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Abstract. American student loans are fixed-rate debt contracts that give borrowers the option to repay their
balances in full by a fixed maturity, or to enroll in income-based schemes, whereby payments are
proportional to their income above subsistence, and any balance remaining after several years of
payments is forgiven but taxed as income. For a small loan, the cost-minimizing repayment strategy
dictates maximum payments until full repayment, forgoing both income-based schemes and forgive-
ness. For a large loan, income-based repayment is optimal, either immediately or after a period of
maximum payments. The critical balance depends on the loan rate, the tax rate, and the forgiveness
horizon. Overall, income-based repayment significantly benefits large but not small borrowers.
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1. Introduction. American student loans, once a minor share of household debt, today
account for over $1.5 trillion, surpassing both auto loans and credit cards. As this trend
continues unabated, the growing burden of student loans on household finances has become a
controversial policy issue and a source of public concern. The bulk of such debt ($1.4 trillion)
is in federal student loans, sophisticated financial contracts with unique covenants of income-
based repayment, consolidation, deferral, forbearance, and forgiveness. These features make
student loans extremely hard products for individual borrowers to manage and for governments
and financial institutions to value.

Federal loans make funds available to students to cover their tuition and living expenses.
A few months after graduation or unenrollment, former students are responsible for repaying
their loans, which grow at a national fixed rate. If they enroll in income-based schemes,
monthly payments are due only if their income is above a certain subsistence threshold, and
are proportional to the amount by which it exceeds such threshold. After a number of years of
qualifying payments (usually 20--25), the remaining balance is forgiven but taxed as ordinary
income and hence forgiven only in the amount that it exceeds the ensuing taxes.
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This paper finds the optimal repayment strategy for a borrower who wishes to minimize
the loan's cost, i.e., the present value of future loan payments. This strategy in turn determines
the loan's implied value to the issuer under the student's optimal behavior. Central to cost
minimization is the tension between forgiveness and compounding: On one hand, a borrower is
tempted to delay repayments until the loan is forgiven and only taxes on the forgiven balance
are due. On the other hand, the loan rate is much higher than the borrower's discount rate;
hence the cost of delaying payments increases exponentially with the forgiveness horizon---
potentially offsetting its ostensible savings. Such a tension suggests a simple heuristic: repay a
loan as slowly as possible if the forgiveness horizon is short, in that the savings from forgiveness
override the cost of compounding; otherwise, repay the loan as quickly as possible. Yet, such
a heuristic neglects the monthly minimum payments required to qualify for forgiveness, which
are in turn proportional to income, forcing most of the balance of a small loan to be repaid,
and leaving little, if any, amount to be forgiven. Vice versa, minimum payments have little
effect on large loans, as the bulk of their balance matures to the forgiveness horizon.

We prove that the cost-minimizing repayment strategy is of two types: if the balance is
small enough, one should pay as much as possible until the loan is paid off. Otherwise, one
should do so up to a critical horizon, and then enroll in the income-based repayment scheme,
paying the required minimum until the loan is forgiven. The critical horizon is the time at
which the benefits of forgiveness match the costs of compounding, i.e.,

(1.1) t\mathrm{c} :=

\biggl( 
T +

log\omega 

\beta 

\biggr) +

\in [0, T ),

where T > 0 is the forgiveness maturity in years, \omega \in (0, 1) is the tax rate (varying by
individual circumstances, but usually from 30\% to 50\%), and \beta > 0 is the spread between
the borrower's discount rate and the student loan rate. There are currently three main rates
for federal student loans: one for undergraduate loans, with a borrowing limit of $57,500,
one for graduate loans, with a limit of $138,500, and one for Direct PLUS loans, available to
either parents or graduate students for additional borrowing up to the cost of attendance.1

Because PLUS loans do not have a fixed limit, they are prevalent in large balances, for which
the repayment problem is most pressing and our analysis most consequential.

Despite the popularity of student loans, the problem of finding the cost-minimizing repay-
ment strategy does not seem to have been considered and solved in detail before. Although
it is common knowledge that borrowers with large balances and a relatively low tax rate
are better off enrolling in income-based repayment plans, thereby paying the minimum re-
quired by the scheme, typical student resources tend to recommend immediate enrollment
in such schemes, rather than considering the possibility of later enrollment preceded by high
repayments, which we find to be optimal. The savings from high initial payments and later
enrollment in income-based schemes can be substantial, especially for large loans with a high
interest rate, which are common for professional degrees.

Consider, for example, a graduate from a dental school with a balance of $300,000 in

1For disbursement dates before July 1, 2020, the rate is 4.53\% for undergraduate loans, 6.08\% for
graduate loans, and 7.08\% for Direct PLUS loans. See https://studentaid.gov/understand-aid/types/loans/
subsidized-unsubsidized.D

ow
nl

oa
de

d 
04

/2
1/

21
 to

 8
0.

11
1.

22
3.

11
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://studentaid.gov/understand-aid/types/loans/subsidized-unsubsidized
https://studentaid.gov/understand-aid/types/loans/subsidized-unsubsidized


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SC-18 PAOLO GUASONI, YU-JUI HUANG, AND SAEED KHALILI

Direct PLUS loans carrying an interest rate of 7.08\%.2 With a starting salary of $100,000
that grows at an annual rate of 4\%, suppose that the graduate can afford to repay at most 30\%
of income above subsistence without carrying a credit card balance. Keeping such maximal
payments, the loan would be repaid in less than 20 years and its cost would be about $512,000
(here and henceforth, figures are rounded to the nearest $1,000) assuming a discount rate of
1.5\%. Alternatively, the graduate could immediately enroll in the income-based repayment
scheme, thereby paying only 10\% of income above subsistence.3 Such a strategy would leave
after 25 years a balance of $1,053,000 forgiven and hence taxed as income, thereby generating
a liability of about $421,000 assuming a tax rate of 40\%.4 Overall, the cost of the loan under
immediate enrollment would be $524,000, which is $12,000 higher than with the full repayment
option.

