
Finance Stoch (2021) 25:277–310
https://doi.org/10.1007/s00780-020-00439-y

High-frequency trading with fractional Brownian
motion

Paolo Guasoni1 · Yuliya Mishura2 ·
Miklós Rásonyi3

Received: 13 August 2019 / Accepted: 10 July 2020 / Published online: 8 October 2020
© The Author(s) 2020

Abstract In the high-frequency limit, conditionally expected increments of frac-
tional Brownian motion converge to a white noise, shedding their dependence on the
path history and the forecasting horizon and making dynamic optimisation problems
tractable. We find an explicit formula for locally mean–variance optimal strategies
and their performance for an asset price that follows fractional Brownian motion.
Without trading costs, risk-adjusted profits are linear in the trading horizon and rise
asymmetrically as the Hurst exponent departs from Brownian motion, remaining fi-
nite as the exponent reaches zero while diverging as it approaches one. Trading costs
penalise numerous portfolio updates from short-lived signals, leading to a finite trad-
ing frequency, which can be chosen so that the effect of trading costs is arbitrarily
small, depending on the required speed of convergence to the high-frequency limit.
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1 Introduction

First proposed as a model of price dynamics by Mandelbrot [14], fractional Brown-
ian motion (fBm) has since puzzled researchers and stirred controversy for its elusive
properties, which have confounded both empirical and theoretical work. Long-range
dependence in asset prices, the property that originally motivated the use of fBm
to describe price dynamics, remains undecided; see Greene and Fielitz [7], Fama and
French [6], Poterba and Summers [17], Lo [13], Jacobsen [12], Teverovsky et al. [22],
Willinger et al. [23], Baillie [1]. Arbitrage, which has plagued the adoption of fBm
in models of optimal investment (Rogers [19], Salopek [20], Dasgupta and Kallian-
pur [5], Cheridito [2]) disappears with frictions (Guasoni [8], Guasoni et al. [10],
Czichowsky and Schachermayer [4], Czichowsky et al. [3]), leading to finite expected
profits; see Guasoni et al. [9].

This paper finds locally mean–variance optimal trading strategies in fractional
Brownian motion and characterises their convergence and performance in the high-
frequency limit. Our analysis starts from a fixed trading frequency, for which optimal
strategies are directly proportional to the (conditionally) expected increment and in-
versely proportional to its variance. The central feature of fractional Brownian motion
is that unlike diffusion models, the conditionally expected increment is not propor-
tional to the length of the trading period, but to a power thereof – the Hurst exponent.
Because the increment’s standard deviation scales with the same power, the average
Sharpe ratio is insensitive to the length of the trading period.

The key insight (Theorem 2.3) is that the high-frequency limit of such a forecast
(the “latent drift” of fractional Brownian motion) is a white-noise process with a
variance depending on the Hurst exponent, but invariant to any scaling of the process
(which would equally scale both expected increments and their standard deviation).
This result in turn leads to a cascade of implications for optimal continuous trading
of fractional Brownian motion.

First, the optimal mean–variance performance from trading fractional Brownian
motion is proportional to the length of the whole trading horizon – as for Brownian
motion with drift – in spite of the different scaling of mean and variance on individual
periods. The reason is that the cumulative performance of high-frequency trading
fractional Brownian motion on a finite horizon is essentially equivalent to the average
performance of a discrete-time model with infinitely many periods and independent,
identically distributed Sharpe ratios. Both performances are deterministic because
randomness disappears through ergodicity.

Second, the resulting performance is asymmetric in the Hurst exponent (Fig. 1
and Theorem 2.2), remaining bounded as the process approaches a white noise (near
H = 0), but diverging as it approaches a near-straight line with random drift (near
H = 1). This result is significant because it does not stem from the autocovariance
properties of the strategies’ expected returns; indeed, for any Hurst exponent, the in-
stantaneous forecast is a white noise. Instead, the result reflects the magnitude of the
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Fig. 1 Profits per unit of risk
and time (vertical), i.e., the
expression in (2.1) divided by
T/γ , against Hurst exponent
(horizontal)

variance of the white-noise forecast that is extracted from the paths of fBm for dif-
ferent values of H : for H near zero, the weights of the white-noise forecast are small
and highly concentrated on recent increments, which results in a moderate variance.
By contrast, for H near one, the forecast’s weights are large and reach far into the
path’s past history, leading to a diverging variance.

Third, and contrary to the intuition from previous results, including our own, we
find that such performance is immune to small frictions – such as proportional trans-
action costs or immediate nonlinear price impact (Theorem 3.1 and Corollary 3.2).
Specifically, while frictions detract from performance, their effect vanishes arbitrar-
ily quickly by slowly increasing the trading frequency as trading costs decrease, so
that their asymptotic impact vanishes at any required rate. Similarly, holding trading
costs constant, their effect also vanishes by increasing the horizon while appropriately
calibrating the trading frequency.

Fourth, we observe that approximations of the latent drift of fractional Brown-
ian motion converge weakly, but not in norm. This observation highlights a quali-
tative difference between the familiar drifts of diffusions and their partial analogies
for fractional processes. Not only are diffusive drifts of the order of infinitesimal
time intervals (informally, dt) while fractional drifts are a power thereof (informally,
(dt)H ); in addition, diffusive drifts can be understood as close approximations of
conditionally expected increments over any sufficiently small interval because such
approximations converge (in norm) as random variables. By contrast, fractional drifts
are critically dependent on the specific interval: as the interval length declines to zero,
the conditionally expected returns converge in law, but not as random variables in any
reasonable sense.

Finally, it is worthwhile comparing the findings in this paper to the recent results
in Guasoni et al. [9], as both articles study optimal trading strategies for fractional
Brownian motion, though in very different settings. The main difference lies in the
objective functions considered – here a local mean–variance criterion on a finite in-
terval, while in [9] a risk-neutral target with a long horizon. In particular, the presence
of a nonlinear friction is crucial to make the problem in [9] well posed, as it would
otherwise lead to unbounded expected profits. In contrast, the present local mean–
variance criterion is well posed even without frictions as the instantaneous Sharpe
ratio remains bounded for any H ∈ (0,1), although arbitrage is feasible on any inter-
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val because arbitrage profits remain dispersed. Both [9] and the present paper lead to
finite maximal Sharpe ratios that are asymmetric in H , but their skews are reversed
and arise for different reasons: while the asymptotically optimal strategies in [9] have
higher Sharpe ratios near zero than near one, they are not necessarily optimal as the
strategies maximise a risk-neutral objective, not the Sharpe ratio. By contrast, the
Sharpe ratios obtained here are indeed optimal as they maximise the local mean–
variance criterion over any finite interval by ergodicity.

The rest of the paper is organised as follows. Section 2 describes the model and the
main result without frictions, discussing their significance and implications. Section 3
considers frictions and shows how their impact can be mitigated by a judicious choice
of the trading frequency. Section 4 concludes, and all proofs are in the Appendix.

2 Main results

An investor trades a safe and a risky asset. The safe rate is assumed zero to simplify
notation, while the price of the risky asset is a multiple of fractional Brownian motion.

Definition 2.1 Fractional Brownian motion (fBm) with Hurst index H ∈ (0,1) is
a Gaussian process BH = (BH

t )t≥0 defined on a probability space (�,F ,P ), with
continuous trajectories such that E[BH

t BH
s ] = 1

2 (t2H + s2H − |t − s|2H ), t, s ≥ 0,
and E[BH

t ] = 0, t ≥ 0.

The case H = 1/2 corresponds to usual Brownian motion, henceforth excluded.
Thus H ∈ (0,1) \ {1/2} unless stated otherwise. Consider a trading horizon T > 0
and a frequency n ≥ 1, which represents the number of trading periods in the interval
[0, T ]. The set �n of strategies consists of sequences πs , s ∈ {T k/n : 0 ≤ k ≤ n−1},
of random variables such that πs is Fs -measurable for all such s, where (Fs)s≥0 is
the augmented natural filtration of BH .

An investor who holds at the beginning of each interval [T k/n,T (k + 1)/n]
a number of shares equal to πT k/n attains the mean–variance performance

MV(π, k,n,S) := ET k/n[πT k/n(ST (k+1)/n − ST k/n)]
− γ

2
VarT k/n[πT k/n(ST (k+1)/n − ST k/n)],

where Et [X] and Vart [X] := Et [X2] − (Et [X])2 respectively denote the conditional
expectation and conditional variance of a random variable X with respect to Ft , while
St = σBH

t denotes the risky asset price at time t . The parameter γ > 0 represents the
investor’s aversion to risk (as measured by variance).

Assuming time-additive preferences, the overall performance in the interval [0, T ]
of a trading strategy is defined as the sum of the per-period performances, weighing
each period by its length T/n, i.e.,

Rγ (π,n,S) := T

n

n−1∑

k=0

MV(π, k,n,S) =
∫ T

0
MV(π, �tn�, n, S)dt.
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Thus the high-frequency objective for fractional Brownian motion is

V (H,γ ) := lim sup
n→∞

sup
π∈�n

E[Rγ (π,n,σBH )]

and represents the maximal performance of a continuous-time strategy that updates
the portfolio at arbitrary frequency on the interval [0, T ].

