
26 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Amadori S.,  Catania G. (2021). Material model robust identification procedure from dynamical
measurements made on a flexible specimen-frame system. COMPOSITE STRUCTURES, 269, 1-17
[10.1016/j.compstruct.2021.113981].

Published Version:

Material model robust identification procedure from dynamical measurements made on a flexible specimen-
frame system

Published:
DOI: http://doi.org/10.1016/j.compstruct.2021.113981

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/855317 since: 2024-11-22

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.compstruct.2021.113981
https://hdl.handle.net/11585/855317


*Corresponding author: Stefano Amadori 
e-mail: stefano.amadori4@unibo.it 

Material model robust identification procedure from dynamical measurements made on a 

flexible specimen-frame system. 

 

Authors and Affiliations: 

 

Stefano Amadori*,a , Giuseppe Cataniab  

aCiri-Mam, University of Bologna, Viale Risorgimento 2, 40136 Bologna (BO), Italy, email: 

stefano.amadori4@unibo.it 

bCiri-Mam, DIN, Department of Industrial Engineering, University of Bologna, Viale Risorgimento 2, 

40136 Bologna (BO), Italy, email: giuseppe.catania@unibo.it 

 

Abstract: 

 

A procedure for the identification of the material model of beam specimens by means of harmonic 

force and displacement measurements in flexural condition is presented. Input-output frequency 

response function (FRF) evaluations are used in standard DMA instruments to estimate the material 

stress-strain frequency response function. Nevertheless, the contribution of the instrument frame model 

coupling and of the inertial contribution of the excitation moving substructure to the input-output FRFs 

can make such estimates meaningless in most practical applications, especially if a wide excitation 

frequency range is taken into account. In this work the instrument frame model contribution is 

estimated by means of doing calibration measurements on some reference beams and processing them 

by a procedure based on optimization algorithms. A signal processing-based procedure is also proposed 

to identify the optimal frame model rational function fit by eliminating computational and noise related 

contribution. The identified rational frame model is used to obtain the material model in the frequency 

domain being filtered from the contribution of the experimental system. The proposed technique 

robustness is tested on some numerical model cases. The same technique is then applied to some 

dynamical measurements made on specimens of different materials. The results are shown and 

critically discussed. 
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1.Introduction 

 

Dynamic Mechanical Analysis (DMA) test instruments are commonly employed to investigate the 

mechanical behaviour of materials at different temperatures and frequencies [1-4]. They can be used to 

identify the constitutive models of tested specimen in the frequency domain [5,6], and can also be 

employed to validate material models by means of measurements in different, instrument dependent, 

frequency ranges [4]. In a typical dynamic measurement context, a time varying excitation is applied 

and measured, by means of a mobile measuring subsystem, to an experimental degree of freedom (dof) 

of a specimen of known geometry and the displacement response is obtained and measured in the same 

dof as well. Commercially available DMA instruments are designed to work at different frequency 

ranges, the maximum frequency value being limited by the instrument structural frequency dependent 

receptance, and many experimental configurations can be employed to test specimens of different 

geometries [1-4,7,8]. Simple specimens, for example beams that can be described by a known beam 

model, are tested and the experimental boundary condition are made to be as close as possible to the 

standard boundary conditions assumed in the reference beam model [3,9]. Nevertheless, theoretical 

standard beam end conditions are generally very far from real boundary conditions related to such 

context. To account for that contribution, known commercial test applications apply a calibration 

procedure to identify the static elastic stiffness modelling the ideal coupling between a rigid frame and 

the beam specimen and to also identify the lumped mass associated to the mobile measuring subsystem. 

A simple, but generally non consistent and non-effective lumped parameter frame model approach 

results. Literature reports that such simple models generally lead to unsatisfying results [9-11] as they 

fail to accurately describe the specimen under study dynamic behaviour in the medium and high 

measurement frequency range [7,11]. 

 



 

(a) (b) 

Fig.1: DMA experimental results for: (a) beam B1 (measuring system I1) and (b) B2 (measuring 

system I2, right). 

As a matter of example, Fig.1 shows some experimental results concerning the  D j    stress 

versus   strain model identification of homogeneous C67 harmonic steel made by means of different 

beam specimens and also different DMA test systems. Two beams (B1, B2), measured by means of 

two different instruments (I1. I2), are shown in Fig.1, with B1 (tested with I1) having length 17.5 mm, 

width 12.8 mm, thickness 0.75 mm, and B2 (tested with I2) having length 16 mm, width 2.97 mm, 

thickness 0.5 mm. For both the specimens, the same experimental condition set-up was adopted, i.e. 

clamped double pendulum boundary conditions, constant vibration amplitude 10v   µm at the mobile 

end of the beam ( 4
max 1.5 10   ), the measured frequency range was [0.1-200] Hz for I1, [0.1-100] Hz 

for I2. The standard calibration procedure associated to each instrument is used to estimate  D j  . 