Instead, a graduate who followed the strategy identified in this paper would repay 30\%
of income above subsistence for the first 8.5 years, switching thereafter to an income-based
scheme that would cap payments at 10\% of income above subsistence. Such a strategy would
leave a balance of $462,000 to be forgiven after 25 years, generating a tax liability of $184,000.
The total cost of the loan would be $490,000, which is $21,000 lower than the full-repayment
cost, and $34,000 lower than the immediate-enrollment cost.

As this numerical example shows, income-based repayments are a double-edged sword:
while they enable a borrower to minimize immediate payments and benefit from loan forgive-
ness, they also have the potential to increase the overall costs of a loan through a larger tax
liability on the final forgiven balance. For this reason, it can be optimal to delay enrollment
after a few years of high payments so as to curb the subsequent growth of the balance during
the years of minimum payments. Figure 1 demonstrates the relevance of income-based repay-
ments and later enrollments for large loan balances, long forgiveness horizons, and high interest
rates. For undergraduate loans carrying a 4.53\% interest rate, income-based repayments are
optimal for large balances, but enrollment is immediate (light shaded area), because the crit-
ical horizon t\mathrm{c} is zero. For graduate (6.08\%) and PLUS (7.08\%) loans, the critical horizon is
positive, hence later enrollment (dark shaded area) arises with a sufficiently long forgiveness
horizon.

In the United States, student loans were first introduced in the postwar period, and their
growth accelerated after the establishment of Sallie Mae in 1973. Student loans are now a
mainstream scheme to finance higher education, and the Department of Education estimates
that there are nearly 45 million student debt holders in the US, with 2.5 million borrowers ow-
ing more than $100,000 each.5 While student loans have the merit to expand access to higher
education, research in the past decade has also brought potential demerits to light. Recent

2According to the American Dental Education Association, 83\% of dental school graduates have student
loan debt, with an average balance of $292,169; therefore $300,000 is a typical figure for such graduates.

3We assume a household of three people, which would imply a subsistence income, defined as 150\% of the
poverty level, of $32,000. The calculation assumes that the poverty rate grows at an annual 4\%, a figure that is
close to the historical average of 3.6\% per year from 1959 (when the poverty level was first established) to 2019.
See https://www.census.gov/data/tables/time-series/demo/income-poverty/historical-poverty-people.html.

4A graduate loan borrower without partial financial hardship (PFH) is only eligible for income-driven
repayment plans with a 25-year term; see http://www.ibrinfo.org/existingidr.vp.html.

5And each of the top hundred borrowers owes more than $1 million; see https://www.wsj.com/articles/
mike-meru-has-1-million-in-student-loans-how-did-that-happen-1527252975.D
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Figure 1. Combinations of loan balance (horizontal, in dollars) and forgiveness horizon (vertical, in years)
for which income-based repayments are cost-minimizing (shaded), for direct undergraduate (left, 4.53\% rate),
graduate (center, 6.08\%), and PLUS loans (right, 7.08\%). The light shaded area denotes immediate enrollment,
and the dark shaded area denotes later enrollment. In the nonshaded area, the minimal cost is achieved by
maximizing loan payments. Vertical lines denote maximum amounts for undergraduate and graduate loans
(PLUS loans have no maximum). Parameters: Forgiveness horizon T = 25, annual growth of income and
poverty level g = 4\%, discount rate r = 1.5\%, tax rate \omega = 40\%. Minimum and maximum payments are 10\%
and 30\% of income above subsistence of $32,000.

empirical work finds that higher balances of student loans contribute to reducing home own-
ership [11], inhibiting propensity to entrepreneurship [7] and public sector employment [13],
delaying marriage [5], postponing parenthood [14] and enrollment in graduate or professional
degrees [10, 15], and increasing the cohabitation with parents [1, 4]. Also controversial is the
interaction between student loans and tuition: empirical work [9] suggests that an increase in
the subsidized loan maximum leads to a sticker-price increase in tuition of about 60 cents on
the dollar, thereby suggesting that colleges (rather than students) may be the beneficiaries
of a large fraction of government loan subsidies. (This is the so-called ``Bennett hypothe-
sis,"" named after William Bennet, who publicly formulated the link between student loan
availability and tuition fees as Secretary of Education in 1987.)

This paper contributes to the understanding of student loans by identifying the cheapest
repayment strategy in the presence of an income-based scheme, which is the most distinctive
feature of these loans. We focus on the objective of minimizing the cost of loan repayments
because, a priori, it is consistent with the maximization of the net worth of a household. A
posteriori, the cost-minimizing strategy also offers significant protection to negative shocks
through income-based repayment.

In principle, deviating from cost minimization would be justified when an alternative strat-
egy would offer lower risk, but our results suggest that the potential improvements in this re-
gard may be rather limited. Indeed, the central risk reduction that can be achieved in student
loans is through income-based repayment, which allows monthly payments to be proportional
to income above subsistence, thereby partially hedging income fluctuations. However, our
results show that enrollment in such schemes is already optimal for large loan balances (for
which the potential risk reduction is largest), for the purpose of minimizing costs---even ne-
glecting their hedging potential. Put differently, income-based repayment reduces both costD
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and risk, which means that the minimization of these two quantities is largely aligned. A
partial tradeoff between cost and risk is present when the cheapest strategy entails later en-
rollment in the income-based scheme. In this case, the borrower could anticipate enrollment,
at the price of increased repayment costs for the duration of the loan, while only reducing risk
for the period by which enrollment is anticipated.

Our model is intentionally deterministic, for two reasons: First, and foremost, determinis-
tic analysis is more accessible and is in fact central to students' decision making, as attested by
the typical online comparison tools, which do not entertain randomness.6 Second, the scarcity
of literature on optimal repayment of student loans suggests that the first step towards solving
this problem is to consider its specific tradeoffs in the simplest possible setting. Taking such
a first step is the goal of this paper.