With this notation, the main result of this paper is

Theorem 2.2 For each H ∈ (0,1),

V (H,γ ) = T

γ

(
�(H + 1/2)�(2 − 2H)

2�(3/2 − H)
− 1

2

)
, (2.1)

and the limit superior in the definition of V (H,γ ) is in fact a limit.

Before discussing the details of this result, it is useful to compare it to the familiar
benchmark of Brownian motion with drift, i.e.,

St = μt + σWt,

for some Brownian motion W and μ ∈ R, σ > 0. A simple calculation then shows that

sup
π∈�n

E[Rγ (π,n,S)] = E

[
Rγ

(
μ

γσ 2
, n, S

)]
= μ2

2γ σ 2
T . (2.2)

In other words, both the optimal strategy and its performance do not depend on n,
are inversely proportional to the squared volatility σ 2 and risk aversion γ , and are
respectively linear and quadratic in the drift. In addition, performance is linear in the
investment horizon. The linear dependence on the drift and the inverse dependence
on the volatility is at the heart of the risk–return tradeoff that arises in random-walk
models: as returns are serially independent, their randomness is purely a source of
risk, and its reduction is unambiguously beneficial.

The fractional high-frequency performance in (2.1) contains surprising features
both in its departures and in its analogies with the usual mean–variance performance
(2.2). In contrast to (2.2), the performance in (2.1) is independent of volatility. (In
fact, the result is also independent of an additional drift, as observed in Remark A.11.
Intuitively, the reason is that for a short time interval, the conditionally expected in-
crement of fBm is of order (dt)H , which makes an ordinary drift of order dt negligi-
ble in the mean–variance optimal strategy and its performance.) As shown below, the
optimal strategy inversely depends on variance, but this dependence is lost in perfor-
mance because the expected return directly depends on variance, thereby offsetting
its effect.

In analogy to (2.2), the performance in (2.1) is linear in the investment horizon.
Upon reflection, also such an analogy is surprising because the linearity in the hori-
zon of the usual mean–variance performance in (2.2) stems from the independence of
increments of Brownian motion and the constant drift. Instead, the dependence in in-
crements of fractional Brownian motion is substantial and indeed crucial to generate
positive returns.
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The dependence on the Hurst exponent H , displayed in Fig. 1, is similarly puz-
zling in view of its asymmetry. At one extreme, as H approaches zero and incre-
ments increasingly resemble white noise (Mishura [15, Lemma 4.1]), performance
converges to a finite limit, i.e.,

V (H,γ ) = T

γ

(
�(1/2)�(2)

2�(3/2)
− 1

2

)
+ O(H) = T

2γ
+ O(H). (2.3)

(The last equality follows from the identity �( 3
2 ) = 1

2�( 1
2 ).) As H approaches 1/2,

performance flattens around zero as the process mimics an ordinary Brownian mo-
tion. This expansion exploits identities involving the derivatives of the Gamma func-
tion (cf. Sun and Qin [21]), namely

V (H,γ ) = π2

6
(H − 1/2)2 T

γ
+ O

(
(H − 1/2)3).

In particular, this identity confirms the intuition from Fig. 1 that performance reaches
its unique minimum of zero in the martingale case of H = 1/2, while slowly increas-
ing in each direction. At the other extreme, as H approaches one and the process
resembles a straight line with random slope, performance diverges, i.e.,

V (H,γ ) =
(

1

8(1 − H)
+ −3 + log 4

4

)
T

γ
+ O(1 − H). (2.4)

To obtain the term 1/(8(1 − H)), recall that �(x) ∼ 1/x for x near zero. The term
(−3 + log 4)/4 follows from more complex higher-order asymptotics. Key to under-
standing these features is the prediction mechanism at the heart of the problem. As
our mean–variance objective is time-additive, the optimal trading strategies maximise
performance in the next period. Because for a square-integrable random variable X,
the functional ϕ 
→ E[ϕX] − γ

2 Var[ϕX] attains its maximum E2[X]/(2γ Var[X]) at
φ∗ = E[X]/(γ Var[X]), the optimal strategy π(n) ∈ �n is

πT k/n(n) := ET k/n[BH
T (k+1)/n − BH

T k/n]
γ VarT k/n[BH

T (k+1)/n − BH
T k/n]

, 0 ≤ k ≤ n − 1. (2.5)

To investigate the high-frequency limit, it is convenient to extend these strategies by
right-continuity to the entire interval [0, T ], i.e., setting

πt (n) := πT k/n(n), t ∈ [T k/n,T (k + 1)/n),0 ≤ k < n.

With this notation, the next theorem identifies the limit of such strategies, which is
interpreted as the asymptotically optimal strategy in the high-frequency regime.

Theorem 2.3 The sequence (((T /n)−H πt (n))t∈[0,T ])n∈N consists of Gaussian pro-
cesses that, as n increases, converge in finite-dimensional distributions to a Gaussian
process (Bt )t∈[0,T ] such that

1) B0 = 0 a.s.

2) E[Bt ] = 0, t ∈ (0, T ].
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Fig. 2 Autocorrelation (vertical
axis) of the strategies πT k/n(n)

(equivalently, of the expected
increments) against time lag
(horizontal) as the frequency n

increases from 100 (top) to 200,
500 and 1000 (bottom). The
autocorrelation converges to the
white-noise limit of one at lag
zero and zero elsewhere. Each
plotted curve is the average of
1000 sample autocorrelograms
with H = 0.6

3) E[B2
t ] = 1 − �(3/2−H)

�(H+1/2)�(2−2H)
, t ∈ (0, T ].

4) E[BtBs] = 0 for t �= s, s, t ∈ [0, T ].

Proof Follows from Proposition A.5, Lemma A.7 and Theorem A.8 below. �

This result has a striking message: Up to a scaling factor, the optimal strategy –
hence the expected return over the next period – is essentially a white noise (the
exception is t = 0, for which the process is conventionally pinned at zero). In other
words, regardless of the Hurst exponent H and regardless of the autocorrelation of in-
crements in fractional Brownian motion, the forecasts of short-term increments (i.e.,
the trading signals) are virtually uncorrelated from one instant to the next. Figure 2
illustrates the convergence result in the theorem by plotting at increasing frequencies
the autocorrelation of πT k/n(n), which converges to the autocorrelation of a white
noise.

The Hurst exponent controls the scale of the strategy: Denoting by 
 the length of
each trading period, price increments have conditional expectation of order 
H and
conditional variance of order 
2H , which implies trading positions of order 
−H (cf.
Proposition A.5 and Theorem A.8). This feature is in contrast to the Brownian bench-
mark, in which both the expected return μ
 and its variance σ 2
 are of the same
order. Instead, the variance in the fractional setting has a smaller order, which means
that bets become more favourable as the trading frequency increases, and therefore
their optimal size increases.

Note, however, that the implied performance in each period is proportional to the
conditional expectation 
H times the position size 
−H , hence of order 1. As each
trading period leads to the same performance (in view of the white-noise property
established in Theorem 2.3), trading over an interval of length T generates a perfor-
mance proportional to T . In particular, the results below show that the optimal trading
position is asymptotically

ϕt (
) := 
−H

γ

�(H + 1/2)�(2 − 2H)

�(3/2 − H)
Bt ,
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and that on the subsequent interval, the expected increment has the asymptotic (con-
ditional) mean and variance

mt(
) := Bt

H , v(
) := �(3/2 − H)

�(H + 1/2)�(2 − 2H)

2H . (2.6)

The performance formula in Theorem 2.2 follows from

T E

[
ϕt (
)mt (
) − γ

2
ϕt (
)2v(
)

]
= T

2γ

�(H + 1/2)�(2 − 2H)

�(3/2 − H)
E[B2

t ]

= T

γ

(
�(H + 1/2)�(2 − 2H)

2�(3/2 − H)
− 1

2

)
.

This analysis also offers an intuitive explanation for the asymmetric behaviour of the
performance in (2.3) and (2.4). For H close to zero, the asset price S itself is akin
to a white noise, for which the mean and variance in (2.6) are of the same order.
Accordingly, the performance converges to a finite limit. By contrast, for H close
to one, the process degenerates to a straight line with random slope, as randomness
vanishes from its increments. Thus the trading strategy generates return with virtually
no risk, and the performance diverges.

Note that the mean–variance optimal strategies (πt (n)) are not arbitrage opportu-
nities as the support of their payoffs is (−∞,+∞). Although continuous trading with
fBm leads to arbitrage opportunities (see e.g. Rogers [19], Salopek [20]), it is clear
that on any finite deterministic grid, fBm does not admit arbitrage because an equiva-
lent martingale measure can be constructed through a backward recursion that aligns
all conditionally expected increments to zero. (In fact, arbitrage disappears even when
a minimal time has to pass between two subsequent transactions; see Cheridito [2].)

A deeper question is whether the sequence of strategies (π(n))n≥1 yields an arbi-
trage in some limit sense, and the answer is affirmative. The sequence of discrete-time
mean–variance optimal policies offers a statistical arbitrage in that

lim
n→∞E[W(n)] = ∞,

where W(n) is the final wealth of the strategy π(n) starting from null initial capital,
i.e.,

W(n) =
n−1∑

k=0

πT k/n(n)(ST (k+1)/n − ST k/n).

