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Abstract

Original Article

IntRoductIon

Ultrasound (US) imaging is a technique that enables the 
real-time visualization of the vast majority of internal 
organs with the advantage of being noninvasive. In B-mode 
US imaging, the different structures are displayed with a 
gray-scale image-modality, deriving from the differences in 
acoustic attenuation of different parenchyma. A limitation 
of US imaging is the presence of speckle noise on images 
that reduce the visualization of the organs. To improve the 
US visualization, the operators have often to modify several 
basic parameters of the systems, to which the image quality is 
sensitive.[1] Among them, the Time Gain Compensation (TGC) 
and the Dynamic Range are the more relevant,[1-3] but the TGC 
is the most frequent parameter modified by operators. In fact, 
TGC allows to display similar interfaces in a similar level of 
brightness compensating the attenuation of US echo signal 
along with deepness. The TGC amplifies the echoes returning 
from deeper structures making them comparable to those 
returning from superficial ones, resulting in the visualization 
of more uniform images.[1]

To optimize image quality, algorithms for the automatic 
adjustment of the TGC (ATGC) have been introduced,[4] but 
despite some advantage, they have an inherent drawback. In 

fact, those algorithms consider homogeneous all the scanned 
structures, thus not highlighting the differences of acoustic 
attenuation of different tissues and structures. Therefore, the 
ATGC fails in the adjustment of brightness or darkness at the 
interface between different organs, and the operators must 
manually change the overall gain. As a result, in the US panel, 
several buttons and options must be present to permit the 
manual modification needed to adjust the quality of images.

Despite some previous studies have reported how the changing 
of the overall gain allows a better visualization of different 
structures, just a few focused on the influence of the TGC 
modification, and among them, the vast majority focused on 
the visualization of phantom models.[5-8] Recently, due to the 
increased interest in artificial intelligence, several studies 
have explored the potentials of texture analysis (TA) applied 
to US images, without considering how the machine’s settings 
could influence the features representations.[9,10] Since TA 
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software can calculate dozens to hundreds of indices from 
a single image, not having a clear comprehension of which 
are more representative of a certain tissue and how they can 
change basing on basic parameters of the systems, could 
force researchers to take every index into account, leading 
to potential bias when building predictive models such as 
overfitting.

Even if this topic is gaining growing popularity in the scientific 
literature, currently, there are no feasibility studies, nor studies 
aimed to explore which radiomic features are the most suited 
to be analyzed in US images or how are they influenced by 
the machine’s settings.

The purpose of this study is to define a set of textural indices 
reliably representative of the healthy liver parenchyma, and 
outline the best TGC values in which explore them, to allow 
future research to deal with less variables and rely on simpler 
data analysis methods.

subjects and Methods

Images sample
Images on the hepatorenal space on the sagittal plane were 
acquired with a curved array transducer, with the subject prone 
and during breath hold, and exportend in the bitmap format. All 
images were subsequently reviewed to remove those affected 
by minimal motion artifact to ensure the best results, resulting 
in fifty images selected out of sixty-two. Among them, only the 
images comprising from 36% to 79% TGC were considered, 
the maximum and minimum Hz values, in which the liver and 
the kidney were distinguishable. At the end of the process, 22 
images were suitable for further analysis. Two circular Region 
of Interest (ROIs) with a radius of 5 mm were identified on 
each image in the same position on liver and on kidney, both 
at the same distance from the transducer, caring to place them 
in areas where only parenchyma was present to avoid potential 
distortion on the histogram metrics [Figure 1].

The resulting images were analyzed using LifeX software (www.
lifexsoft.org), and the intensity discretization was set at 256 
gray levels. Both 1st and 2nd order features were analyzed. 
First-order features are related to the distribution of gray 
levels detected in the selected ROIs such as skewness, 
kurtosis, entropy, and energy of the distribution. Conversely, 
second-order features are composed of indices calculated from 
a matrix, being it the co-occurrence matrix, run, and zone 
length matrices. A detailed explanation can be found on the 
software’s whitepaper.[11]

Data analysis
Results from the liver ROIs alone and their values divided 
by the ones detected in the kidney’ ROIs were analyzed. 
Correlations among the different TGC and textural indices were 
evaluated by reporting the data on a scatter plot, whereas effect 
size and significance were evaluated with whichever equation 
model best fitted the data, choosing among linear, logarithmic, 
inverse, quadratic, cubic, power, compound, sigmoid, logistic, 
growth, and exponential. Confidence interval (CI) of 95% was 
set to test the significant effect of ROIs and their interactions. 
The percentage of variability of optimized ROIs was analyzed 
by R squared statistics. For comparisons between parenchyma, 
the indices were plotted on a scatter plot; then, it was reported 
when values were shown outside the mean interval in the 
scatter plot.