Our results are also relevant to the valuation of student loans, as the federal government
receives both the students' repayments and most of the final tax liability. (The forgiven
amount may also incur state taxes, but they are significantly lower than federal taxes.) Ab-
sent defaults, the value of a student loan for the lender is significantly higher than the loan
balance, due to the significant spread between student loan rates and risk-free rates, even
after accounting for the rebates embedded in income-based repayments. For undergraduate
and graduate loans, this result is driven by the suboptimality of income-based repayments for
small balances, implying that the balance threshold for which forgiveness benefits are large
enough to yield a net subsidy is typically higher than the maximum loan amount. Vice versa,
for Direct PLUS loans, which are limited only by the cost of attendance, the rate spread and
forgiveness horizon are so large that subsidies never materialize.7

The issue of default deserves some discussion. Student loans, unlike other unsecured
debt such as credit card balances, cannot be discharged in bankruptcy except in very rare
circumstances [12], while borrowers' wages can be garnished for life. As a result, delinquency
on student loans does not reduce the borrower's liabilities: instead, it adds collection fees
to the loan's balance and significantly reduces access to credit by impairing the debtor's
credit score. In addition, a borrower with subsistence income (or no income at all) can
remain in good standing without making payments by enrolling in income-based repayment
schemes, thereby avoiding delinquency at no cost. Empirical work confirms that student loan
defaults are difficult to reconcile with borrowers' optimal choices, and may be due to borrowers'
insufficient information about their options [3]. Using individually identifiable information on
student loan borrowers, Cornaggia and Xia [2] find that ``the majority of distressed student
borrowers have their loans in disadvantageous repayment plans even when eligible for more
advantageous options."" Furthermore, Looney and Yannelis [8] find that over 30\% of student
loans of $5,000 or less are in default, even though they would be paid in full in ten years with
monthly payments below $100 (and without income-based repayment). Also, delinquencies

6See, among others, https://studentloanhero.com/calculators/, https://smartasset.com/student-loans/
student-loan-calculator, and https://www.calculator.net/student-loan-calculator.html.

7Using fair-value accounting, the Congressional Budget Office estimates that all loan cate-
gories except Parent PLUS entail net subsidies. See Table 5 in https://www.cbo.gov/system/files/
2020-03/51310-2020-03-studentloan.pdf. A 2020 report commissioned by the Department of Educa-
tion projected an overall cost of $435 billion for the program. See https://www.wsj.com/articles/
student-loan-losses-seen-costing-u-s-more-than-400-billion-11605963600.D
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tend to decrease as loan balances increase, contrary to the incentives of strategic default. For
these reasons, the model in this paper does not entertain delinquency, as its aim is identifying
optimal repayment strategies rather than explaining observed defaults. Put differently, our
focus is normative rather than positive.

2. Model and main result. A student graduates with a loan balance of x > 0 and seeks
the repayment strategy \alpha that minimizes the present value of future payments, discounted
at some rate r > 0, which represents the opportunity cost of money, i.e., the alternative safe
return that could be obtained on any dollar used to pay off the loan. For example, a household
with a mortgage may ponder whether to increase mortgage or student loan payments; hence
the mortgage rate is a close approximation to the household's discount rate. For a household
without other debt, the discount rate represents the return on a safe investment.

The loan carries an interest rate of r+\beta , higher than the discount rate (i.e., \beta > 0), which
means that paying off the loan earlier entails lower compounding costs.8 Thus, denoting by
\alpha t the chosen repayment rate at time t, the loan balance b\alpha t evolves over time according to
the dynamics

db\alpha t = (r + \beta )b\alpha t dt - \alpha tdt, b0 = x > 0.(2.1)

The student loan also includes a forgiveness provision, whereby at some future horizon
T > 0 the remaining balance b\alpha T of the loan is forgiven, but then taxed at rate \omega \in (0, 1),
whence a payment of \omega b\alpha T is due at time T . Such a provision encourages delay of payments
as the forgiveness horizon approaches, thereby countering the compounding motive.

The payment rate at time t is constrained to the range m(t) to M(t), which depends on
the former student's income, with m(t) reflecting the minimum payment due under income-
based repayments, and M(t) the maximum payment that accommodates other living expenses
without incurring debt, such as credit card balances, which carry a higher rate than that of
student loans. In particular, the borrower can afford to repay the loan under its original
term and possibly make additional payments up to M(t). (Otherwise, immediate enrollment
in income-based repayment is inevitable, excluding costlier choices such as forbearance and
default.) Because, a posteriori, it is optimal to either maximize or minimize payments, the
original payment rate does not enter the solution other than through the condition that it is
less than or equal to M(t).

Specifically, for any x > 0 and Lebesgue measurable \alpha : [0, T ] \rightarrow [0,\infty ), the present value
of future payments is J(x, \alpha ) :=

\int \tau 
0 e - rt\alpha tdt+ e - r\tau \omega b\tau , where

\tau := inf\{ t \geq 0 : bt = 0\} \wedge T(2.2)

is the time when the loan is either paid in full or forgiven. The goal is to minimize the present
value of future payments, i.e., v(x) := inf\alpha \in \scrA J(x, \alpha ), where the set of feasible repayment
strategies is defined as

\scrA := \{ \alpha : t \mapsto \rightarrow \alpha t is Lebesgue measurable with m(t) \leq \alpha t \leq M(t) for 0 \leq t \leq \tau \} 

8The case of a household with debt that carries a higher interest than student loans, such as credit card
debt, is somewhat trivial, as the borrower's optimal policy is to pay off such debt first. Thus, we focus on the
case of a positive spread \beta .D
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for some Lebesgue integrable m,M : [0, T ] \rightarrow (0,\infty ) satisfying m(t) < M(t) for all t \in [0, T ].9

The main result describes the optimal repayment strategy in relation to the loan's parameters.