Since low strain and ambient temperature experimental conditions are considered, the results shown in 

Fig.1 are unsatisfying if compared with the expected reference Hooke model behaviour, i.e. 

  1D j   . 

More effective calibration and identification techniques are needed to obtain more accurate results, and 

an innovative procedure is proposed in this work. 

To obtain an accurate structural model of the instrument frame to be coupled with the specimen beam 

model and to define a procedure being able to filter the estimated FRFs from the frame coupling 

effective boundary conditions, typically a multi degree of freedom (mdof) experimental inverse 

modelling approach is required, and many effective techniques are known [12-14]. Such techniques 

typically make use of a secondary test measurement system, including accelerometer, laser doppler 

vibrometer sensors, impulse and shaker excitation systems and a multi-channel data acquisition system 
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as well [13,15,16], since such tools are not directly available from within the typical DMA instrument. 

The adoption of mdof experimental identification techniques can significantly improve the system 

calibration accuracy, but the resulting calibration procedure, to be adopted before any new 

measurement campaign is started, is not generally compatible with the standard experimental practice, 

and to the expected value of the costs. 

The calibration technique proposed in this work takes into account of the real specimen boundary 

conditions, of the inertial effect of the mobile measuring subsystem, and differs from the known 

approaches [12-17] since only the single experimental dof input-output data obtained from a single 

experimental dof DMA system are employed to identify a multi-dof test system and a procedure is also 

applied to eliminate any computational and noise related contribution to the estimated specimen and 

frame rational model. 

Known material identification techniques made it possible to obtain the  D j   material   stress 

versus   strain relationship: 

         0j E j j E D j j                  (1)  

by processing the instrument output and taking into account of the assumed beam specimen model, i.e. 

Timoshenko or Euler-Bernoulli model [18], with clamped-sliding boundary conditions. The beam 

inertial action contribution in the measured frequency range  1 ....f N  ω   can also be 

taken into account [4] in the measurement processing procedure.  

It must be noted that  0E D j    can be modelled by means of an kn  order generalized Kelvin model 

[19], i.e. kn  Kelvin blocks connected in series, where a single Kelvin block is a parallel connection of 

an elastic Hooke ( iE ) and a viscous Newton ( i ) block unit. For the i-th block Eq.(1) holds: 

        ,     1,...,i i i KE j i n          (2) 

where  
~

 is the Fourier transform operator. Since  + +
Ki i n          , from Eq,(2) [19]: 
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In Eq. (3) the constant 0E  is the material modulus at 0  and its value can be estimated from static 

measurements or extrapolated from dynamical measurement estimates as the frequency goes to zero. 



In these authors previous work [4] a rational function fit approach based on monomials and orthogonal 

Forsythe polynomial bases was considered to obtain a  D j   rational fit but the instrument frame 

contribution was not taken into account. In the novel modelling approach proposed in this work, a 

2-dofs, multi-pole instrument frame model in the frequency domain is first identified by means of 

measurements made on different known specimens. A new procedure for the identification of the 

rational model real parameters of the instrument frame frequency transfer function is proposed in this 

work, making it possible to discard computational terms. This rational fit procedure is generalized to 

employ different polynomial bases, i.e. monomial, Forsythe, Chebyshev and Legendre polynomials, 

and is based on the least square minimum approach [17,20-23]. The instrument frame model is used to 

obtain a  D j   estimate from within experimental measurement on a test specimen by means of an 

optimisation-based algorithm, and a  D j   physically sound rational model can then be obtained by 

means of the same procedure employed to identify the rational instrument frame model. The robustness 

of this calibration procedure is tested by means of numerical model test cases with added noise and 

then is applied to experimental measurements and validated as well. The proposed identification 

procedures and the results are critically discussed at the end of this paper. 