Results

First‑order features
Unsurprisingly, minimum, maximum, and mean values 
of the distribution of gray values measured in the ROIs 
selected on the liver were linearly correlated to the different 
TGC values (Minimum: R2 = 0.951; Maximum: R2 = 0.978; 
Mean: R2 = 0.992) [Figure 2]. Notably, both minimum 
and mean values showed a “lag” effect below a TGC 
value of 38%. A quadratic model was found for standard 
deviation (R2 = 0.915), for skewness (R2 = 0.707) and for 
entropy (R2 = 0.915). Conversely, the Kurtosis (R2 = 0.633) 
and Uniformity (R2 = 0.774) followed a sigmoid distribution.

The minimum gray value showed no overlapping of the mean 
C. I. lines between 43% and 74% of TGC; for mean, it was 
from 41% to 79%; for maximum, it was from 41% to 78%; 
for standard deviation, it was from 47% to 72%. For the gray 
level distribution parameters, skewness showed no overlapping 
of the mean C. I. lines below a TGC value of 45%, kurtosis 
below 41%, entropy below 52%, and uniformity below 
47% [Figure 2].

Second‑order features
Gray‑level co‑occurrence matrix
For the gray-level co-occurrence matrix (GLCM), a quadratic 
distribution was observed for homogeneity (R2 = 0.818), 
contrast (R2 = 0.856), entropy (R2 = 0.789), and 
dissimilarity (R2 = 0.868). Conversely, the energy follows a 
sigmoid distribution (R2 = 0.726), while correlation did not 

Figure 1: ROIs definition method: Circular ROIs of identical size were 
selected at the same distance from the transducer, trying to minimize 
the inclusion of nonparenchymal structures
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appear to fit any of the explored fit functions. No overlapping of 
the mean C. I. lines in the GLCM was reported for homogeneity 
below 55% TGC, for energy below 46% TGC, and for entropy 
below 54% TGC. For contrast and dissimilarity, no overlapping 
of the mean C. I. lines in the GLCM was reported between 
41%–68% TGC and 38%–61% TGC, respectively. Instead, 
the correlation showed completely overlapping confidence 
lines [Figure 3].

Gray‑level run length matrix
For the gray-level run length matrix (GLRLM), a quadratic 
distribution was observed for run percentage (RP, R2 = 0.684), 
for short-run emphasis (SRE, R2 = 0.638), for high gray-level 
run emphasis (HGRE, R2 = 0.996), for short run high 
gray-level emphasis (SRHGE, R2 = 0.996), for long run 
high gray-level emphasis (LRHGE, R2 = 0.994), and for run 
length nonuniformity (RLNU, R2 = 0.638). Conversely, a 

Figure 2: Scatterplot for First‑order level indices value correlated with TGC settings as seen in the liver (blue) and kidney (red) parenchyma. The best 
fir line was drawn according to the best fitting function; 95% confidence interval lines are displayed on the sides
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sigmoid distribution was discovered for low gray-level run 
emphasis (LGRE, R2 = 0.967), for short run low gray-level 
emphasis (SRLGE, R2 = 0.963), for long run low gray-level 
emphasis (LRLGE, R2 = 0.921), and for the gray level 
nonuniformity (GLNU, R2 = 0.846). Instead, the long run 
emphasis (LRE) did not fit to any of the explored distributions.