Theorem 2.1. Let x\ast :=
\int t\ast 

0 e - (r+\beta )sM(s)ds > 0, where the time t\ast \in (t\mathrm{c}, T ) is the unique
solution to

(2.3)

\int t\ast 

t\mathrm{c}

e - rsM(s)(1 - \omega e\beta (T - s))ds =

\int T

t\mathrm{c}

e - rsm(s)(1 - \omega e\beta (T - s))ds,

with t\mathrm{c} \in [0, T ) defined as in (1.1). Then, for any x > 0, the strategy \alpha \ast \in \scrA defined as

\alpha \ast 
t :=

\Biggl\{ 
M(t)1[0,t\mathrm{c}](t) +m(t)1(t\mathrm{c},T ](t), t \in [0, T ], if x > x\ast , (max-min)

M(t), t \in [0, T ], if x \leq x\ast , (max)

attains the minimum loan value. Also, v(x) = v1(x) for x > x\ast and v(x) = v2(x) for x \leq x\ast ,
where

v1(x) :=

\int t\mathrm{c}

0
e - rsM(s)ds+

\int T

t\mathrm{c}

e - rsm(s)ds+ \omega e\beta T
\biggl( 
x - 
\int t\mathrm{c}

0
e - (r+\beta )sM(s)ds - 

\int T

t\mathrm{c}

e - (r+\beta )sm(s)ds

\biggr) 
,

(2.4)

v2(x) :=

\int tM

0
e - rsM(s)ds, where tM > 0 satisfies x =

\int tM

0
e - (r+\beta )sM(s)ds.

(2.5)

The message of this result is straightforward: the cheapest repayment strategy mandates
maximum payments when the initial balance is sufficiently low (x < x\ast , ``max"" strategy).
Otherwise (x > x\ast , ``max-min"" strategy), maximum payments are in order before the critical
horizon t\mathrm{c} in (1.1), at which point enrollment in the income-based repayment occurs, implying
minimum payments thereafter. If the critical horizon is zero (for example, if either the tax rate
or the interest rate spread is very low), then enrollment is immediate, and minimum payments
span the entire life of the loan (i.e., the ``max-min"" boils down to ``min""). The critical balance
x\ast that separates these two regimes is precisely the unique balance which yields the same
repayment cost under both strategies.

The critical balance x\ast is particularly sensitive to the discount rate r, with low rates
making it optimal to repay large balances early, and high discount rates encouraging deferral.
The intuition is clear: a borrower with a higher opportunity-cost of capital has a stronger
preference for later rather than earlier payments because the latter entail a higher sacrifice in
return. Note also that the ostensible complexity of calculating the critical balance x\ast is not a
significant barrier for a borrower who wishes to choose the cheapest repayment strategy: in
practice, the borrower only needs to compare the cost of the max and max-min strategies,
choosing the cheaper of the two.

9Minimizing the present value of debt servicing until repayment is mathematically similar to maximizing
the present value of future dividends until bankruptcy, as in [6]. The main difference is that the present
model is deterministic, but it includes both minimum required payments and forgiveness at a finite horizon,
substantially changing the structure of the solution. We are grateful to an anonymous referee for pointing out
this analogy.D
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Figure 2. Cost-to-balance ratio (vertical) against loan balance (horizontal) for undergraduate (left, 4.53\%
rate), graduate (center, 6.08\%), and PLUS loans (right, 7.08\%), with discount rate of 1.5\% (solid), 3\% (dashed),
and 6\% (dotted). Vertical lines denote maximum amounts for undergraduate and graduate loans (PLUS loans
have no maximum). Parameters: Forgiveness horizon T = 20, annual growth of income and poverty level
g = 4\%, tax rate \omega = 40\%. Minimum and maximum payments are 10\% and 30\% of income above subsistence
of $32,000.

An important corollary of this result is that only large loan balances, those above x\ast ,
benefit from income-based repayment schemes. Instead, smaller balances should be paid off
as early as possible through maximum payments. To better understand this issue, Figure
2 plots the cost-to-balance ratio for the three main types of loans: for discount rates 1.5\%,
representative of the public lender or a borrower without other debt, 3\%, indicative of a
borrower with good credit score, and 6\%, typical of a borrower with poor credit score.

For balances below the maximum limits, the solid lines (which reflect valuation at government-
borrowing rates) are firmly above one, meaning that income-based schemes do not offer any
net subsidies. In fact, discount rates have a minor impact for the valuation of small loan bal-
ances, leading to noticeable differences only after enrollment in income-based schemes becomes
optimal. Indeed, a higher discount rate lowers the enrollment threshold x\ast , significantly de-
creasing the borrowing cost per unit of balance. Once this threshold is exceeded, the marginal
cost of any additional borrowed dollar is exactly \omega e\beta T , and the additional balance affects pay-
ments neither in the ``max"" nor in the ``min"" periods of the loan. Additional balance increases
lead the overall cost-to-balance ratio to converge to the marginal ratio \omega e\beta T .

In summary, the marginal cost of borrowing increases with the balance until enrollment
in income-based repayment becomes optimal. At that point, the marginal cost of additional
borrowing drops to the constant \omega e\beta T , as the average cost of borrowing gradually declines to
the same constant. Thus, an implication of income-based repayment is that the average unit
cost of borrowing is higher for medium balances than it is for very high balances.

3. Proofs. This section contains the proof of the main result Theorem 2.1, which identifies
the cheapest repayment strategy in relation to the initial balance. First, Lemma 3.2 reduces
the search for the optimal strategy to the class of strategies with maximum, followed by mini-
mum payments (with the latter possibly absent). Next, Propositions 3.3, 3.4, and 3.5 together
demonstrate that the optimal strategy must be either \alpha 1

t := M(t)1[0,t\mathrm{c}](t) +m(t)1(t\mathrm{c},T ](t) or
\alpha 2
t := M(t). Finally, Lemma 3.6 compares the costs of \alpha 1 and \alpha 2, establishing Theorem 2.1

at the end of this section. The discussion begins by observing a simple expression for the re-
maining balance (2.1) in terms of the initial balance and the discounted value of repayments.
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Remark 3.1. For any measurable \alpha : [0, T ] \rightarrow [0,\infty ), the unique solution to (2.1) is

(3.1) bt = e(r+\beta )t

\biggl( 
x - 

\int t

0
e - (r+\beta )s\alpha sds

\biggr) 
, t \geq 0.

Indeed, the claim follows by integrating the equality

d(e - (r+\beta )sbs) = e - (r+\beta )s\{  - (r + \beta )bsds+ dbs\} =  - e - (r+\beta )s\alpha sds.

The next result shows that it is sufficient to consider repayment strategies of a very specific
form: repaying first at the maximum rate M(t) and then at the minimum rate m(t).