 

2. Experimental setup and model assumptions 

 

Fig.2: Experimental setup.  
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A schematic representation of a typical standard measurement system experimental set-up is shown in 

Fig.2, showing a single-cantilever standard mounting configuration of the beam specimen made of the 

material under test [1-4,7]. The system is composed of the instrument frame, the beam specimen and 

the mobile excitation-measuring subsystem (modelled by means of a lumped mass dm ) at the mobile 

end of the beam. Specimens in the form of slender, uniform, homogeneous beams are excited by means 

of a sinusoidal flexural force at different frequencies at the mobile beam end, where both excitation and 

displacement response are synchronously measured at the same experimental degree of freedom model 

(Fig.2). Clamped-sliding beam boundary conditions can be assumed for the test specimen, but ideal, 

rigid frame exhibiting null displacement under external excitation should be assumed as well. Taking 

into account of frame continuously distributed elastic and inertial properties, in this approach beam 

free-sliding boundary conditions are assumed instead (Fig.2), and the beam free end vertical 

displacement and rotation are assumed to coincide with 2 frame experimental dofs, these two dofs 

coinciding with v  displacement and   rotation of the instrument frame and of the specimen fixed end. 

The kinematical coupling between beam and frame dofs, in the frequency domain, is defined by the 

unknown, to be identified, frame response function, being generally complex, frequency dependent, 

and exhibiting a generally unknown number of system poles. The dm  inertial mass is lumped in the 

sliding end. 

To take into account of the frame dynamic contribution, flexural excitation force-displacement 

measurements are made on a set of uniform beam specimens made of a reference material and the 

known mechanical data related to the specimens are processed by means of an optimisation algorithm 

to identify a 2 dofs-multiple poles frame system model, the two physical dofs coinciding with v  

displacement and   rotation of the instrument frame coupled with the specimen fixed end. 

It must be observed that the instrument frame frequency transfer function matrix resulting from the 

identified system model can be associated to a classical second order, 2 dofs, pn  poles, mechanical 

system, where the matrix elements can be modelled by means of the ratio of a 1pn   degree 

 1pnp j    polynomial function to a pn  degree  
pnp j   polynomial function, where real valued 

polynomial coefficients are assumed.  

The beam specimen is modelled by means of the Euler-Bernoulli beam theory [9,18], since slender 

beam test specimens are taken into account here. A kinematical small displacement and deformation 



field is assumed, and the beam transverse displacement  ,v t  continuous state variable (Fig.2) is 

assumed. A spectral approach is considered [24]. The transverse displacement v  kinematical variable is 

approximated by means of the product of two separate functions of the normalized   coordinate and 

of the time t : 

   v t Ψ δ  (4) 

where  tδ  refers to the unknown beam dofs and  Ψ  is made up of n  normalized, orthogonal, 

known eigenfunctions, satisfying the free-sliding beam boundary conditions [4,18]: 

     1 ( ) ( )  ,   ( ) cosh cos sinh sin ;  tanhn i i i i i i i iz z Q z z Q z                     Ψ   (5) 

and iz  are the infinite solutions of the equation tan tanh 0i iz z  ,  4 1
4iz i


    . As shown in 

Fig.2, test force F  is applied at the sliding end of the beam ( 1  ), force 0F  and momentum 0M  

reactions result at the free end of the beam ( 0)  , and 0F , 0M  reactions result at the coupled frame 

dofs as well. The inertial contribution of the dm  lumped mass at the sliding beam end is also taken into 

account. Since homogeneous, uniform beam assumptions are made, the following beam differential 

equations of motion can be obtained by imposing the beam total potential energy stationarity condition 

to an arbitrary beam infinitesimal element associated to   position, d  length, where beam boundary 

conditions are satisfied from Eq.(5) assumptions: 

             

             

0 4
0 03

1 1 4
10 0

0
1 1 0 1

  ,     ,    .

T
T T Td

T T
n

E D j I m
diag L A F M F

L A LL

d d diag z z






     

    
                   

        

Ψ
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In Eq.(6), ( )T is the transpose operator, ( ) ( ) ( )L x       ,     t  


, I  is the beam 

transverse section moment, A  is the beam section area and   the material density. Applying to Eq.(4) 

the Fourier transform operator: 

   

   1

v j

j
L

 

  

  
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Ψ Δ

Ψ Δ



  (7) 

By Fourier transforming Eq.(6), the following result can be obtained: 
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Since: 
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From Eqs.(8-9): 
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The two dofs at the free end of the beam (  0,v j  ,  0, j  ) are assumed to be congruent with the 

dofs associated to the instrument frame. The ( )j X  frame frequency transfer function for  0,v j   

and  0, j   is assumed as: 
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Combining Eqs.(10,12). 
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and from Eq.(13): 
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                                  

 



 (14) 

In Eq.(14) the beam displacement at the sliding end, corresponding to the measurement data obtained 

from within a typical dynamic mechanical system, is explicitly expressed as a function of the unknown 

symmetric matrix ( )j X . Frame model identification from the calibration procedure consists in 

identifying the independent 11( )X j  , 12( )X j  , 22( )X j    frequency dependent terms, for every  

value from the experimental test measurement. 