This fact is readily proved by observing that in mean–variance optimisation, the ex-
pectation of the optimal strategy is always twice as large as its variance, whence

lim
n→∞E[W(n)] = lim

n→∞
2n

T
E

[
Rγ

(
π(n),n,S

)] = ∞,

because E[Rγ (π(n),n,S)] tends to a finite nonzero limit (for H �= 1/2) by Theo-
rem 2.2.

As Theorem 2.3 establishes that the rescaled strategies essentially converge to a
white noise in finite-dimensional distributions, a natural question is whether such a
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convergence holds in a stronger sense, such as in square norm, so that its limit can be
interpreted as a rescaled asymptotically optimal strategy in continuous time.

The next result provides a negative answer to this question by showing that even
focusing on a sequence of dyadic partitions, the square norm between each discreti-
sation and the next remains bounded away from zero.

Theorem 2.4 Let 
k = T/k. For all H ∈ (0,1) \ {1/2} and t ∈ (0, T ),

lim
n→∞E

[(

−H

2n πt (2
n) − 
−H

2n+1πt (2
n+1)

)2]
> 0.

The significance of this result is that the optimal strategy is extremely sensitive
to the trading frequency used, and that optimal strategies at increasing frequencies
are not approximations of some underlying continuous-time strategy, which does not
exist. In fact, even if such a strategy existed, it would be of no use because the paths
of a white-noise process are not even measurable (cf. Revuz and Yor [18, p. 37]).

At a more concrete level, the above results show that as the frequency increases,
the corresponding trading strategies become increasingly variable; thus in practice,
their ostensible theoretical performance may be more than offset by the trading costs
that such strategies entail. The next section investigates this issue by identifying how
the optimal trading frequency depends on the size of trading costs.

3 Trading costs

The optimal strategies identified in (2.5) imply that asset positions are both large and
highly variable, thereby calling into question their robustness to trading costs. To
investigate this issue, recall the sequence of strategies π(n), n ≥ 1, defined in (2.5)
above.

Assuming that a portfolio change from θ1 to θ2 shares incurs the cost λ|θ1 − θ2|α
for some α,λ > 0, the local mean–variance analysis for a trader applying the strategy
π(n) leads to the functionals (setting πt (n) := 0 for t < 0)

R̃(n) := R(n) −
n−1∑

k=0

λ|πT k/n(n) − πT (k−1)/n(n)|α,

where R(n) denotes frictionless performance, i.e.,

R(n) := T

n

n−1∑

k=0

ET k/n[πT k/n(n)(ST (k+1)/n − ST k/n)]

− γ

2

T

n

n−1∑

k=0

VarT k/n[πT k/n(n)(ST (k+1)/n − ST k/n)],

while the second term in R̃(n) represents the effect of trading costs. The next result
shows that expected trading costs E[R(n) − R̃(n)] grow with a superlinear power of
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the trading frequency n that increases with both the Hurst and the friction exponents.
As a result, for fixed transaction costs, the objective function arbitrarily deteriorates
as the frequency increases, and the optimal trading frequency must be finite.

Theorem 3.1 E[R(n) − R̃(n)] = O(n1+αH ) and hence limn→∞ E[R̃(n)] = −∞.

The next logical step is to understand the effect of small trading costs on the overall
objective. Here the above result leads to an unexpected implication: with a judicious
choice of the trading frequency, the effect of frictions is negligible at any order.

Corollary 3.2 Let nλ = �λ β−1
1+αH � for β ∈ (0,1). Then

E[R(nλ) − R̃(nλ)] = O(λβ) for λ → 0,

that is, trading costs are of order λβ .

Upon reflection, this result is a direct consequence of Theorem 3.1. Yet, its conclu-
sion is counterintuitive when compared to the results for frictions in familiar diffusion
models (cf. Guasoni and Weber [11, Theorem 4.1]) where the welfare loss is of the or-

der of λ
2

2+α ; for example, proportional transaction costs correspond to α = 1, leading
to a welfare loss of order 2/3.

Intuitively, the main difference is that in familiar diffusion models, the main deter-
minant of optimal portfolios is the asset price’s local drift which is typically smooth.
Thus as the trading frequency increases, smaller and smaller adjustments are required,
which means that holding trading costs constant, the high-frequency limit of the port-
folio performance is finite.

In contrast, in the fractional setting considered here, the “latent drift” of the pro-
cess is highly irregular – in the limit, it is a white noise –; hence it entails trading costs
that grow with the trading frequency as implied by Theorem 3.1. However, this irreg-
ularity can be harnessed to make trading costs negligible in the high-frequency limit,
by choosing the trading frequency nλ to grow slowly as λ decreases so that overall
costs vanish in the limit. Of course, letting n grow more slowly has the downside that
the convergence of the strategy’s performance to the optimum in (2.1) is also going
to be slower.

Corollary 3.2 also identifies the maximal speed identifies the maximal speed at
which the frequency may grow so that the strategy converges to the optimum. In

particular, nλ may grow at a rate arbitrarily close to λ− 1
1+αH , but not at this exact rate:

at this critical regime, costs would not vanish but converge to a positive finite limit,
which would be suboptimal.

As trading costs are fixed in applications, the significance of this result is as fol-
lows: In practice, the trading cost λ implies that the optimal trading interval should be

1/nλ ≈ λ
1−β

1+αH , where β is close to one. However, the closer the β to one, the larger
the trading interval, which means that the convergence of the strategy to the friction-
less limit for a fixed horizon T is slower, and its risk higher. Thus if the horizon is not
long enough to guarantee that the payoff has a sufficiently low risk, one may choose
to decrease the value of β to reduce risk further, at the price of an increased trading
cost.
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4 Conclusion

This paper finds locally mean–variance optimal trading strategies for an asset price
that follows fractional Brownian motion, and finds that the average Sharpe ratio is
finite, asymmetric in the Hurst exponent, bounded near zero, and unbounded near
one. The central result is that conditionally expected increments are asymptotically
a Gaussian white noise, regardless of the Hurst exponent, but with a variance that
depends on that exponent.

The optimal performance is insensitive to small trading frictions, in that their im-
pact can be mitigated arbitrarily well by calibrating the trading frequency appropri-
ately. This phenomenon is in sharp contrast to diffusion models for which the impact
of small frictions has a fixed order of magnitude.
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Appendix: Proofs

Henceforth, the expectation E[X] of a random variable X is defined as −∞ when
both E[X+], E[X−] are infinite. Recall also the notion of asymptotic equivalence,
where f (x) ∼ g(x) near x = x0 means that limx→x0 f (x)/g(x) = 1.

A.1 Auxiliary results on fractional Brownian motion

For s, t ≥ 0, introduce the kernel

ZH (t, s) := cH

(
tH− 1

2 s
1
2 −H (t − s)H− 1

2

−
(
H − 1

2

)
s

1
2 −H

∫ t

s

uH− 3
2 (u − s)H− 1

2 du

)
1{0<s<t}, (A.1)

where

cH =
(

2H�(3/2 − H)

�(H + 1/2)�(2 − 2H)

)1/2

.
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Then, taking an (ordinary) Brownian motion W = (Wt )t≥0, the formula

BH
t :=

∫ t

0
ZH (t, s) dWs, t ≥ 0, (A.2)

defines an fBm with parameter H which generates the same filtration as W (cf. [16,
Theorem 3.2]). Moreover, any fractional Brownian motion allows the representation
(A.2) with some Wiener process W , and both processes generate the same filtration.
Fixing such a representation, denote Ft := σ(Ws, 0 ≤ s ≤ t).

The kernel representation in (A.2) implies the following properties of fractional
increments.

Proposition A.1 For any 0 ≤ z ≤ u,

BH
u − BH

z =
∫ z

0

(
ZH (u, s) − ZH (z, s)

)
dWs +

∫ u

z

ZH (u, s) dWs, (A.3)

Ez[BH
u − BH

z ] =
∫ z

0

(
ZH (u, s) − ZH (z, s)

)
dWs, (A.4)

Ez[(BH
u − BH

z )2] =
(∫ z

0

(
ZH (u, s) − ZH (z, s)

)
dWs

)2

+
∫ u

z

Z2
H (u, s) ds. (A.5)

Proof The relations immediately follow from (A.2). �

In particular, note that for z = 0,

Ez[BH
u − BH

z ] = E[BH
u − BH

z ] = 0.

As all the relations (A.3)–(A.5) contain the increment ZH (u, s) − ZH (z, s), it is use-
ful to rewrite this expression in a more convenient form.