In the GLRLM, no overlapping of the mean C. I. lines was 
noticed below the 52% of TGC for RP, above the 43% of 
TGC for HGRE, between 43% and 84% of TGC for LRHGE, 
between 36% and 53% of TGC for SRE, between 41% and 
55% of TGC for SRLGE, between 48% and 53% of TGC 
for GLNU, above 44% of TGC for SRHGE, below 54% of 
TGC for RLNU, between 36% and 53% of TGC for LGRE, 
and below 40% of TGC for LRLGE. Complete overlapping 
confidence lines were noticed for LRE [Figure 4].

Gray‑level zone length matrix
For the gray-level zone length matrix (GLZLM), a quadratic 
distribution was observed for small zone emphasis (SZE, 

R2 = 0.659), for small zone high gray emphasis (SZHGE, 
R2 = 0.996), for zone length nonuniformity (ZLNU, 
R2 = 0.895), for zone percentage (ZP, R2 = 0.878), for high 
gray zone emphasis (HGZE, R2 = 0.996), and for large zone 
high gray emphasis (LZHGE, R2 = 0.627). On the contrary, 
a sigmoid distribution was observed for small zone low gray 
emphasis (SZLGE, R2 = 0.977), for large zone emphasis (LZE, 
R2 = 0.622), for low gray zone emphasis (LGZE, R2 = 0.971), 
and for large zone low gray emphasis (LZLGE, R2 = 0.882). 
For the GLNU, none of the explored functions showed a 
fitting model. In the GLZLM, no overlapping of the mean C. 
I. lines was noticed in the LZE and LZLGE, between 47% 
and 55% of TGC for SZE, between 39% and 53% of TGC 
for SZLGE, above 44% of TGC for SZHGE, between 39% 
and 59% of TGC for ZLNU, between 40% and 53% of TGC 
for LGZE, between 36% and 58% of TGC for ZP, above 44% 
of TGC for HGZE, and between 54% and 69% of TGC for 
LZHGE. Complete overlapping confidence lines were noticed 
for GLNU [Figure 5].

Figure 3: Scatterplot for gray level co‑occurrence matrix indices value correlated with time gain compensation settings as seen in the liver (blue) and 
kidney (red) parenchyma. The best fir line was drawn according to the best fitting function; 95% confidence interval lines are displayed on the sides
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Figure 4: Scatterplot for gray‑level run length matrix indices value correlated with time gain compensation settings as seen in the liver (blue) and 
kidney (red) parenchyma. The best fir line was drawn according to the best fitting function; 95% confidence interval lines are displayed on the sides

Coefficients of variation
Among the conventional features, with a TGC >45%, the 
entropy showed to be the feature with the lowest coefficient of 
variation, whereas minimum, mean, and maximum showed to 
have the highest. For LGRE, SRLGE, LRLGE, LGZE, SZLGE, 
and LZLGE, a threshold of >55% TGC was used, since they 
visually appeared noncorrelated to TGC after that point.

Among the second order features, the different coefficient of 
variation are shown in Table 1.

dIscussIon

First order
Among the eight first order indices analyzed, we identified the 
mean value of the gray’s distribution on the selected ROIs as 

the most adherent to the fitting equation, which can be reliably 
used from 40% to 80% TGC. In fact, in this range, we identified 
an optimal TGC value of 60%, in which the parenchyma of the 
liver was most different from the parenchyma of the kidney. 
This value of TGC should therefore be used in clinical practice 
to evaluate echogenicity differences between the liver and the 
kidney, such as in the assessment of steatosis or chronical renal 
failure. Furthermore, this value of TGC should be used for TA 
studies evaluating alterations in liver or kidney parenchyma 
using the mean value of the distribution of the grays among 
the first-order features. A similar behavior is also noted for 
minimum and maximum value of grays detected in the ROIs. 
We also found that, energy, entropy, kurtosis, and skewness 
indices values were not correlated to TGC above a value of, 
respectively, 47%, 51%, 41%, and 45%, without significant 
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variations. Observing this, we infer that TA studies involving 
these indices can be performed regardless of the TGC value 
when images are acquired beyond the said thresholds.

