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Abstract: In this review, we provide a survey of the application of advanced first-principle methods
on the theoretical modeling and understanding of novel electronic, optical, and magnetic properties
of the spin-orbit coupled Ruddlesden–Popper series of iridates Srn+1IrnO3n+1 (n = 1, 2, and ∞).
After a brief description of the basic aspects of the adopted methods (noncollinear local spin density
approximation plus an on-site Coulomb interaction (LSDA+U), constrained random phase approxi-
mation (cRPA), GW, and Bethe–Salpeter equation (BSE)), we present and discuss select results. We
show that a detailed phase diagrams of the metal–insulator transition and magnetic phase transition
can be constructed by inspecting the evolution of electronic and magnetic properties as a function
of Hubbard U, spin–orbit coupling (SOC) strength, and dimensionality n, which provide clear evi-
dence for the crucial role played by SOC and U in establishing a relativistic (Dirac) Mott–Hubbard
insulating state in Sr2IrO4 and Sr3Ir2O7. To characterize the ground-state phases, we quantify the
most relevant energy scales fully ab initio—crystal field energy, Hubbard U, and SOC constant of
three compounds—and discuss the quasiparticle band structures in detail by comparing GW and
LSDA+U data. We examine the different magnetic ground states of structurally similar n = 1 and n = 2
compounds and clarify that the origin of the in-plane canted antiferromagnetic (AFM) state of Sr2IrO4

arises from competition between isotropic exchange and Dzyaloshinskii–Moriya (DM) interactions
whereas the collinear AFM state of Sr3Ir2O7 is due to strong interlayer magnetic coupling. Finally, we
report the dimensionality controlled metal–insulator transition across the series by computing their
optical transitions and conductivity spectra at the GW+BSE level from the the quasi two-dimensional
insulating n = 1 and 2 phases to the three-dimensional metallic n = ∞ phase.

Keywords: iridates; first-principle methods; computational modeling; spin-orbit coupling; correlated
materials; metal-insulator transition

1. Introduction

In the last decade, Ir-based transition metal oxides have become a rapidly evolving
research area and have stimulated intensive interest due to the emergence of novel phases
of matter and exotic quantum phenomena arising from the cooperative interplay among the
crystalline electric field, spin–orbit coupling (SOC), Coulomb repulsion (U), and different
spin–exchange interactions (for reviews, see References [1–7]). Of particular interest is the
Ruddlesden–Popper (RP) series of iridates Srn+1IrnO3n+1 (n = 1, 2, and ∞) [1,8–12]. It is
found that, as n increases from 1 to ∞, a dimensionality-controlled insulator–metal transition
occurs, revealed by experimentally measured optical conductivity [11] and angle-resolved
photoemission spectroscopy (ARPES) [12], associated with a progressive quenching of long-
range magnetic ordering. In particular, the first member of the series, Sr2IrO4, provides
a prototypical model system to investigate entanglement of the spin and orbital degrees
of freedom due to a strong SOC, which triggers a novel relativistic Jeff = 1/2 Mott-like
insulating state in an otherwise metallic compound [8–10,13,14], and an unusual in-plane
canted antiferromagnetism (AFM) with a weak net ferromagnetic component [14–17]. The
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small gap (≈0.3 eV [18]) is opened by modest Hubbard interactions (U ≈ 1.5–2 eV [19]) and
by strong spin–orbit coupling (≈0.5 eV [20]). In addition, Sr2IrO4 exhibits striking structural
and magnetic similarities to high-Tc cuprate superconductors such as La2CuO4: these two
compounds share the same quasi-two-dimensional layered perovskite structure and Ir and
Cu have nominal d5 and d9 configurations, with one effective hole per site [15,21]. This
analogy has boosted the search for superconducting states in a new family of compounds,
possibly triggered by doping [22–25] or strain engineering [26]. However, weak evidence
for the onset of sperconducting phases has been produced so far. The n = 2 compound,
Sr3Ir2O7, exhibits structural and electronic properties similar to its sister n = 1 counterpart
Sr2IrO4 [27,28]; however, unlike Sr2IrO4, it shows a c-collinear AFM state and a smaller
insulating gap (0.13 eV [29]) [30–33]. The end member of the RP series is the single
perovskite SrIrO3. It has a three-dimensional crystal structure, and it has been reported to
exhibit a nonmagnetic correlated state combined with a topological crystalline semimetal
character [7,11,34–36], The topological state is associated with surface states protected by
the lattice symmetry [34,35], a large quasiparticle mass enhancement [11], and an unusual
positive magnetoresistance [36].

In this work, we review some results on first-principle modeling of this RP family,
putting in evidence the capability of advanced electronic structure methods such as non-
collinear local spin density approximation plus an on-site Coulomb interaction (LSDA+U),
constrained random phase approximation (cRPA), GW, and the Bethe–Salpter equation
(BSE) to properly account for the novel electronic, magnetic, and optical properties of
iridates. We note that most of the results discussed in this review are extracted from our
past research on iridates and are therefore unavoidably not exhaustive on many articles
dealing with iridates from ab intio perspectives.