Lemma A.2 Let 0 ≤ s < z < u. Then

ZH (u, s) − ZH (z, s) = (H − 1/2)cH s1/2−H

∫ u

z

vH−1/2(v − s)H−3/2 dv. (A.6)

Proof For H > 1/2, (A.6) follows by integrating (A.1) by parts. For H < 1/2, (A.2)
implies that

ZH (u, s) − ZH (z, s)

= cH s1/2−H

(
uH−1/2(u − s)H−1/2 − (H − 1/2)

∫ u

z

vH−3/2(v − s)H−1/2 dv

− zH−1/2(z − s)H−1/2
)

. (A.7)

Integrating
∫ u

z
vH−3/2(v − s)H−1/2 du by parts gives

∫ u

z

vH−3/2(v − s)H−1/2 dv

= uH−1/2(u − s)H−1/2

H − 1/2
− zH−1/2(z − s)H−1/2

H − 1/2
−

∫ u

z

vH−1/2(v − s)H−3/2 dv.
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Note that this expression can be integrated by parts, while the kernel ZH (u, s) itself
cannot, because the integral

∫ u

z
vH−1/2(v − s)H−3/2 dv exists for z > s, but diverges

for z = s. Therefore, for 0 ≤ s < z and 0 < H < 1/2, (A.7) implies that

ZH (u, s) − ZH (z, s) = cH (H − 1/2)s1/2−H

∫ u

z

vH−1/2(v − s)H−3/2 dv,

which coincides with (A.6). �

Let c̃H := cH (H − 1/2). In view of (A.6), equations (A.3)–(A.5) admit the fol-
lowing alternative representation.

Proposition A.3 For z < u, denote

ξu,z :=
∫ z

0
s1/2−H

(∫ u

z

vH−1/2(v − s)H−3/2 dv

)
dWs.

For any H ∈ (0,1) \ {1/2}, we have

BH
u − BH

z = c̃H

(
ξu,z +

∫ u

z

ZH (u, s) dWs

)
,

Ez[BH
u − BH

z ] = c̃H ξu,z,

Ez[(BH
u − BH

z )2] = (c̃H ξu,z)
2 +

∫ u

z

Z2
H (u, s) ds,

Varz[BH
u − BH

z ] =
∫ u

z

Z2
H (u, s) ds.

Proof Follows from Lemma A.2 and Proposition A.1. �

A.2 Variance bounds for conditionally expected increments

Henceforth, assume that z > 0. Recall that ξu,z is a centered Gaussian random vari-
able with variance

E[ξ2
u,z] =

∫ z

0
s1−2H

(∫ u

z

vH−1/2(v − s)H−3/2 dv

)2

ds.

The goal is to find lower and upper bounds for the right-hand side. Thus set

Ju,z := (H − 1/2)−2
∫ z

2(u−z)

0

(
1 − u − z

z
r

)1−2H (
(1 + r)H−1/2 − rH−1/2)2

dr,

I �
u,z := z2H−2(u − z)2

∫ 1/2

0
s1−2H

(
u

z
− s

)2H−3

ds + (u − z)2H Ju,z,

Ĩ �
u,z := u2H−1

z
(u − z)2

∫ 1/2

0
s1−2H

(
u

z
− s

)2H−3

ds + (u − z)2H Ju,z,

I �
u,z := u2H−1

z
(u − z)2

∫ 1/2

0
s1−2H (1 − s)2H−3 ds + (u/z)2H−1(u − z)2H Ju,z.
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Lemma A.4 For H > 1/2,

c̃2
H I�

u,z ≤ c̃2
H E[ξ2

u,z] = E
[
E2

z [BH
u − BH

z ]] ≤ c̃2
H I�

u,z,

and for H < 1/2,

c̃2
H Ĩ �

u,z ≤ c̃2
H E[ξ2

u,z] = E
[
E2

z [BH
u − BH

z ]] ≤ c̃2
H Ĩ �

u,z.

Proof (i) Let H > 1/2. Consider the integral

I 0
u,z :=

∫ z

0
s1−2H

(∫ u

z

(v − s)H−3/2 dv

)2

ds

= (H − 1/2)−2
∫ z

0
s1−2H

(
(u − s)H−1/2 − (z − s)H−1/2)2

ds.

Then obviously

z2H−1I 0
u,z ≤ E[ξ2

u,z] ≤ u2H−1I 0
u,z. (A.8)

To estimate I 0
u,z from below and from above, the change of variables s = zx gives

I 0
u,z = (H − 1/2)−2z

∫ 1

0
x1−2H

(
(u/z − x)H−1/2 − (1 − x)H−1/2)2

dx

= (H − 1/2)−2z

(∫ 1/2

0
x1−2H

(
(u/z − x)H−1/2 − (1 − x)H−1/2)2

dx

+
∫ 1

1/2
x1−2H

(
(u/z − x)H−1/2 − (1 − x)H−1/2)2

dx

)

=: (H − 1/2)−2z(I 1
u,z + I 2

u,z). (A.9)

To estimate I 1
u,z, note that the Lagrange mean value theorem implies

(
u

z
− s

)H−1/2

− (1 − s)H−1/2 =
(

u

z
− 1

)
(H − 1/2)(θ − s)H−3/2

for some θ ∈ (1, u/z). Therefore

(
u − z

z

)2

(H − 1/2)2
∫ 1/2

0
s1−2H

(
u

z
− s

)2H−3

ds

≤ I 1
u,z

≤
(

u − z

z

)2

(H − 1/2)2
∫ 1/2

0
s1−2H (1 − s)2H−3 ds. (A.10)
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Turning to I 2
u,z, the changes of variables 1 − x = y and y = u−z

z
r yield

I 2
u,z

=
∫ 1/2

0
(1 − y)1−2H

((u − z

z
+ y

)H−1/2 − yH−1/2
)2

dy

=
(

u − z

z

)2H ∫ z
2(u−z)

0

(
1 − u − z

z
r

)1−2H (
(1 + r)H−1/2 − rH−1/2)2

dr. (A.11)

Finally, from (A.9)–(A.11) and (A.8), it follows that

I �
u,z ≤ E[ξ2

u,z] ≤ I �
u,z.

(ii) Let H < 1/2. Note that in this case,

u2H−1I 0
u,z ≤ E[ξ2

u,z] ≤ z2H−1I 0
u,z. (A.12)

Equality (A.9) holds true. For I 1
u,z, we have (A.10), and (A.11) also holds true. Sub-

stituting (A.9)–(A.11) into (A.12), it now follows that the lower and upper bounds
equal c̃2

H Ĩ
�
u,z and c̃2

H Ĩ
�
u,z, respectively, and the proof is complete. �

A.3 Limit variance of the strategies

Now fix the interval [0, T ] and consider the sequence of partitions

�n = {T k/n, 0 ≤ k ≤ n}, n ≥ 1,

with mesh 
n := T/n. For any point t ∈ [0, T ], denote κn
t := �nt

T
�, whence

T κn
t /n ≤ t < T (κn

t + 1)/n.

Now consider the step functions

ζ n
t :=

n−1∑

k=0

ET k/n[BH
T (k+1)/n − BH

T k/n]1{t∈[T k/n,T (k+1)/n)} (A.13)

=
n−1∑

k=0

c̃H ξT (k+1)/n,T k/n1{t∈[T k/n,T (k+1)/n)} = c̃H ξT (κn
t +1)/n,T κn

t /n.

Applying Lemma A.4 with u := T (κn
t + 1)/n, z = T κn

t /n, lower and upper bounds
for E[(ζ n

t )2], t > 0 immediately follow. Namely, assume that n is sufficiently large



292 P. Guasoni et al.

so that κn
t > 0. Setting

J̃ := (H − 1/2)−2
∫ κn

t /2

0

(
1 − y

κn
t

)1−2H (
(y + 1)H−1/2 − yH−1/2)2

dy,

note that

I
�

T (κn
t +1)/n,T κn

t /n
= (T κn

t /n)2H−2
2
n

∫ 1/2

0
s1−2H

(
κn
t + 1

κn
t

− s

)2H−3

ds + 
2H
n J̃ ,

I
�

T (κn
t +1)/n,T κn

t /n
= (T

(κn
t +1)

n
)2H−1
2

n

T
κn
t

n

∫ 1/2

0
s1−2H (1 − s)2H−3 ds

+ 
2H
n

(
κn
t + 1

κn
t

)2H−1

J̃ , (A.14)

Ĩ
�

T (κn
t +1)/n,T κn

t /n
= (T

(κn
t +1)

n
)2H−1
2

n

T
κn
t

n

∫ 1/2

0
s1−2H

(
κn
t + 1

κn
t

− s

)2H−3

ds

+ 
2H
n

(
κn
t + 1

κn
t

)2H−1

J̃ ,

Ĩ
�

T (κn
t +1)/n,T κn

t /n
=

(
T

κn
t

n

)2H−2


2
n

∫ 1/2

0
s1−2H (1 − s)2H−3 ds + 
2H

n J̃ .

Using these expressions, the following formula for the limit of variance follows.

Proposition A.5 For any H ∈ (0,1) \ {1/2},

CH = lim
n→∞
−2H

n E[(ζ n
t )2] = c2

H

∫ ∞

0

(
(y + 1)H−1/2 − yH−1/2)2

dy

= 1 − �(3/2 − H)

�(H + 1/2)�(2 − 2H)
. (A.15)

Proof Let n → ∞. Then κn
t → ∞, T κn

t /n ↑ t , (κn
t + 1)/κn

t → 1. Moreover,
Lebesgue’s dominated convergence theorem guarantees that

∫ 1/2

0
s1−2H

(
κn
t + 1

κn
t

− s

)2H−3

ds −→
∫ 1/2

0
s1−2H (1 − s)2H−3 ds.