Second order
The GLCM defines the distribution of co-occurring pixel 
values over an image at a given offset. A GLRLM quantifies the 
homogeneity of gray-level runs, as the length of consecutive 
pixels that have the same gray level value. The GLZLM 
quantifies the size of homogeneous zones for each gray level 
in three dimensions. Predictably, high gray emphasis indices 
showed a direct correlation with TGC values, and low gray 

emphasis the opposite. More consistent values were obtained 
for small run/zone indices, possibly due to the influence of 
noise artifacts, to which long run and large zone indices should 
be, theoretically, less influenced. It must be noted that for 
values higher than 50% TGC, indices with emphasis on low 
gray level values tend to zero, proving likely of limited use in 
the healthy parenchimas, whereas could provide  a quantitative 
assesment on conditions in which fluid is collected.

Coefficients of variation
Among the conventional features, with TGC >45% or >55% 
according to the lag effect on the scatter plot, entropy showed to 

Figure 5: Scatterplot for gray level zone length matrix indices value correlated with time gain compensation settings as seen in the liver (blue) and 
kidney (red) parenchyma. The best fir line was drawn according to the best fitting function; 95% confidence interval lines are displayed on the sides
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be the feature less influenced by the TGC%, whereas minimum, 
mean, and maximum showed to be the most influenced. Among 
the histogram features, contrast appeared to be the most 
influenced, and entropy the least. Among the second-order 
features, low-gray and high-gray level emphasis features 
appear to be the most influenced by TGC variation, whereas 
nonuniformity features appear to be the most consistent.

conclusIons

Time gain control appears to heavily influence most of the 
features that can be extracted with common procedures of TA; 
for the majority of them, the best range of TGC appears to be 
approximately 50%. Further studies with a larger sample size 
are needed to better define these results and eventually define a 
nomogram for normal echotextural liver features. An important 
problem that has been, and sometimes still is neglected, is the 
dependence of echographic information on the equipment, as 
the TGC. The TGC in fact induces nonlinear effects, inducing 
nonreproducibility and a lack of generalizability of data. 
Therefore, the TGC has to be corrected adequately before 
any analysis.
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Table 1: Coefficient of variation of the analyzed indices with a threshold of time gain compensation >45 or >55%

Histogram 
feature

Coefficient of 
variation (%)

GLCM 
feature

Coefficient of 
variation (%)

GLRLM 
feature

Coefficient of 
variation (%)

GLZLM 
feature

Coefficient of 
variation (%)

Minimum 94.2 Homogeneity 15.1 SRE 1.3 SZE 4.1
Mean 65.4 Energy 31.2 LRE 6.0 LZE 28.0
Maximum 43.2 Contrast 39.5 LGRE 158.9* LGZE 157.1*
Standard 
deviation

24.3 Correlation 14.7 HGRE 181.6 HGZE 184.0

Skewness 83.6 Entropy 3.7 SRLGE 159.9* SZLGE 155.6*
Kurtosis 34.1 Dissimilarity 20.4 SRHGE 181.8 SZHGE 189.9
Entropy 6.1 LRLGE 155.1* LZLGE 150.3*
Energy 23.9 LRHGE 181.7 LZHGE 198.2

GLNU 22.2 GLNU 19.0
RLNU 4.8 ZLNU 14.6
RP 1.8 ZP 6.7

*Coefficient of variation is not supposed to be a stastistical test, therefore no significance has been calculated. According to a visual identification of the 
inflection point on the scatter plot. GLCM: Gray-level co-occurrence matrix, GLRLM: Gray-level run-length matrix, GLZLM: Gray-level zone length matrix, 
SRE: Short-run emphasis, LRE: Long run emphasis, LGRE: Low gray-level run emphasis, HGRE: High gray-level run emphasis, SRHGE: Short run high 
gray-level emphasis, LRHGE: Long run high gray-level emphasis, RLNU: Run-length nonuniformity, RLNU: Run percentage, SZE: Small zone emphasis, 
LZE: Large zone emphasis, LGZE: Low gray zone emphasis, LZLGE: Large zone low gray emphasis, GLNU: Gray level nonuniformity, ZLNU: Zone length 
nonuniformity, ZP: Zone percentage, SRLGE: Short-run low gray-level emphasis, LRLGE: Long run low gray-level emphasis, SZHGE: Small zone high gray 
emphasis, HGZE: High gray zone emphasis, LZHGE: Large zone high gray emphasis