 

3 Instrument frame ( )j X  model identification 

A test setup of bn  reference beams with known geometry made of known material (  D j  is assumed 

to be known) are expected to be measured over a discrete frequency range  1 ....f N  ω  . 

From Eq.(14) transfer function measurements only depend on the ( )j X  unknown frame contribution 

matrix, since the specimen characteristics (geometry and material) are supposed to be known in 

advance. The dm  lumped mass model parameter associated to the measuring mobile model subsystem 

can be estimated by means of  fF j   force and  fv j   displacement measurements, made in the 

ω frequency range, without a mounted specimen, i.e. only the mobile subsystem inertial excitation 

results: 
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
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


 (15) 



A set of bn  nonlinear equations in 3 unknowns with respect to f  frequency value results from a 

measuring 3bn   different beam specimens: 
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and from Eq.(16): 

   1 1, ; 1, ,  b b
T Tn n

f f f f f fH H HM HM f N   H HM   (17). 

A multi-step approach is proposed for ( )j X matrix identification. 

Step1: for every f  frequency value the fe error vector and f  objective scalar function can be 

defined: 

   
 
( ) ( )  

( )

f f f f f f

T
f f f f f

j j

j

 



    

     

e e X H X HM

X e e
. (18) 

A multi-step constrained and gradient-based optimisation algorithm is adopted, for 1, ,f N  , to find 

the optimal variable matrix ( )j X  by minimizing  f X  [25-28] .The identification procedure at 

the f step utilizes the previously identified 1( )fj  X value as the starting point for the optimisation 

algorithm. The ( )fj X  estimates can be used to model the instrument frame dynamic behaviour at 

the f  frequency value, 1, ,f N  . 

Step 2: the ( )j X ) matrix coefficients can be modelled by means of a rational function formulation, 

since the instrument frame model can be associated to a classical second order, pn  poles mechanical 

system, i.e. by means of the ratio of a 1pn   degree  1pnp j    polynomial function to a pn degree 

 
pnp j   polynomial function, with real valued polynomial coefficients: 
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 (19) 

Where  1  , 0, , 1pn

i pP j i n      and    , 0, ,pn

pP j n    , and are polynomials from a known 

polynomial base, e.g. monomial, Legendre, Chebyshev, Forsythe among all [20,21], and 

     1,1 , 1,2  or 2,2rs  , where  rsX j   is complex valued but rs
ia and b  are all real valued 

coefficients. 

Identification of pn  model order and rs
ia , b  unknown coefficients can be done by means of 

well-known frequency based identification techniques [12], nevertheless complex rs
ia , b  coefficients 

are expected to result from the application of such procedures. An extension of a procedure previously 

discussed by these same authors [4] is proposed and reported in appendix A, consisting in a linear real 

algebraic problem in real unknowns. The real rs
ia  and b  coefficients are identified by the procedure 

described in appendix A, with 1 11 2 12 3 113 , G  , G  , G  , 
qq n pn X X G X m n      , where the 

Legendre polynomial basis was chosen for  1m
iP j    and  mP j   since the most accurate results 

were obtained with such choice. 

 

4.Material model identification 

A uniform slender beam specimen made of the material under study, coupled to the instrument frame is 

considered herein. The ratio of the transverse response to the force applied in the beam mobile end, in 

the frequency domain, is analytically known and can be inferred from Eq.(16). To identify the optimal 

    1 ND j D j   D   values of the constitutive stress-strain relationship of the material in 

the measured  1 ....f N  ω   frequency range, a multi-step procedure is proposed. 

Step 1: ( )D j   is first estimated by minimizing the scalar function f : 

       ; 1, ,f f f f fD j H D j HM f N         (20) 

where fHM  is estimated from measurements and fH  from Eq. (16) depends on known ( )j X  and 

exhibits a strong nonlinear dependency on ( )fD j   (Eq.(11)).  The optimisation approach used in §2, 



step1 is here adopted to estimate ( ) , 1, ,fD j f N   , with initial value conditions: 

   1 0 1D j D   ,    1f fD j D j     . 