Consider

∫ κn
t /2

0

(
1 − y

κn
t

)1−2H (
(y + 1)H−1/2 − yH−1/2)dy.



High-frequency trading with fractional Brownian motion 293

Note that 1 − y/κn
t → 1 and it does not exceed 1 for H < 1/2 and 22H−1 for

H > 1/2. Therefore Lebesgue’s dominated convergence theorem yields

lim
n→∞

∫ κn
t /2

0
(1 − y/κn

t )1−2H
(
(y + 1)H−1/2 − yH−1/2)2

dy

=
∫ ∞

0

(
(y + 1)H−1/2 − yH−1/2)2

dy.

The latter integral is well defined at 0, and ((y + 1)H−1/2 − yH−1/2)2 ∼ O(y2H−3)

when y → ∞; therefore it is also well defined at ∞. Furthermore, the first terms in
all values

I d
T (κn

t +1)/n,T κn
t /n

and Ĩ d
T (κn

t +1)/n,T κn
t /n

, d = �, �,

are of order 
2
n, and so they tend to zero when divided by 
2H

n . The expression on
the right-hand side of (A.15) simplifies (cf. Mishura [15, Theorem 1.3.1]) to

∫ ∞

0

(
(y + 1)H−1/2 − yH−1/2)2

dy = (�(H + 1/2))2

2H sin(πH)�(2H)
− 1

2H
,

and

c2
H = 2H�(3/2 − H)

�(H + 1/2)�(2 − 2H)

so that

CH := c2
H

∫ ∞

0

(
(y + 1)H−1/2 − yH−1/2)2

dy

= �(3/2 − H)�(H + 1/2)

sin(πH)�(2H)�(2 − 2H)
− �(3/2 − H)

�(H + 1/2)�(2 − 2H)
.

Now the statement follows from Lemma A.6 below. �

Lemma A.6 For any H ∈ (0,1) \ {1/2}, we have the equality

�(3/2 − H)�(H + 1/2)

sin(πH)�(2H)�(2 − 2H)
= 1.

Proof The arguments below use the well-known identity

�(α)�(1 − α) = π

sin(πα)
, α ∈ (0,1). (A.16)

First let H > 1/2. Applying (A.16) with α := H − 1/2, it follows that

�(3/2 − H)�(H + 1/2) = (H − 1/2)π

sin(π(H − 1/2))
= − (H − 1/2)π

cos(πH)
,
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because �(H + 1/2) = (H − 1/2)�(H − 1/2). Likewise,

�(2H)�(2 − 2H) = (2H − 1)�(2H − 1)�(2 − 2H)

= (2H − 1)π

sin(2πH − π)
= − (H − 1/2)π

sin(πH) cos(πH)
,

whence, as claimed, �(3/2−H)�(H+1/2)
sin(πH)�(2H)�(2−2H)

= 1.
Now let H < 1/2. Then applying (A.16) with a := 1/2 − H gives

�(3/2 − H)�(H + 1/2) = (1/2 − H)�(1/2 − H)�(H + 1/2)

= (1/2 − H)π

sin(π(1/2 − H))
= (1/2 − H)π

cos(πH)
,

and

�(2H)�(2 − 2H) = π(1 − 2H)

sin(2πH)
= π(1/2 − H)

sin(πH) cos(πH)
,

whence the claim follows. �

A.4 Limit of the covariances

Now for s �= t , s, t > 0 and ζ n
t , ζ n

s as above in (A.13), consider the asymptotic co-
variance R(s, t) = limn→∞ 
−2H

n E[ζ n
t ζ n

s ], with

ζ n
t = c̃H ξT (κn

t +1)/n,T κn
t /n,

provided that the limit exists. The first lemma shows that this covariance vanishes
asymptotically.

Lemma A.7 For any s �= t , s, t > 0, we have

R(s, t) = lim
n→∞
−2H

n E[ζ n
t ζ n

s ] = 0.

Proof For 0 < s < t , the covariance is

E[ζ n
t ζ n

s ] = c̃2
H E[ξT (κn

t +1)/n,T κn
t /nξT (κn

s +1)/n,T κn
s /n]

= c̃2
H

∫ T κn
s /n

0
u1−2H

(∫ T (κn
s +1)/n

T κn
s /n

vH−1/2(v − u)H−3/2 dv

)

×
(∫ T (κn

t +1)/n

T κn
t /n

vH−1/2(v − u)H−3/2 dv

)
du.
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Recall that T κn
t /n ↑ t , T κn

s /n ↑ s, T (κn
t + 1)/n ↓ t , T (κn

s + 1)/n ↓ s as n → ∞.
Thus


−2H
n E[ζ n

t ζ n
s ]

∼ c̃2
H sH−1/2tH−1/2
−2H

n

∫ T κn
s /n

0
u1−2H

(∫ T (κn
s +1)/n

T κn
s /n

(v − u)H−3/2 dv

)

×
(∫ T (κn

t +1)/n

T κn
t /n

(v − u)H−3/2 dv

)
du

= c̃2
H sH−1/2tH−1/2
2−2H

n

∫ T κn
s /n

0
u1−2H (θn

s − u)H−3/2(θn
t − u)H−3/2 du

for some θn
s ∈ (T κn

s /n,T (κn
s + 1)/n) and θn

t ∈ (T κn
t /n,T (κn

t + 1)/n).
(i) Let H > 1/2. The intuition is that for such H ,

lim
n→∞

∫ T κn
s /n

0
u1−2H (θn

s − u)H−3/2(θn
t − u)H−3/2 du

=
∫ s

0
u1−2H (s − u)H−3/2(t − u)H−3/2 du.

To make this intuition rigorous, it remains to check that Lebesgue’s dominated con-
vergence theorem applies. To this end, notice that

∫ T κn
s /n

0
u1−2H (θn

s − u)H−3/2(θn
t − u)H−3/2 du

=
(

T
κn
s

n

)−1 ∫ 1

0
u1−2H

(
θn
s n

T κn
s

− u

)H−3/2(
θn
t n

T κn
s

− u

)H−3/2

du,

and
(

θn
s n

T κn
s

− u

)H−3/2

≤ (1 − u)H−3/2,

(
θn
t n

T κn
s

− u

)H−3/2

≤
(

t

s + T/n
− u

)H−3/2

.

Note that for n > 2T
t−s

,

t

s + T/n
>

2t

s + t
,

(
t

s + T/n
− u

)H−3/2

<

(
2t

s + t
− u

)H−3/2

,

so that the integral

∫ 1

0
u1−2H (1 − u)H−3/2

(
2t

s + t
− u

)H−3/2

du

converges, thereby proving that for H > 1/2,

lim
n→∞
−2H

n E[ζ n
s ζ n

t ] = 0.
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(ii) Turning to the case H < 1/2, note that


−2H
n E[ζ n

s ζ n
t ] ∼ (1/2 − H)−2c̃2

H 
−2H
n sH−1/2tH−1/2 κn

s T

n

×
∫ 1

0
z1−2H

(( 1

κn
s

+ 1 − z
)H−1/2 − (1 − z)H−1/2

)

×
((κn

t + 1

κn
s

− z
)H−1/2 −

(κn
t

κn
s

− z
)H−1/2

)
dz

∼ (1/2 − H)−2c̃2
H sH+1/2tH−1/2
−2H

n

×
∫ 1

0
z1−2H (1 − z)1/2−H − (1/κn

s + 1 − z)1/2−H

(1/κn
s + 1 − z)1/2−H (1 − z)1/2−H

×
((κn

t + 1

κn
s

− z
)H−1/2 −

(κn
t

κn
s

− z
)H−1/2

)
dz

=:
(

1

2
− H

)−2

c̃2
H sH+1/2tH−1/2An.

Observe for 0 ≤ b ≤ a and q ∈ (0,1) the elementary inequality

aq − bq ≤ (a − b)q .

Thus for 0 ≤ z ≤ 1,

∣∣∣∣

(
1 − z + 1

κn
s

)1/2−H

−
(

1 − z

)1/2−H ∣∣∣∣ ≤
(

1

κn
s

)1/2−H

.

As T κn
s /n ↑ s, it follows that 1/κn

s = O(1/n). Note that

1

(1/κn
s + 1 − z)1/2−H

<
1

(1 − z)1/2−H

and

(
κn
t + 1

κn
s

− z

)H−1/2

−
(

κn
t

κn
s

− z

)H−1/2

= H − 1/2

κn
s

(θn
s,t − z)H−3/2,

where θn
s,t ∈ (κn

t /κn
s , (κn

t + 1)/κn
s ). Note also that for n > 2T

t−s
,

θn
s,t ≥ κn

t /κn
s ≥ t

s + T/n
>

2t

s + t
,
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whence (θn
s,t − z)H−3/2 < ( t+s

2s
− 1)H−3/2. From these considerations, it follows that

An ≤ 
−2H
n

(
O(1/n)

)1/2−H
O(1/n)

∫ 1

0
(1 − z)2H−1z1−2H (θn

s,t − z)H−3/2 dz

≤ 
−2H
n

(
O(1/n)

)1/2−H
O(1/n)

∫ 1

0
(1 − z)2H−1z1−2H

(
2t

s + t
− z

)H−3/2

dz.

