x

0

|sα(s)|1/αds
}
dx.
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In particular, Mα = 1
2

[∫∞
0

exp
{
− 2

(α+1)1/α

∫ x
0
|sα(s)|1/αds

}
dx
]−1

. From Lemma

27, µλ converges weakly to µα, therefore

lim
λ→0

lim
T→∞

λ
1

α+3

T

∫ T

0

|û(Y λt )|dt

= lim
λ→0

lim
T→∞

λ
2

α+3

T

∫ T/λ
2

α+3

0

λ
1

α+3

∣∣∣û(Ȳ + λ
1

α+3Zλ
λ

2
α+3 s

)∣∣∣ ds
= lim
λ→0

∫ (1−Ȳ )λ−1/(α+3)

−Ȳ λ−1/(α+3)

λ
1

α+3 |û(Ȳ + λ
1

α+3 z)|µλ(dz) =

∫
R
|vα(z)|µα(dz)

=

∫ ∞
0

−2
Mα

Aα
vα(z) exp

{
− 2

(α+ 1)1/α

∫ z/Aα

0

|sα(s)|1/αds

}
dz

=

∫ ∞
0

2
Mα

Aα

∣∣∣∣Bαsα(z/Aα)

(α+ 1)

∣∣∣∣1/α exp

{
− 2

(α+ 1)1/α

∫ z/Aα

0

|sα(s)|1/αds

}
dz

= B1/α
α

∫ ∞
0

2Mα

∣∣∣∣sα(x)

α+ 1

∣∣∣∣1/α exp

{
− 2

(α+ 1)1/α

∫ x

0

|sα(s)|1/αds
}
dx

= B1/α
α

[
Mα

(
1− exp

{
− 2

(α+ 1)1/α

∫ ∞
0

|sα(s)|1/αds
})]

.

Finally, B1/α
α = l

1
α+1
α =

((
σ2

2

)3

γȲ 4(1− Ȳ )4

) 1
α+3

and the term in square brackets

only depends on α . �

Lemma 28. The finite-dimensional distributions of the family of processes
(λ

1
α+3uλ(Zλ))λ≤λ∗ converge weakly to the finite-dimensional distributions of vα(Z0),

where vα(·) is defined in Theorem 5(ii) .

Proof. The proof is identical to the proof of Lemma B.6 in Guasoni and Weber (2017).
�

Proof of Proposition 7. Because λ
1

α+3uλ(Ȳ + λ
1

α+3 z) ∼ C|z|
2

α+1 sgn(−z) for large
z, Lemma 26 implies that λ

2
α+3E|uλ(Zλs )|2 is bounded uniformly in λ and s. Hence,

the family (λ
1

α+3uλ(Zλ))λ>0 is tight. It follows now from Lemma 28 that for λ ↓ 0

the processes λ
1

α+3uλ(Zλ) converge to V . The dynamics of Vt in terms of Z0
t follows

from Itô’s formula. Because vα(·) is invertible, the substitution Z0
t = v−1

α (Vt) yields
autonomous dynamics of Vt, with its drift equal to

b(v) = v′α(v−1
α (v))v +

1

2
v′′α(v−1

α (v))Ȳ 2(1− Ȳ )2σ2.

From the definition of vα(z) and the limit (16), it follows that vα(z) ∼
B

1
α
α A
− 2
α+1

α α−
1

α+1 |z|
2

α+1 , v′α(z) ∼ −2B
1
α
α A
− 2
α+1

α α−
1

α+1 (α+1)−1|z|
1−α
α+1 and v′′α(z) ∼

2B
1
α
α A
− 2
α+1

α α−
1

α+1 (α + 1)−2(1 − α)|z|−
2α
α+1 for z → −∞. Also, z ∼

−B−
α+1
2α

α Aαα
1
2 v

α+1
2 for v → ∞. Hence, for large v, the first term of the drift

b(v) is of order v
3−α
2 and the second term is of order v−α. Therefore, for large v,

b(v) ∼ v′α(v−1
α (v))v ∼ −2B

α+1
2α
α A−1

α α−
1
2 (α + 1)−1v

3−α
2 . The term a(v) in the dy-

namics for V is equal to (v′α(v−1
α (v)))2Ȳ 2(1 − Ȳ )2σ2. The same computations yield

a(v) ∼ 4B
α+1
α

α A−2
α α−1(α+ 1)−2Ȳ 2(1− Ȳ )2σ2v1−α for large v. �
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