Step 2: from Eq.(3), the pn  poles rational fit model associated to ( )D j   results: 
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. (21) 

From Eq.(21) the ( )D j   reciprocal is expressed by a rational function expression consistent with 

Eq.(A.1). In order to identify the pn , and ia , b  coefficients optimal values, the procedure illustrated in 

Appendix A is adopted by choosing the following parameters: nq=1, the Legendre polynomial basis and 

0 0c d . Unphysical and unstable poles are again eliminated by means of stability diagrams and the 

optimal ( )D j   rational model is obtained as a result. 

 

 

Fig.3: IF1 ( )X  assumed analytical model plot. 
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Fig.4: IF2 ( )X  assumed analytical model plot. 

5. Numerical and experimental test cases 

5.1. Numerical test cases with simulated measurement noise 

The optimization algorithm effectiveness is first evaluated by estimating the ( )j X  model related to 

two numerically generated instrument frame analytical models, model IF1 (Fig.3) associated to 3 

conjugated pole couples ( 6pn  ) and model IF2 (Fig.4) associated to 2 conjugated pole couples (

4pn  ). In order to test the robustness of the proposed optimization algorithm, the contribution of 

random measurement noise was taken into account. 

As previously indicated in section 3, in order to identify the ( )j X  and ( )D j   models, 

measurements from reference beams are considered. When the optimization algorithm is applied to 

numerical test cases, measurement noise is simulated by adding random noise to the measurements 

obtained from the reference beams coupled to IF1 and IF2 frame analytical models. Virtual 

 ( )i i
f f fHM H j  X measurements are then numerically simulated from the beam specimen test 

dataset related to beams 1-4, reported in Table 1, by means of Eq.(16) in the [0.1-200] Hz frequency 

range ( 1 0.1   Hz, 200N   Hz, 202N  ), without added noise and with added noise by assuming 

different signal to noise ratio values ( S N ). 
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Fig.5: IF1 ( )X  plot: (-black) reference, (- red) estimated values without added measurement noise. 

 

Fig.6: IF2 ( )X  plot: (-black) reference, (- red) estimated values without added measurement noise. 

Estimated ( )j X  values, related to virtual measurements without added noise, are plotted in Figs.5-6, 

and the error associated to such estimated model is minimal. 

Estimated ( )j X  values, related to virtual measurements with added noise then follow. The 

 i
f noise

HM  simulated measurement results with noise are generated by means of the following 

equation: 
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 (22) 

where S N is the selected noise signal to noise ratio expressed in dB and ()Rand  is a function 

generating a random number between 0 and 1, and . *( )  is the conjugate transpose operator. Examples 

of the frequency response function measurements (   ; 1, , ;  i=1, ,i
f bnoise

HM f N n   ) related to the 

IF2 generated instrument frame analytical model and obtained from beam 3 dataset (Table 1) with five 

different added noise levels (S N 100,90,80,70,60 dB) are presented in Fig.7. It must be taken into 

account that S N ≥80dB is typically expected in standard experimental test results, so that lower S N  

values are here used to check the robustness of this novel identification approach. 

 

Fig.7: Numerically simulated FRF measurements related to beam 3 (IF1 frame model) without noise 

and with different added noise levels:  S N 60 100 dB  . 

( )fj X  estimated results associated to the IF1 instrument frame analytical model from virtual 

measurements with different levels of added noise are reported in Figs.8-13 (S N 60  dB for Fig.8, 

S N 70  dB for Fig.9, S N 80  dB for Fig.10, S N 90  dB for Fig.11, S N 100  dB for Fig.12). 

The results show that the optimization procedure is able to effectively identify the unknown frame 

model even if high levels of measurement noise are taken into account. ( )fj X  estimated results 

dB
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associated to the IF2 instrument frame analytical model from virtual measurements with S N 80  dB 

added noise are reported in Fig.13, being again fully consistent with the theoretical model. 

Rational fits are then identified by adopting the procedure illustrated in section 3, and results are 

plotted in Figs.8-12 (IF1) and Fig.13 (IF2), showing a good consistency with theoretical expected 

values. 

 

Fig.8: IF1 ( )X  estimates: (- black) reference, (- red) estimated values and (- cyan) 6pn   rational fit 

with added measurement noise (S N 60dB ). 
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Fig.9: IF1 ( )X  estimates: (- black) reference, (- red) estimated values and (- cyan) 6pn   rational fit 

with added measurement noise (S N 70dB ). 