Lemma 3.2. For any x > 0, v(x) = inf\alpha \in \scrB J(x, \alpha ), where

\scrB := \{ \alpha \in \scrA : \exists t0 \geq 0 s.t. \alpha t = M(t)1[0,t0](t) +m(t)1(t0,T ](t) for a.e. t \in [0, T ]\} .(3.2)

Proof. Fix x > 0. First, observe that inf\alpha \in \scrB J(x, \alpha ) = inf\alpha \in \scrB \prime J(x, \alpha ), where

\scrB \prime := \{ \alpha \in \scrA : \exists t0 \geq 0 s.t. \alpha t = M(t)1[0,t0](t) +m(t)1(t0,\tau ](t) for a.e. t \in [0, \tau ]\} .

Indeed, for any \alpha \in \scrB , the truncated strategy \alpha \prime , defined by \alpha \prime 
t := \alpha t1[0,\tau ](t), belongs to \scrB \prime 

and satisfies J(x, \alpha \prime ) = J(x, \alpha ); conversely, for any \alpha \prime \in \scrB \prime , the extended strategy \alpha , defined
by \alpha t := \alpha \prime 

t1[0,\tau ](t)+m1(\tau ,T ](t), belongs to \scrA and satisfies J(x, \alpha ) = J(x, \alpha \prime ). For this reason,
the remaining proof focuses on establishing v(x) = inf\alpha \in \scrB \prime J(x, \alpha ). To this end, it remains to
show that for any \alpha \in \scrA \setminus \scrB \prime , there exists \=\alpha \in \scrB \prime such that J(x, \=\alpha ) < J(x, \alpha ), i.e.,

(3.3)

\int \tau (\=\alpha )

0
e - rt\=\alpha tdt+ \omega e - r\tau (\=\alpha )b\=\alpha \tau (\=\alpha ) <

\int \tau (\alpha )

0
e - rt\alpha tdt+ \omega e - r\tau (\alpha )b\alpha \tau (\alpha ),

where \tau in (2.2) is denoted as \tau (\=\alpha ) or \tau (\alpha ), and b in (2.1) is denoted as b\=\alpha or b\alpha , to emphasize
their dependence on the chosen repayment strategy.

For any \alpha \in \scrA \setminus \scrB \prime , the first claim is that there exists 0 < t0 < \tau (\alpha ) such that

(3.4)

\int t0

0
(M(t) - \alpha t)e

 - (r+\beta )tdt =

\int \tau (\alpha )

t0

(\alpha t  - m(t))e - (r+\beta )tdt.

Define f : [0, \tau (\alpha )] \rightarrow \BbbR by f(t) :=
\int t
0 (M(s) - \alpha s)e

 - (r+\beta )sds - 
\int \tau (\alpha )
t (\alpha s - m(s))e - (r+\beta )sds. As

\alpha ,M,m are all Lebesgue integrable, f is by definition continuous. Also, \alpha /\in \scrB \prime implies that \alpha t

cannot be equal tom(t) for a.e. t \in [0, \tau (\alpha )], whence f(0) =  - 
\int \tau (\alpha )
0 (\alpha s - m(s))e - (r+\beta )sds < 0.

Likewise, \alpha t cannot be equal to M(t) for a.e. t \in [0, \tau (\alpha )], implying f(\tau (\alpha )) =
\int \tau (\alpha )
0 (M(s) - 

\alpha s)e
 - (r+\beta )sds > 0. The continuity of f thus ensures the existence of 0 < t0 < \tau (\alpha ) such that

f(t0) = 0, i.e., (3.4) holds. Now, define \=\alpha : [0, T ] \rightarrow [0,\infty ) by

(3.5) \=\alpha t := M(t)1[0,t0](t) +m(t)1(t0,\tau (\alpha )](t), 0 \leq t \leq T.

Observe that \tau (\=\alpha ) = \tau (\alpha ): indeed, by (3.4),\int \tau (\alpha )

0
e - (r+\beta )t\=\alpha tdt =

\int \tau (\alpha )

0
e - (r+\beta )t\alpha tdt+

\int t0

0
(M(t) - \alpha t)e

 - (r+\beta )tdt

 - 
\int \tau (\alpha )

t0

(\alpha t  - m(t))e - (r+\beta )tdt =

\int \tau (\alpha )

0
e - (r+\beta )t\alpha tdt.
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This fact, together with Remark 3.1, implies b\=\alpha \tau (\alpha ) = b\alpha \tau (\alpha ). The case b
\alpha 
\tau (\alpha ) > 0 leads to \tau (\alpha ) = T

and thus b\=\alpha T = b\=\alpha \tau (\alpha ) > 0, which readily implies \tau (\=\alpha ) = T = \tau (\alpha ). If b\alpha \tau (\alpha ) = 0, then b\=\alpha \tau (\alpha ) = 0

and thus \tau (\=\alpha ) \leq \tau (\alpha ), thanks to the definition of \tau in (2.2). If \tau (\=\alpha ) < \tau (\alpha ) \leq T , then
b\=\alpha \tau (\=\alpha ) = 0, again by (2.2). It then follows from the definition of \=\alpha and the formula of b\=\alpha in

(3.1) that b\=\alpha \tau (\alpha ) < b\=\alpha \tau (\=\alpha ) = 0, a contradiction. Thus, \tau (\=\alpha ) = \tau (\alpha ), as required, which implies
\=\alpha \in \scrB .

It remains to show (3.3). As a consequence of (3.4),

e - \beta t0

\int t0

0
e - rt(M(t) - \alpha t)dt <

\int t0

0
e - (r+\beta )t(M(t) - \alpha t)dt

=

\int \tau 

t0

e - (r+\beta )t(\alpha t  - m(t))dt < e - \beta t0

\int \tau 

t0

e - rt(\alpha t  - m(t))dt.(3.6)

It follows that\int \tau (\=\alpha )

0
e - rt\=\alpha tdt+ \omega e - r\tau (\=\alpha )b\=\alpha \tau (\=\alpha ) =

\int \tau (\alpha )

0
e - rt\alpha tdt+

\int t0

0
e - rt(M(t) - \alpha t)dt

 - 
\int \tau (\alpha )

t0

e - rt(\alpha t  - m(t))dt+ \omega e - r\tau (\alpha )b\=\alpha \tau (\alpha ) <

\int \tau (\alpha )

0
e - rt\alpha tdt+ \omega e - r\tau (\alpha )b\alpha \tau (\alpha ),

where the equality follows from \tau (\=\alpha ) = \tau (\alpha ) and the definition of \=\alpha in (3.5), and the inequality
is due to (3.6) and b\=\alpha \tau (\alpha ) = b\alpha \tau (\alpha ). That is, (3.3) is established.