Hence

An ∼ 
−2H
(
O(1/n)1/2−H

)
O(1/n) ∼ n2H−1/2+H−1 = n3H−3/2 −→ 0,

and the statement follows. �

A.5 Limit of the value processes of the strategies π(n)

Now consider the process ηn
t := 
−H

n ζn
t /φn

t , where

φn
t := 
−2H

n

∫ T (κn
t +1)/n

T κn
t /n

Z2
H

(
T (κn

t + 1)

n
, s

)
ds

= 
−2H
n VarT κn

t /n[BH
T (κn

t +1)/n − BH
T κn

t /n].

Define a centered Gaussian process (Bt )0≤t≤T by B0 = 0, E[BtBs] = 0 for t �= s and
E[B2

t ] = CH , t ∈ (0, T ], where

CH = 1 − �(3/2 − H)

�(H + 1/2)�(2 − 2H)
.

Theorem A.8 For any H ∈ (0,1) \ {1/2}, as n → ∞,

ηn
t =⇒ �(H + 1/2)�(2 − 2H)

�(3/2 − H)
Bt ,

where ⇒ denotes the weak convergence of probability laws.

Proof (i) Let H > 1/2. Then

φn
t

= c̃2
H 
−2H

n

∫ T (κn
t +1)/n

T κn
t /n

s1−2H

(∫ T (κn
t +1)/n

s

uH−1/2(u − s)H−3/2du

)2

ds. (A.17)
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As before, the limit of this expression is unchanged by omitting s1−2H and uH−1/2.
Thus

lim
n→∞φn

t = c̃2
H

(H − 1/2)2
lim

n→∞
−2H
n

∫ T (κn
t +1)/n

T κn
t /n

((
T

(κn
t + 1)

n
− s

)H−1/2
)2

ds

= c2
H lim

n→∞
−2H
n

∫ T (κn
t +1)/n

T κn
t /n

(
T

(κn
t + 1)

n
− s

)2H−1

ds

= c2
H lim

n→∞

(
T

(κn
t + 1)

n
− T

κn
t

n

)2H 1

2H

n2H

T 2H

= c2
H

2H
= �(3/2 − H)

�(H + 1/2)�(2 − 2H)
, (A.18)

which yields the claim that ηn
t ⇒ �(H+1/2)�(2−2H)

�(3/2−H)
Bt .

(ii) In the case H < 1/2, the limit equals

lim
n→∞φn

t

= lim
n→∞
−2H

n c2
H

×
∫ T (κn

t +1)/n

T κn
t /n

((
T

(κn
t + 1)

n

)H−1/2
s1/2−H

(
T

(κn
t + 1)

n
− s

)H−1/2

− (H − 1/2)s1/2−H

×
∫ T (κn

t +1)/n

s

uH−3/2(u − s)H−1/2 du

)2

ds. (A.19)

To evaluate this expression, first note that in view of the previous formulas,

E[(BH
u − BH

z )2] =
∫ z

0

(
ZH (u, s) − ZH (z, s)

)2
ds +

∫ u

z

Z2
H (u, s) ds.

Now let z := T κn
t /n and u := T (κn

t + 1)/n so that E[(BH
u − BH

z )2] = (T /n)2H . As
already calculated,

lim
n→∞

1


2H
n

∫ z

0

(
ZH (u, s) − ZH (z, s)

)2
ds = c2

H

∫ ∞

0

(
(y + 1)H−1/2 − yH−1/2)2

dy

= CH .

Therefore,

lim
n→∞φn

t = lim
n→∞

1


2H
n

(
T

n

)2H

− 1 + �(3/2 − H)

�(H + 1/2)�(2 − 2H)

= �(3/2 − H)

�(H + 1/2)�(2 − 2H)
,

whence ηn
t ⇒ �(H+1/2)�(2−2H)

�(3/2−H)
Bt also for H < 1/2. �
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A.6 Final steps

Proof of Theorem 2.2 For any H ∈ (0,1) \ {1/2}, as in the proof of Theorem A.8,

lim
n→∞

T

n
E

[
Rγ

(
π(n),n,BH

)] = lim
n→∞

T

n

n−1∑

k=0

E

[
E2

T k/n[BH
T (k+1)/n − BH

T k/n]
2γ VarT k/n[BH

T (k+1)/n − BH
T k/n]

]

= lim
n→∞

T

n

n−1∑

k=0

E

[

−2H

n (ζ n
T k/n)

2

2γφn
T k/n

]

= �(H + 1/2)�(2 − 2H)

2γ�(3/2 − H)

∫ T

0
E[B2

t ]dt

= T

γ
C(H)

�(H + 1/2)�(2 − 2H)

2�(3/2 − H)
.

The passage to the limit is justified by Lebesgue’s theorem since the E[
−2H
n (ζ n

T k/n)
2]

are bounded from above uniformly in n, k, and the φn
T k/n are bounded away from 0

uniformly in n, k, by Lemma A.9 below. Hence we obtain

V (H,γ ) = lim
n→∞

T

n
E

[
Rγ

(
π(n),n,BH

)]

= T

γ

(
�(H + 1/2)�(2 − 2H)

2�(3/2 − H)
− 1

2

)
. (A.20)

For H < 1/2, an analogous argument yields (A.20) again, completing the proof. �

Lemma A.9 The values E[
−2H
n (ζ n

T k/n)
2] are bounded from above uniformly in n,

k, and the φn
T k/n are bounded away from 0 uniformly in n, k.

Proof First consider the case H > 1/2. Note that E[
−2H
n (ζ n

T k/n)
2] is bounded from

above by a constant multiple of 
−2H
n I

�

T (κn
t +1)/n,T κn

t /n
. For the right-hand side of

(A.14), note that

(T
(κn

t +1)

n
)2H−1
2−2H

n

T
κn
t

n

= κn
t + 1

κn
t

(
T

(κn
t + 1)

n

)2H−2


2−2H
n

≤ 2

(
T

n

)2H−2


2−2H
n ≤ 2.
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Therefore,


−2H
n I

�

T (κn
t +1)/n,T κn

t /n

≤ 2
∫ 1/2

0
s1−2H (1 − s)2H−3 ds

+ 22H−121−2H

(H − 1/2)2

∫ ∞

0

(
(y + 1)H−1/2 − yH−1/2)2

dy, (A.21)

and the right-hand side of (A.21) is constant. Furthermore, according to (A.17) and
(A.18),

φn
t ≥ c̃2

H 
−2H
n

∫ T (κn
t +1)/n

T κn
t /n

(∫ T (κn
t +1)/n

s

(u − s)H−3/2 du

)2

ds

≥ c2
H 
−2H

n

∫ T (κn
t +1)/n

T κn
t /n

(
(κn

t + 1)T

n
− s

)2H−1

ds

= �(3/2 − H)

�(H + 1/2)�(2 − 2H)
.

Turning to the case H < 1/2, observe that 
−2H
n Ĩ

�

T (κn
t +1)/n,T κn

t /n
does not exceed

(
T

n

)2H−2


2−2H
n

∫ 1/2

0
s1−2H (1 − s)2H−3 ds

+ 1

(H − 1/2)2

∫ ∞

0

(
(y + 1)H−1/2 − yH−1/2)2

dy,

which is a constant. Finally, it follows that

φn
t ≥ c̃2

H 
−2H
n

×
∫ T (κn

t +1)/n

T κn
t /n

((
T

(κn
t + 1)

n

)H−1/2
s1/2−H

(
T

(κn
t + 1)

n
− s

)H−1/2
)2

ds

≥ c̃2
H 
−2H

n

(
T

(κn
t + 1)

n

)2H−1(
T

κn
t

n

)1−2H (
T

n

)2H 1

2H

= c̃2
H

2H

(
κn
t

κn
t + 1

)1−2H

≥ c̃2
H

2H

(
1

2

)1−2H

,

which is also a positive constant. �

A.7 Trading costs

Proof For any 1 ≤ k ≤ n − 1, we claim that E[|πT (k+1)/n(n) − πT k/n(n)|α] → ∞ as
n → ∞, and we estimate its convergence rate. Indeed, πT (k+1)/n(n) − πT k/n(n) is a
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Gaussian random variable; therefore it is sufficient to study

E
[(

πT (k+1)/n(n) − πT k/n(n)
)2]

.

Recall that according to (2.5),

πT (k+1)/n(n) − πT k/n(n)

= ET (k+1)/n[BH
T (k+2)/n − BH

T (k+1)/n]
2 VarT (k+1)/n[BH

T (k+2)/n − BH
T (k+1)/n]

− ET k/n[BH
T (k+1)/n − BH

T k/n]
2 VarT k/n[BH

T (k+1)/n − BH
T k/n]

= c̃H

(∫ T (k+1)/n

0 s1/2−H (
∫ T (k+2)/n

T (k+1)/n vH−1/2(v − s)H−3/2 dv)dWs

2 VarT (k+1)/n[BH
T (k+2)/n − BH

T (k+1)/n]

+
∫ T k/n

0 s1/2−H (
∫ T (k+1)/n

T k/n
vH−1/2(v − s)H−3/2 dv)dWs

2 VarT k/n[BH
T (k+1)/n − BH

T k/n]
)

.