 

Fig.10: IF1 ( )X  estimates: (- black) reference, (- red) estimated values and (- cyan) 6pn   rational 

fit with added measurement noise (S N 80dB ). 

 

Fig.11: IF1 ( )X  estimates: (- black) reference, (- red) estimated values and (- cyan) 6pn   rational 

fit with added measurement noise (S N 90dB ). 
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Fig.12: IF1 ( )X  estimates: (- black) reference, (- red) estimated values and (- cyan) 6pn   rational 

fit with added measurement noise (S N 100dB ). 

 

Fig.13: IF2 ( )X  estimates: (- black) reference, (- red) estimated values and (- cyan) 4pn   rational 

fit with added measurement noise (S N 80dB ). 

The material identification procedure is then tested from simulated fHM  measurements obtained from 

the beam specimen dataset 5 reported in Table 1, with S N 80  dB added noise, in the [0.1-200] Hz 

frequency range ( 1 0.1   Hz, 200N   Hz, 202N  ), by using the identified rational fit (Figs.10,13 

R
e(

X
11

)
Im

X
11

)

R
e(

X
12

)
Im

X
12

)

R
e(

X
22

)
Im

X
22

)

R
e(

X
11

)
Im

(X
11

)

R
e(

X
12

)
Im

(X
12

)

R
e(

X
22

)
Im

(X
22

)



S N 80 dB) related to both IF1 and IF2 models, previously identified from measurements with 

S N 80 dB added noise. The effectiveness of the ( )D j   optimization and rational fit identification 

procedures is tested and results are shown in Figs.14-15. The ( )D j  rational model obtained with 

respect to both IF1 and IF2 instrument frame assumed configurations is the same, showing 0kn  , and 

being consistent with the ( )D j   theoretical Hooke model assumed for beam 5 (Table 1). The 

identification results related to the rigid frame assumption ( ( )j  X 0 ) are reported as well, showing 

that the dynamic contribution of the frame may seriously affect the ( )D j  model estimate in practical 

test applications. 

Table 1: Beam specimens data used for X(ω), D(ω) identification (numerical test cases) 

Beam 
Length 

(m) 

Thickness 

(m) 

Width 

(m) 
Density (kg/m3) E0 (Pa) D(ω) model 

1 1.75∙10
-2

 0.75∙10
-3

 12.7∙10
-3

 7850 2.1∙10
11

 
Hooke 

(D(j·ω)=1) 

2 1.75∙10
-2

 3.0∙10
-3

 3.0∙10
-3

 7850 2.1∙10
11

 
Hooke 

(D(j·ω)=1) 

3 1.75∙10
-2

 3.0∙10
-3

 5.0∙10
-3

 7850 2.1∙10
11

 
Hooke 

(D(j·ω)=1) 

4 1.75∙10
-2

 5.0∙10
-3

 3.0∙10
-3

 7850 2.1∙10
11

 
Hooke 

(D(j·ω)=1) 

5 1.75∙10-2 0.5∙10-3 3.0∙10-3 7850 2.1∙1011 
Hooke 

(D(j·ω)=1) 



Fig.14: beam 5 material ( )D j  ) estimate from IF1 frame measurements with noise (S N 80dB ): 

(- black) Step 1 with ( ) X 0  assumption; (- red) Step 1 with ( )X  6pn   rational fit model; (- blue) 

Step 2 ( 0kn  ) with ( )X  6pn   rational fit model. 

Fig.15: beam 5 material ( )D j  ) estimate from IF2 frame measurements with noise (S N 80dB ): 

(- black) Step 1 with ( ) X 0  assumption; (- red)  Step 1 with ( )X  4pn   rational fit model; 

(- blue) Step 2  ( 0kn  ) with ( )X  4pn   rational fit model. 
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Fig.16: 11( )X j  , 12 ( )X j  , 22( )X j   estimated values: (- red) Step 1; (- blue) Step 2 12pn   

rational fit.

Fig.17: beam 5 ( )D j   estimates: (- red) Step 1; (- blue) Step 2 0kn   rational fit. 
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Fig.18: beam 6 ( )D j   estimates: (- red) Step 1; (- blue) Step 2 0kn   rational fit.

Fig.19: beam 7 ( )D j   estimates: (- red) Step 1; (- blue) Step 2 3kn   rational fit. 