3.1. Three cases. The following analysis distinguishes three cases, depending on how
large the initial balance of the loan is. Consider the two useful thresholds

(3.7) x :=

\int T

0
e - (r+\beta )sm(s)ds and x :=

\int T

0
e - (r+\beta )sM(s)ds.

The first case is that of an initial balance x > 0 of the loan so large that even maximum
payments cannot pay it off by time T .

Proposition 3.3. Fix x > x and recall t\mathrm{c} \in [0, T ) defined in (1.1). Then, \alpha \ast \in \scrA defined by

(3.8) \alpha \ast 
t := M(t)1[0,t\mathrm{c}](t) +m(t)1(t\mathrm{c},T ](t), 0 \leq t \leq T,

is an optimal control. Moreover, \tau (\alpha \ast ) = T and v(x) = v1(x), with v1 defined as in (2.4).

Proof. Note that with x > x even maximum payments, i.e., \~\alpha t := M(t) for all 0 \leq t \leq T ,

cannot pay off the debt by time T . Indeed, b\~\alpha T = e(r+\beta )T (x  - 
\int T
0 e - (r+\beta )sM(s)ds) > 0 by

(3.1), whence b\alpha T > 0 and \tau (\alpha ) = T for all \alpha \in \scrA . Thus, a strategy of the form

(3.9) \alpha \ast 
t := M(t)1[0,t0](t) +m(t)1(t0,T ](t), 0 \leq t \leq T, 0 \leq t0 \leq T,

satisfies

J(x, \alpha \ast ) =

\int T

0

e - rt\alpha \ast 
t dt+ \omega e - rT b\alpha 

\ast 

T = f(t0), where(3.10)

f(t) :=

\int t

0

e - rsM(s)ds+

\int T

t

e - rsm(s)ds+ \omega e\beta T

\Biggl( 
x - 

\int t

0

e - (r+\beta )sM(s)ds - 
\int T

t

e - (r+\beta )sm(s)ds

\Biggr) 
.

(3.11)
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Note that the second equality in (3.10) follows from (3.9) and Remark 3.1. By direct calcula-
tion, f \prime (t) = e - rt(M(t)  - m(t))

\bigl( 
1 - \omega e\beta (T - t)

\bigr) 
, which shows that f is strictly decreasing for

t < T + \mathrm{l}\mathrm{n}\omega 
\beta and strictly increasing for t > T + \mathrm{l}\mathrm{n}\omega 

\beta . It then follows from (3.10) that by taking
t0 = t\mathrm{c} in (1.1), \alpha \ast in (3.9) attains inf\alpha \in \scrB J(x, \alpha ) = v(x), where the equality follows from
Lemma 3.2.

Next, consider the case where the initial balance x > 0 of the loan is so small that even
minimum payments can pay it off by time T .

Proposition 3.4. Fix 0 < x \leq x. Consider the unique tM \in (0, T ] such that

(3.12) x =

\int tM

0
e - (r+\beta )sM(s)ds.

Then, \alpha \ast \in \scrA defined by \alpha \ast 
t = M(t), 0 \leq t \leq T , is an optimal control. Moreover, \tau (\alpha \ast ) =

tM < T and v(x) = v2(x), with v2 defined as in (2.5).

Proof. As 0 < x \leq x, even minimum payments (\~\alpha t := m(t) for all 0 \leq t \leq T ) pay off the

debt by time T . Indeed, b\~\alpha T = e(r+\beta )T (x - 
\int T
0 e - (r+\beta )sm(s)ds) \leq 0 by (3.1), whence

(3.13) b\alpha \tau = 0 and \tau (\alpha ) \leq T for all \alpha \in \scrA .

Also, observe that 0 < x \leq x and 0 < m(t) < M(t) readily imply the existence of a unique
tM \in (0, T ] such that (3.12) holds.

Now, focus on strategies \alpha \ast as in (3.9), with 0 \leq t0 \leq T . For each 0 \leq t0 \leq T , since
b\alpha 

\ast 
\tau = 0 by (3.13), it follows that x =

\int \tau 
0 e - (r+\beta )s\alpha \ast 

sds, in view of (3.1). This fact, together
with (3.9) and (3.12), implies

x =

\int t0

0
e - (r+\beta )sM(s)ds+

\int \tau 

t0

e - (r+\beta )sm(s)ds for 0 \leq t0 \leq tM .(3.14)

Thus, \tau is a function t0 \mapsto \rightarrow \tau (t0), 0 \leq t0 \leq tM . By the strict positivity of M and m, (3.14)
indicates that \tau (t0) = t0 + \eta (t0), where

(3.15) t0 \mapsto \rightarrow \eta (t0) is strictly decreasing on [0, tM ] with \eta (tM ) = 0.