This expression contains in the first numerator the Gaussian random variable

∫ T (k+1)/n

T k/n

s1/2−H

(∫ T (k+2)/n

T (k+1)/n

vH−1/2(v − s)H−3/2 dv

)
dWs,

which is independent from the other terms. Therefore,

E
[(

πT (k+1)/n(n) − πT k/n(n)
)2]

≥ c̃2
H

4

∫ T (k+1)/n

T k/n
s1−2H (

∫ T (k+2)/n

T (k+1)/n vH−1/2(v − s)H−3/2 dv)2 ds

Var2
T (k+1)/n[BH

T (k+2)/n − BH
T (k+1)/n]

. (A.22)

Without loss of generality, assume that k �= 0, which implies that as n ↑ ∞,

∫ T (k+1)/n

T k/n

s1−2H

(∫ T (k+2)/n

T (k+1)/n

vH−1/2(v − s)H−3/2dv

)2

ds

∼
∫ T (k+1)/n

T k/n

(∫ T (k+2)/n

T (k+1)/n

(v − s)H−3/2dv

)2

ds

∼ n−2
∫ T (k+1)/n

T k/n

(θn − s)2H−3 ds,

where θn ∈ [T (k + 1)/n,T (k + 2)/n]. The latter expression is

∼ n−2
((

θn − (k + 1)T

n

)2H−2 −
(
θn − T k/n

)2H−2
)

.
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The function x 
→ (x − b)2H−2 − (x − a)2H−2, a < b < x, decreases in x as its
derivative is

(2H − 2)
(
(x − b)2H−3 − (x − a)2H−3) < 0.

Thus

n−2
((

θn − (k + 1)T

n

)2H−2 − (θn − T k/n)2H−2
)

≥ n−2
(( (k + 2)T

n
− (k + 1)T

n

)2H−2 −
( (k + 2)T

n
− T k/n

)2H−2
)

= n−2
(

n2−2H −
(n

2

)2−2H
)

T 2H−2 ∼ n−2H .

Furthermore, as shown in Sect. A.5,

VarT (k+1)/n[BH
T (k+2)/n − BH

T (k+1)/n] ∼ n−2H .

Hence as n → ∞, the right-hand side of (A.22) is of the order

n−2H

n−4H
∼ n2H .

Proposition A.5 and Sect. A.5 imply also that for some C > 0,

E[π2
T (k+1)/n(n)] ≤ Cn2H for all k,n,

and hence E[(πT (k+1)/n(n) − πT k/n(n))2] ∼ n2H follows. Thus

E

[ n−1∑

k=0

λ|πT (k+1)/n(n) − πT k/n(n)|α
]

= O(n1+αH ). �

A.8 Convergence

As the Gaussian process B is a white noise, it is unlikely that its approximations ηn
t

may converge other than in law. Consider the step functions defined earlier in (A.13),

ζ n
t = c̃H ξT (κn

t +1)/n,T κn
t /n,

and in order to simplify calculations, focus on the dyadic partitions of [0, T ].
Let the point t ∈ (0, T ) be fixed as before. Denote κ2n

t := � 2nt
T

�. Then

T
κ2n

t

2n
≤ t ≤ T

(κ2n

t + 1)

2n
.

Introducing the notation

tn := T
κ2n

t

2n
, t ′n = tn + T

2n
, 
n := T/2n,
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if we establish that the expectation

E
[(

(
n)
−H ζ 2n

t − (
n+1)
−H ζ 2n+1

t

)2]

does not converge to 0 as n → ∞, then L2-convergence cannot take place in Theo-
rem A.5 above. We consider two cases, depending on the location of t .

Theorem A.10 The limit

lim
n→∞E

[(
(
n)

−H ζ 2n

t − (
n+1)
−H ζ 2n+1

t

)2] (A.23)

exists and is nonzero.

Proof (i) Let t ∈ [tn, (tn + t ′n)/2]. Note that in this case, tn+1 = tn, t ′n+1 = (tn + t ′n)/2.
Then

ζ 2n+1

t = c̃H ξt ′n+1,tn+1
= c̃H ξ(tn+t ′n)/2,tn .

(ii) Let t ∈ [(tn + t ′n)/2, t ′n] = [tn+1, t
′
n+1]. Then

ζ 2n+1

t = c̃H ξ
t ′n,

tn+t ′n
2

.

Consider the difference of (
n)
−H ζ 2n

t and (
n+1)
−H ζ 2n+1

t in both cases (i) and (ii),
up to a constant multiplier c̃H that can and will be omitted.

In case (i), 
−H
n+1ζ

2n+1

t − 
−H
n ζ 2n

t is asymptotically equivalent to


−H
n+1ξ(tn+t ′n)/2,tn − 
−H

n ξt ′n,tn .

Consider

E
[(


−H
n+1ξ(tn+t ′n)/2,tn − 
−H

n ξt ′n,tn

)2]

= E

[(

−H

n+1

∫ tn

0
s1/2−H

(∫ (tn+t ′n)/2

tn

vH−1/2(v − s)H−3/2 dv
)

dWs

− 
−H
n

∫ tn

0
s1/2−H

(∫ t ′n

tn

vH−1/2(v − s)H−3/2 dv
)

dWs

)2]

= 
−2H
n+1

∫ tn

0
s1−2H

(∫ (tn+t ′n)/2

tn

vH−1/2(v − s)H−3/2 dv

)2

ds

− 2


H
n 
H

n+1

∫ tn

0
s1−2H

(∫ (tn+t ′n)/2

tn

vH−1/2(v − s)H−3/2 dv

)

×
(∫ t ′n

tn

vH−1/2(v − s)H−3/2 dv

)
ds

+ 
−2H
n

∫ tn

0
s1−2H

(∫ t ′n

tn

vH−1/2(v − s)H−3/2 dv

)2

ds

=: In
1 − 2In

2 + In
3 .
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Here In
1 and In

3 are evaluated like ζ n
t in Proposition A.5. For completeness, we repeat

the main steps for In
1 , as they are similar for In

3 .
As tn ≤ v ≤ (tn + t ′n)/2 and tn → t , t ′n → t , the asymptotic behaviour of In

1 is the
same as for the simpler integral

Ĩ n
1 := t2H−1

n


2H
n+1

∫ tn

0
s1−2H

(∫ (tn+t ′n)/2

tn

(v − s)H−3/2 dv

)2

ds

= 1

(H − 1/2)2

t2H−1
n


2H
n+1

∫ tn

0
s1−2H

(( tn + t ′n
2

− s
)H−1/2 − (tn − s)H−1/2

)2

ds

= 1

(H − 1/2)2

t2H
n


2H
n+1

∫ 1

0
s1−2H

((1

2
+ t ′n

2tn
− s

)H−1/2 − (1 − s)H−1/2
)2

ds

= 1

(H − 1/2)2

t2H
n


2H
n+1

(∫ 1/2

0
+

∫ 1

1/2

)
.

The integral
∫ 1/2

0 will be transformed as

∫ 1

1/2
(1 − x)1−2H

((1

2

( t ′n
tn

− 1
) + x

)H−1/2 − xH−1/2
)2

dx.

Furthermore,

(
1

2

( t ′n
tn

− 1
)

+ x

)H−1/2

− xH−1/2 = 1

2

t ′n − tn

tn
(δ + x)H−3/2(H − 1/2),

where 0 < δ < 1
2

t ′n−tn
tn

and δ + x ∼ x. Note that

t ′n − tn

tn
= T

2n

1

tn
−→ 0,

and therefore
∫ 1/2

0 ∼ (
t ′n−tn

tn
)2 so that 
−2H

n+1

∫ 1/2
0 → 0 as n → ∞.

For t2H
n (H − 1/2)−2
−2H

n+1

∫ 1
1/2, the change of variable x = t ′n−tn

2tn
y = T

2n+1tn
y

yields

∫ 1

1/2
s1−2H

((1

2
+ t ′n

2tn
− s

)H−1/2 − (1 − s)H−1/2
)2

ds

=
∫ 1/2

0
(1 − x)1−2H

(( t ′n − tn

2tn
+ x

)H−1/2 − xH−1/2
)2

dx

=
(

T

2n+1tn

)2H ∫ 2ntn/T

0

(
1 − T

2n+1tn
y

)1−2H (
(1 + y)H−1/2 − yH−1/2)dy.
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Therefore

Ĩ n
1 ∼ 1

(H − 1/2)2

∫ ∞

0

(
(1 + y)H−1/2 − yH−1/2)2

dy.

(This is the same result as in the argument leading to Proposition A.5 above.)
Concerning In

3 , similar calculations lead to

In
3 ∼ Ĩ n

3 = t2H−1
n


2H
n (H − 1/2)2

∫ tn

0
s1−2H

(
(t ′n − s)H−1/2 − (tn − s)H−1/2)2

ds

= t2H−1
n


2H
n (H − 1/2)2

∫ 1

0
s1−2H

(( t ′n
tn

− s
)H−1/2 − (1 − s)H−1/2

)2

ds

= t2H−1
n


2H
n (H − 1/2)2

(∫ 1/2

0
+

∫ 1

1/2

)
.