5.2. Experimental test cases 

The ( )j X  and ( )D j   identification procedures are then applied to true experimental 

measurements made with an industrially available DMA measuring systems (TA instruments DMA 

Q800). The experimental set-up is the one outlined in Fig.2. All measurements were made in the low 

strain amplitude range ( 4
max 1.5 10   ), 202 frequency steps ( 1 0.1   Hz, 200N   Hz, 202N  ), 

constant temperature ( 35T  °C) experimental conditions. A set of four reference beam specimens (
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4bn  ) made of the same harmonic steel material but different geometry, so that different flexural 

stiffness is taken into account is used to estimate the instrument frame ( )fj X . Beam specimen data 

values are reported in Table 2 (beam 1-4). The identified ( )fj X  element matrix estimates resulting 

from the two steps identification procedure are plotted with respect to frequency in Fig.16. Optimal 

model order 12pn   results from the ( )j X  rational fit identification procedure (Step 2). The 

unknown material model of beams 5,6,7, whose known parameters ( 0 ,  E  ) are reported in Table.2, is 

then identified from within measurements made specimens whose parameters are again reported in 

Table 2. The ( )D j   proposed identification technique is applied by assuming the 12pn   previously 

identified rational fit ( )j X  frame model.  

 

Fig.20: beam 5 ( )D j   estimates: (- blue) Step 2 0kn   rational fit.; (- green) Step 2 ( ) X 0  5kn   

rational fit. 
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Fig.21: beam 6 ( )D j   estimates: (- blue) Step 2 0kn   rational fit.; (- green) Step 2 ( ) X 0  3kn   

rational fit. 

 

Fig.22: beam 7 ( )D j   estimates: (- blue) Step 2 0kn   rational fit.; (- green) Step 2 ( ) X 0  6kn   

rational fit. 

The estimated ( )fD j   values related to beam 5-7 specimens are reported in Figs.17-19, where results 

associated to the Step 1 and Step 2 identification procedures are outlined. It appears that the results 

concerning the beam 5-6 harmonic steel material are consistent with the expected Hooke model (no 
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poles, 0kn  ), while a physically sound optimal 3kn   material model, 3 real poles, is obtained for the 

epoxy-resin (Epostick®) specimen (beam 7). Figs.20-22 compare the material ( )fD j   identified 

results related to beam 5-7 specimens, obtained by adopting standard assumptions, i.e. assuming a rigid 

instrument frame ( )fj  X 0 , with the corresponding results obtained by using the procedure 

underlined in this work. It appears that the frame contribution has a noticeable effect on all of the 

identified estimates related to different materials, so that the added experimental and processing burden 

associated to the approach described in this work appears to be justified. 

Table 2: Beam specimens data used for X(j·ω), D(j·ω) identification (experimental test cases) 

Beam Material Length (m) Thickness (m) Width (m) 
Density 

(kg/m3) 
E0 (Pa) 

1 
C67 harmonic 

steel 
(1.75±0.001)∙10-2 (0.75±0.01)∙10-3 (12.7±0.01)∙10-3 7850±5 (2.1±0.5)∙1011 

2 
C67 harmonic 

steel 
(1.75±0.001)∙10-2 (3.0±0.01)∙10-3 (3.0±0.01)∙10-3 7850±5 (2.1±0.5)∙1011 

3 
C67 harmonic 

steel 
(1.75±0.001)∙10-2 (3.0±0.01)∙10-3 (5.0±0.01)∙10-3 7850±5 (2.1±0.5)∙1011 

4 
C67 harmonic 

steel 
(1.75±0.001)∙10-2 (5.0±0.01)∙10-3 (3.0±0.01)∙10-3 7850±5 (2.1±0.5)∙1011 

5 
C67 harmonic 

steel 
(1.75±0.001)∙10-2 (0.5±0.01)∙10-3 (13.8±0.01)∙10-3 7850±5 (2.1±0.5)∙1011 

6 
C67 harmonic 

steel 
(1.75±0.001)∙10-2 (4.0±0.01)∙10-3 (3.0±0.01)∙10-3 7850±5 (2.1±0.5)∙1011 

7 

Commercial 

epoxy-resin 

(Epostick®) 

(1.75±0.001)∙10-2 (1.5±0.01)∙10-3 (5.8±0.01)∙10-3 2500±5 (4.0±0.1)∙109 

 

 

 



Conclusions 

A robust identification procedure able to estimate the material model rational fit i the frequency 

domain, by eliminating unwanted components due to model noise associated to the instrument frame 

contribution and also to measurement noise is presented in this work. The proposed technique relies on 

standard forced sinusoidal excitation measurements made on beam specimens realized with the 

material under study, as available in most commercially known test systems. A novel identification 

technique is here proposed to filter the contributions of model and experimental noise. By assuming 

that the material follows a kn  order generalized Kelvin model, a rational polynomial analytical model is 

assumed as well, and the optimal model order and parameters are identified with the proposed 

approach. The technique does take into account of the contribution of the instrument frame onto the 

measurement results to increase the accuracy of the material ( )D j   identified results. Since 

polynomial rational models with real coefficients are expected to model both the ( )j X  instrument 

frame and the ( )D j   material, an extended procedure consisting in a linear real algebraic problem in 

real unknowns is defined to obtain the model unknowns, and reported in the Appendix. 