It then follows from the decreasing property of \eta and (3.14) that t0 \mapsto \rightarrow \tau (t0) is differentiable
a.e. Indeed, given 0 \leq t0 \leq tM , for any h \in \BbbR such that 0 < t0 + h < tM , (3.14) entails\int t0

0
e - (r+\beta )sM(s)ds+

\int \tau (t0)

t0

e - (r+\beta )sm(s)ds =

\int t0+h

0
e - (r+\beta )sM(s)ds+

\int \tau (t0+h)

t0+h
e - (r+\beta )sm(s)ds,

which reduces to

(3.16)

\int \tau (t0)

\tau (t0+h)
e - (r+\beta )sm(s)ds =

\int t0+h

t0

e - (r+\beta )s(M(s) - m(s))ds.D
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Thus, the right-hand side above vanishes as h \rightarrow 0; hence \tau (t0+h) \rightarrow \tau (t0); i.e., t0 \mapsto \rightarrow \tau (t0) is
continuous, and so is t0 \mapsto \rightarrow \eta (t0). By the continuity of \eta , the Lebesgue differentiation theorem
implies that, for a.e. t0 \in [0, tM ],

lim
h\rightarrow 0

1

\tau (t0) - \tau (t0 + h)

\int \tau (t0)

\tau (t0+h)
e - (r+\beta )sm(s)ds = e - (r+\beta )\tau (t0)m(\tau (t0)),

lim
h\rightarrow 0

1

h

\int t0+h

t0

e - (r+\beta )s(M(s) - m(s))ds = e - (r+\beta )t0(M(t0) - m(t0)).

Dividing the second equality above by the first one and recalling (3.16) yields

(3.17) \tau \prime (t0) = lim
h\rightarrow 0

\tau (t0 + h) - \tau (t0)

h
=  - e(r+\beta )(\tau (t0) - t0)M(t0) - m(t0)

m(\tau (t0))
.

Thanks to (3.9) and (3.13),

J(x, \alpha \ast ) =

\int \tau 

0
e - rt\alpha \ast 

t dt+ \omega e - r\tau b\alpha 
\ast 

\tau =

\int \tau 

0
e - rt\alpha \ast 

t dt = g(t0),(3.18)

where g : [0, tM ] \rightarrow \BbbR is defined as

(3.19) g(t0) :=

\int t0

0
e - rsM(s)ds+

\int \tau (t0)

t0

e - rsm(s)ds.

By direct calculation,

g\prime (t0) = e - rt0(M(t0) - m(t0)) + e - r\tau (t0)m(\tau (t0))\tau 
\prime (t0)

= e - rt0(M(t0) - m(t0))
\Bigl( 
1 - e\beta (\tau (t0) - t0)

\Bigr) 
< 0 for a.e. 0 \leq t0 < tM ,(3.20)

where the second line follows from (3.17) and the inequality is due to (3.15). This shows
that g(t0), 0 \leq t0 \leq tM , has a global minimum at t0 = tM . Thus, it follows from (3.18)
that by taking t0 = tM , \alpha \ast in (3.9) attains inf\alpha \in \scrB J(x, \alpha ) = v(x), where the equality follows
from Lemma 3.2. Consequently, v(x) = J(x, \alpha \ast ) = g (tM ) =

\int tM
0 e - rsM(s)ds, where the last

equality follows from (3.19) and (3.15). Finally, simply because \tau (tM ) = tM (again, by (3.15)),
one can without loss of generality take \alpha \ast 

t = M(t) for all 0 \leq t \leq T .

Finally, consider the intermediate case of an initial balance x > 0 small enough that
maximum payments can pay off the debt by time T , but also large enough that minimum
payments cannot pay it off by time T .

Proposition 3.5. Let x < x \leq x, t\mathrm{c} \in [0, T ), as in (1.1), and define x\mathrm{c} \in [x, x) as

(3.21) x\mathrm{c} :=

\int t\mathrm{c}

0
e - (r+\beta )sM(s)ds+

\int T

t\mathrm{c}

e - (r+\beta )sm(s)ds.

(i) If x > x\mathrm{c}, then
v(x) = v1(x) \wedge v2(x),

where v1 and v2 are defined as in (2.4) and (2.5), respectively. Furthermore, if v1(x) <
v2(x), \alpha \ast \in \scrA defined in (3.8) is an optimal control; otherwise, \alpha \ast \in \scrA defined by
\alpha \ast 
t = M(t), 0 \leq t \leq T , is an optimal control.D
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(ii) If x \leq x\mathrm{c}, then v(x) = v2(x) with v2 defined as in (2.5). Moreover, \alpha \ast \in \scrA defined by
\alpha \ast 
t = M(t), 0 \leq t \leq T , is an optimal control.

Proof. As x < x \leq x and 0 < m(t) < M(t), there exists a unique \~t \in (0, T ] such that

(3.22) x =

\int \~t

0
e - (r+\beta )sM(s)ds+

\int T

\~t
e - (r+\beta )sm(s)ds.

Thus, \~t \leq tM by (3.22) and the definition of tM > 0 in (2.5). Now, decompose \scrB in (3.2) into
\scrB 1 := \{ \alpha \in \scrB : b\alpha T > 0\} and \scrB 2 := \{ \alpha \in \scrB : b\alpha T \leq 0\} . In view of Remark 3.1 and (3.22),

(3.23) \scrB 1 = \{ \alpha \in \scrB : 0 \leq t0 < \~t\} and \scrB 2 = \{ \alpha \in \scrB : \~t \leq t0 \leq T\} .

For any \alpha \in \scrB 1, argue as in (3.10) to obtain that J(x, \alpha ) = f(t0), where f : \BbbR \rightarrow \BbbR is defined
as in (3.11). As shown after (3.11), f(t) is strictly decreasing for t < T + \mathrm{l}\mathrm{n}\omega 

\beta and strictly

increasing for t > T + \mathrm{l}\mathrm{n}\omega 
\beta . Thus, (3.23) implies that

(3.24) inf
\alpha \in \scrB 1

J(x, \alpha ) = f
\bigl( 
t\mathrm{c} \wedge \~t

\bigr) 
,

where t\mathrm{c} \in [0, T ) is defined as in (1.1). For any \alpha \in \scrB 2, argue as in (3.18) to obtain J(x, \alpha ) =
g(t0\wedge tM ), where g : [0, tM ] \rightarrow \BbbR is defined as in (3.19). As shown below (3.19), g(t) is strictly
decreasing for t < tM . Thus, (3.23) and \~t \leq tM imply that

(3.25) inf
\alpha \in \scrB 2

J(x, \alpha ) = g(tM ).