The term coming from the first integral, as always, tends to 0. The term coming from
the second integral is equivalent to

t2H
n (t ′n − tn)

2H


2H
n t2H

n (H − 1/2)2

∫ ∞

0

(
(y + 1)H−1/2 − yH−1/2)2

dy

∼ 1

(H − 1/2)2

∫ ∞

0

(
(y + 1)H−1/2 − yH−1/2)2

dy.

(This is the same result as for In
1 .) Now consider

In
2 = 1


H
n 
H

n+1

∫ tn

0
s1−2H

(∫ (tn+t ′n)/2

tn

vH−1/2(v − s)H−3/2 dv

)

×
(∫ t ′n

tn

vH−1/2(v − s)H−3/2 dv

)
ds

∼ 2H t2H−1
n


2H
n (H − 1/2)2

∫ tn

0
s1−2H

(( tn + t ′n
2

− s
)H−1/2 − (tn − s)H−1/2

)

× (
(t ′n − s)H−1/2 − (tn − s)H−1/2)ds

= 2H t2H
n


2H
n (H − 1/2)2

∫ 1

0
s1−2H

((1

2
+ t ′n

2tn
− s

)H−1/2 − (1 − s)H−1/2
)

×
(( t ′n

tn
− s

)H−1/2 − (1 − s)H−1/2
)

ds

= 2H t2H
n


2H
n (H − 1/2)2

(∫ 1/2

0
+

∫ 1

1/2

)
.
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The term coming from the first integral tends to 0 as n → ∞ because it is equivalent

to 
2
n/


2H
n . Using the changes of variables s = 1 − x and x = t ′n−tn

2tn
y, it follows

that

2H t2H
n


2H
n (H − 1/2)2

∫ 1

1/2
s1−2H

((1

2
+ t ′n

tn
− s

)H−1/2 − (1 − s)H−1/2
)

×
(( t ′n

tn
− s

)H−1/2 − (1 − s)H−1/2
)

ds

= 2H t2H
n


2H
n (H − 1/2)2

∫ 1/2

0
(1 − x)1−2H

((−tn + t ′n
2tn

+ x
)H−1/2 − xH−1/2

)

×
(( t ′n − tn

tn
+ x

)H−1/2 − xH−1/2
)

dx

= 2H t2H
n


2H
n (H − 1/2)2

(
t ′n − tn

2tn

)2H

×
∫ tn/(t ′n−tn)

0

(
1 − t ′n − tn

2tn
y

)1−2H (
(1 + y)H−1/2 − yH−1/2)

× (
(2 + y)H−1/2 − yH−1/2)dy

−→ 2−H

(H − 1/2)2

∫ ∞

0

(
(1 + y)H−1/2 − yH−1/2)((2 + y)H−1/2 − yH−1/2)dy.

Therefore the limit equals

2

(H − 1/2)2

∫ ∞

0

(
(y + 1)H−1/2 − yH−1/2)2

dy

− 2
2−H

(H − 1/2)2

∫ ∞

0

(
(y + 1)H−1/2 − yH−1/2)((y + 2)H−1/2 − yH−1/2)dy.

The change of variable y = z/2 yields

∫ ∞

0

(
(y + 1)H−1/2 − yH−1/2)2

dy = 1

2

∫ ∞

0

(( z

2
− 1

)H−1/2 −
( z

2

)H−1/2
)

dz

= 1

22H

∫ ∞

0

(
(z + 2)H−1/2 − zH−1/2)2

dz,
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and therefore the limit becomes

1

(H − 1/2)2

(∫ ∞

0

(
(y + 1)H−1/2 − yH−1/2)2

dy

+ 1

22H

∫ ∞

0

(
(y + 2)H−1/2 − yH−1/2)2

dy

− 21−H

∫ ∞

0

(
(y + 1)H−1/2 − yH−1/2)((y + 2)H−1/2 − yH−1/2)dy

)

= 1

(H − 1/2)2

∫ ∞

0

(
(y + 1)H−1/2 − yH−1/2

− 1

2H
(y + 2)H−1/2 + 1

2H
yH−1/2

)2

dy

�= 0.

Let t = Tj0/2m0 for some j0 ≥ 1, m0 ≥ 1. Then t ∈ [tn, t ′n] for n ≥ m0, i.e.,
case (i) holds. Therefore at least for t of the form Tj/2m, we have no L2-
convergence of ζ 2n

t . If t is not of this form, then the situation will switch from (i)
to (ii).

Consider now case (ii). Then 
n
t = 
−H

n+1ζ
2n+1

t − 
−H
n ζ 2n

t and 
n
t has the same

limit (in the mean-square sense) as 
−H
n+1ξt ′n,(tn+t ′n)/2 − 
−H

n ξt ′n,tn . Consider

E[(
−H
n+1ξt ′n,(tn+t ′n)/2 − 
−H

n ξt ′n,tn )
2]

= E

[(

−H

n+1

∫ (tn+t ′n)/2

0
s1/2−H

(∫ t ′n

(tn+t ′n)/2
vH−1/2(v − s)H−3/2 dv

)
dWs

− 
−H
n

∫ tn

0
s1/2−H

(∫ t ′n

tn

vH−1/2(v − s)H−3/2
)

dWs

)2]

= 
−2H
n+1

∫ (tn+t ′n)/2

0
s1−2H

(∫ t ′n

(tn+t ′n)/2
vH−1/2(v − s)H−3/2 dv

)2

ds

− 2


H
n 
H

n+1

∫ tn

0
s1−2H

(∫ t ′n

(tn+t ′n)/2
vH−1/2(v − s)H−3/2dv

)

×
(∫ t ′n

tn

vH−1/2(v − s)H−3/2dv

)
ds

+ 
−2H
n

∫ tn

0
s1−2H

(∫ t ′n

tn

vH−1/2(v − s)H−3/2 dv

)2

ds

=: In
1 − 2In

2 + In
3 .

As before, the limit of each term does not change when we replace vH−1/2 by tH−1/2.

Therefore, setting 1 − s = x, x = t ′n−tn
2tn

y and noting (t ′n − tn)/2 = T/2n+1 = 
n+1,
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it follows that

In
1 ∼ t2H−1


2H
n+1(H − 1/2)2

∫ tn

0
s1−2H

(
(t ′n − s)H−1/2 −

( t ′n + tn

2
− s

)H−1/2
)2

ds

∼ t2H


2H
n+1(H − 1/2)2

×
∫ 1

0
s1−2H

(( t ′n − tn

tn
+ 1 − s

)H−1/2 −
( t ′n − tn

2tn
+ 1 − s

)H−1/2
)2

ds

= t2H


2H
n+1(H − 1/2)2

(∫ 1/2

0
+

∫ 1

1/2

)

∼ t2H


2H
n+1(H − 1/2)2

(
t ′n − tn

2tn

)2H

×
∫ tn/(t ′n−tn)

0

(
1 − t ′n − tn

2tn
y

)1−2H (
(y + 2)H−1/2 − (y + 1)H−1/2)2

dy

∼ 1

(H − 1/2)2

∫ ∞

0

(
(2 + y)H−1/2 − (1 + y)H−1/2)2

dy.

Similarly,

In
3 ∼ 1

(H − 1/2)2

∫ ∞

0

(
(y + 1)H−1/2 − yH−1/2)2

dy.

Now,

In
2 ∼ t2H

n

(H − 1/2)2
H
n 
H

n+1

∫ 1

1/2
s1−2H

(( t ′n
tn

− s
)H−1/2 −

( tn + t ′n
2tn

− s
)H−1/2

)

×
(( t ′n

tn
− s

)H−1/2 − (1 − s)H−1/2
)

ds

∼ (
t ′n−tn

2 )2H

(H − 1/2)2
H
n 
H

n+1

∫ ∞

0

(
(y + 2)H−1/2 − (y + 1)H−1/2)

× (
(y + 2)H−1/2 − yH−1/2)dy

∼ 2−H

(H − 1/2)2

∫ ∞

0

(
(y + 2)H−1/2 − (y + 1)H−1/2)

× (
(y + 2)H−1/2 − yH−1/2)dy.

Rewrite now In
3 (using the substitution y = v/2) as

In
3 ∼ 2−2H

(H − 1/2)2

∫ ∞

0

(
(y + 2)H−1/2 − yH−1/2)2

dy.
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In summary, it follows that

E

[(
1


H
n+1

ξt ′n,(tn+t ′n)/2 − 1


H
n

ξt ′n,tn

)2]

∼ 1

(H − 1/2)2

∫ ∞

0

(
(2 + y)H−1/2 − (1 + y)H−1/2

− 2−H
(
(2 + y)H−1/2 − yH−1/2))2

dy > 0,

which shows that L2-convergence also does not hold in case (ii). �

Remark A.11 An inspection of the above proof shows that the limits in (A.19) and
(A.23) remain the same if fBm is replaced by an fBm with drift, which corresponds to
adding to ζ n

t a term proportional to 
n. Repeating the same calculations in that set-
ting, it turns out that because 
−2H

n 
2
n = 
−2H+2

n vanishes as n increases to infinity
(since H ∈ (0,1)), the extra term is inconsequential.
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