Numerical test case results are reported to show the robustness of the identification procedures used to 

estimate the instrument frame and the material ( )D j   models. Experimental test cases are then 

presented, and the instrument frame model of a real industrially available test system is modelled by 

means of a high order rational model and the rational material model of harmonic steel beams of 

different geometry is accurately identified and a Hooke material model results. The model 

identification of a dual component epoxy resin, whose model is unknown, is then obtained, and the 

results are shown. 

These results are then compared with the identification results obtained by adopting standard 

assumptions, i.e. assuming a rigid instrument frame ( )fj  X 0 , showing that the frame contribution 

cannot be neglected in pratical applications, and justifying the approach described in this work. 

It must be outlined that the identification results strongly depend on the accuracy of the identified 

instrument frame model associated to the measurement frequency range. To increase the frame model 

accuracy, the force and displacement measurement precision, the data acquisition resolution, the 

frequency range, the number of experimental dofs should be increased as well. Nevertheless, since the 

main task of this work consists in only employing the minimal set of data measurements available in a 



typical commercially available DMA test system, it is beyond the scope of this paper to investigate a 

different measuring test strategy. 

 

APPENDIX A: Rational MDOF FRF frequency domain identification technique 

The  qG j   FRF functions related to a 2nd order, m poles mechanical model, can be expressed as 

follows: 
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 (A.1) 

where  q fG j   are complex measurement FRF estimates, 1, , qq n  , 1, ,f N  , and 

, , ,q q
i i iR p a b   , q  index being referred to the r output, s input dofs couple taken into account. 

 1m
iP j   and  mP j  are polynomials from a known polynomial base, e.g. monomial, Legendre, 

Chebyshev among all [20,21]. Frequency domain model identification consists in finding unknown 

2 m  q
ia , b  real values or q

iR , ip  complex values generally resulting in complex conjugate pairs. It 

must be outlined that b , ip  are common to every q or r , s  experimental dof input-output couple, i.e. 

do not vary with respect to q , while q
iR , q

ia  are strictly dependent on q . 

Since qG  : 

       Re Imq q qG j G j j G j        .  (A.2) 

A n  grade, 1n  order, polynomial can be expressed as: 

       0 0
0

n
n n n

n k k n n
i

j c P j c P j c P j    


             (A.3) 

By normalizing the  range, putting 
N

u



  and n2=floor(n/2): 
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if n  is even: 
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If n  is odd: 
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In a more compact vector form: 
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From Eqs.(A.1,A.4-A.7): 
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where 1 1, , , m m q q A B α β  and 1 1, , , m m C O γ μ  are defined as in Eq.(A.7). From Eq.(A.8):  
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From Eq.(A.9), and taking into account that  qG j   are estimated with respect to discrete 

, 1, ,f f N    values: 
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Eq.(A10) refers to a set of 2 qn N   linear real algebraic problem in  1qn m    real unknowns (

, , , , 1, ,q q
qq nα β γ μ  ). Since N m , an oversized linear system results, and can be solved by 

means of a Least Square minimization technique. 

From Eq. (A.10), 1e  and 2e  error vectors, associate to the real and imaginary part of Eq.(A.9) can be 

defined: 
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Where: 
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  optimal least square functional can be defined: 
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The stationary condition is applied to  , with respect to α. β, γ and μ: 
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The  TT T T Tα β γ μ  solution can be obtained from Eq.(A.14): 
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From Eq.(A.15) the rational fit parameters can be obtained. The physically sound optimal m  model 

order can be found by eliminating unphysical (poles with positive real part or complex conjugate pole 

couples associated to natural frequency external to the frequency excitation range) and unstable poles 

and their residues, where pole stability is evaluated by means of stability diagrams [12]. The 

contribution of discarded pole-residue couples is taken into account by adding a third-grade polynomial 

function to the identified rational function [4,12]. 
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