In view of \~t \leq tM , note also that g(tM ) \leq g(\~t) = f(\~t), where the equality follows from the
definitions of f and g ((3.11) and (3.19)) and (3.22). Now, by Lemma 3.2, (3.24), and (3.25),

v(x) = inf
\alpha \in \scrB 

J(x, \alpha ) = f
\bigl( 
t\mathrm{c} \wedge \~t

\bigr) 
\wedge g(tM ) =

\Biggl\{ 
f (t\mathrm{c}) \wedge g(tM ) = v1(x) \wedge v2(x) if t\mathrm{c} < \~t,

g(tM ) = v2(x) if t\mathrm{c} \geq \~t,

where the third equality exploits g(tM ) \leq f(\~t), and v1 and v2 are defined as in (2.4) and (2.5),
respectively. Note from (3.22) and (3.21) that t\mathrm{c} < \~t if and only if xc < x. The desired result
thus follows from the previous equality.

In summary, Propositions 3.3, 3.4, and 3.5 together demonstrate that the optimal strategy
must be either \alpha 1

t := M(t)1[0,t\mathrm{c}](t) + m(t)1(t\mathrm{c},T ](t) or \alpha 2
t := M(t). Specifically, (i) if \alpha 1 can

pay off the balance x by time T (i.e., x \leq x\mathrm{c}), Propositions 3.4 and 3.5(ii) state that it is best
to pay off the debt as soon as possible, i.e., \alpha 2 is optimal; (ii) if \alpha 1 cannot pay off the balance
x by time T but \alpha 2 can (i.e., x\mathrm{c} < x \leq x), Proposition 3.5(i) states that one needs to compare
the costs v1(x) and v2(x) to determine which one of \alpha 1 and \alpha 2 is optimal; (iii) if \alpha 2 cannot
pay off the balance x by time T (i.e., x > x), Proposition 3.3 states that \alpha 1 is optimal. Thus,
for the case xc < x \leq x, it is necessary to analyze v1(x) and v2(x) further to determine the
optimal strategy.D
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Lemma 3.6. (i) v1(x) - v2(x) is strictly decreasing on [\^x, x], where

(3.26) \^x :=

\int t\mathrm{c}

0
e - (r+\beta )sM(s)ds \in [0, x).

(ii) There exists a unique x\ast \in (\^x, x) such that v1(x
\ast ) = v2(x

\ast ). Hence, v1(x) > v2(x) for
x \in [\^x, x\ast ) and v1(x) < v2(x) for x \in (x\ast , x]. Moreover, x\ast is identified as in Theorem 2.1
and satisfies x\ast > x\mathrm{c}, with x\mathrm{c} defined as in (3.21).

Proof. In view of (2.5), tM > 0 is in fact a function of x and is strictly increasing by
definition. Henceforth, denote tM as tM (x) for clarity. As tM (\^x) = t\mathrm{c} by construction, it
follows that tM (x) > t\mathrm{c} for all \^x < x \leq x. Thanks to the definitions of v1 and v2 in (2.4) and
(2.5), as well as the relation (3.12), for any \^x \leq x \leq x,

v1(x) - v2(x) =  - 
\int tM (x)

t\mathrm{c}

e - rsM(s)ds+

\int T

t\mathrm{c}

e - rsm(s)ds

+ \omega e\beta T
\biggl( \int tM (x)

t\mathrm{c}

e - (r+\beta )sM(s)ds - 
\int T

t\mathrm{c}

e - (r+\beta )sm(s)ds

\biggr) 
=  - 

\int tM (x)

t\mathrm{c}

e - rsM(s)
\Bigl( 
1 - \omega e\beta (T - s)

\Bigr) 
ds+

\int T

t\mathrm{c}

e - rsm(s)
\Bigl( 
1 - \omega e\beta (T - s)

\Bigr) 
ds.(3.27)

Note that s > t\mathrm{c} = (T + \mathrm{l}\mathrm{n}w
\beta )+ if and only if 1  - \omega e\beta (T - s) > 0. Hence, because M(s)

and 1  - \omega e\beta (T - s) are strictly positive and tM (x) is strictly increasing, (3.27) implies that
v1(x)  - v2(x) is strictly decreasing on [\^x, x]. Now, observe from (3.12) that tM (x) = T and
from (3.27) that

v1(x) - v2(x) =  - 
\int T

t\mathrm{c}

e - rs(M(s) - m(s))
\Bigl( 
1 - \omega e\beta (T - s)

\Bigr) 
ds < 0,

because M(s) > m(s) and 1  - \omega e\beta (T - s) > 0. On the other hand, by tM (\^x) = t\mathrm{c}, (3.27)

yields v1(\^x)  - v2(\^x) =
\int T
t\mathrm{c}
e - rsm(s)

\bigl( 
1 - \omega e\beta (T - s)

\bigr) 
ds > 0, again because 1  - \omega e\beta (T - s) >

0. As v1(x)  - v2(x) is strictly decreasing on [\^x, x], there must exist x\ast \in (\^x, x) such that
v1(x

\ast )  - v2(x
\ast ) = 0. Note that x\ast is identified by setting the right-hand side of (3.27) to be

zero, which leads to the characterization in Theorem 2.1. Now, in view of (3.26), (3.21), and
(3.7), \^x < x\mathrm{c} < x by definition. Observe from (2.4), (3.21), and (3.19) that

v1(x\mathrm{c}) =

\int t\mathrm{c}

0
e - rsM(s)ds+

\int T

t\mathrm{c}

e - rsm(s)ds = g(t\mathrm{c}) > g(tM (x\mathrm{c})) = v2(x\mathrm{c}),

where the inequality follows from the fact that g : [0, tM (x\mathrm{c})] \rightarrow \BbbR is minimized at tM (x\mathrm{c})
(recall (3.20)) and the last equality is due to (3.19) and (2.5). This fact readily implies
x\mathrm{c} < x\ast .

Proof of Theorem 2.1. By Lemma 3.6, x\ast > x\mathrm{c}, v1(x) > v2(x) for x \in [\^x, x\ast ), and v1(x) <
v2(x) for x \in (x\ast , x]. The results of Proposition 3.5 are then simplified to v(x) = v1(x) for
x \in (x\ast , x] and v(x) = v2(x) for x \in (x, x\ast ]. Combining this fact with Propositions 3.3 and
3.4 yields the claim.D
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