2. Methodology
2.1. Noncollinear LSDA+U Model

For a detailed derivation of noncollinear LSDA+U model, we refer to Reference [37].
Here, we just recapitulate the most important aspects of the underlying algorithm— the
proper model Hamiltonian on which the noncollinear LSDA+U model is based. To this
end, we start from a general on-site Hamiltonian describing the interaction Vij,lk between
electrons occupying orbitals i, j, k, l:

Ĥ =
1
2 ∑

i,j,k,l
∑
σξ

Vij,lk ĉ†
i,σ ĉ†

j,ξ ĉk,ξ ĉl,σ, (1)

where ĉl,σ and ĉ†
l,σ, respectively, represent annihilation and creation operators for the orbital

l and the spin σ. Using an analogy with the theory of isotropic elasticity [38], where the four-
index matrix of elastic constants Cijkl has the same symmetry as Vij,lk, the Hamiltonian (1)
for the p-electron cubic harmonic orbital case can be written exactly as [39]

Ĥ =
1
2

(
U − J

2

)
: N̂2 : − J

4
: M̂2 : +

J
2 ∑

i,j
: (n̂ij)

2 : . (2)

where N̂ = ∑m,σ ĉ†
m,σ ĉm,σ is the operator of the total number of electrons on a site; n̂kl =

∑σ ĉ†
k,σ ĉl,σ; and

M̂ = ∑
m,ξ,ξ ′

ĉ†
m,ξ σξξ ′ ĉm,ξ ′
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is the total magnetic moment vector operator associated with a site. :: denotes normal
ordering of creation and annihilation operators, and σξξ ′ are the Pauli matrices. The
normally ordered terms in Equation (2) have the following form [37]:

: N̂2 : = N̂2 − N̂,

: M̂2 : = M̂2 − 3N̂,

: M̂2
z : = M̂2

z − N̂,

: (n̂kl)
2 : = ∑

σ,ξ
ĉ†

k,σ ĉ†
k,ξ ĉl,ξ ĉl,σ. (3)

The first two terms in Equation (2) are essentially the Hamiltonian of the collinear
Stoner model on which the collinear LSDA+U models [40–42] are based

Ĥ =
U
2

(
N̂2 − N̂

)
− J

4

(
N̂2 − 2N̂

)
− J

4
M̂2, (4)

where N̂σ = ∑l n̂l,σ, N̂ = N̂↑ + N̂↓, and M̂ = N̂↑ − N̂↓, with the exception that, in
Equation (2), the magnetic moment operator is a vector quantity. However, the Hamiltonian
(2) includes an extra third term, required by symmetry and absent in Equation (4). This
term is related to the orbital moment of electrons on a lattice site [39].

Following the derivation given in References [40,42], the noncollinear LSDA+U model
correction from Hamiltonian (2) equals the difference between the exact and mean-field
expectation values of these terms, resulting in [37]

ELSDA+U − ELSDA =[
1
2

(
U − J

2

)
− J

4
+

J
2

]
∑
m,σ

(
nm,σ − n2

m,σ

)
, (5)

where each term in square brackets corresponds to a respective term in Hamiltonian (2) and
nmσ is the electron occupation number of an orbital state m with spin index σ. The last term
(J/2)∑m,σ

(
nm,σ − n2

m,σ
)
, missing in the derivations given in References [40,42], results

from the last term in Equation (2). It is clear from Equation (5) that the terms containing
parameter J cancel each other exactly and that only the term proportional to parameter
U remains.

Generalizing Equation (5) to the case that is invariant with respect to the choice of
electronic orbitals and spin quantization axis results in [37]

ELSDA+U − ELSDA =
U
2

[
Trρ− Trρ2

]
=

U
2

[
∑
m,σ

ρσσ
mm − ∑

m,σ;m′ ,σ′
ρσσ′

mm′ρ
σ′σ
m′m

]
, (6)

where ρ is the full orbital and spin-dependent one-electron density matrix. The invariant
orbital- and spin-dependent noncollinear form of LSDA+U potential and double counting
correction become [37]:

Vσσ′
jl =

δELSDA+U

δρσσ′
l j

=
δELSDA

δρσσ′
l j

+ U
[

1
2

δjlδσσ′ − ρσσ′
jl

]
, (7)

and
Edc

LSDA+U =
U
2 ∑

σ,σ′ ,j,l
ρσσ′

jl ρσ′σ
l j . (8)

This shows that, in addition to correcting the prefactor in the formula, an invariant
noncollinear LSDA+U model requires convoluting the density matrix over the full set of
its orbital and spin indexes.
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It should be noted that, although the noncollinear LSDA+U model derived above is
for the p-electron case, its extension to other types of shells containing correlated electrons
is straightforward by adopting suitable forms of Hamiltonian [39] and it was shown that
the terms containing parameter J also cancel exactly for the d-electron orbitals and other
types of shells. Equations (7) and (8) remain sufficiently accurate and applicable [37].

Having obtained a corrected noncollinear LSDA+U model, the question of how to obtain
the value of parameter U from first-principles remains. The two most common approaches to
quantify U fully ab initio are the linear response method by Cococcioni [43] and cRPA [44–46].
We used cRPA, for which the basic aspects are summarized below.

2.2. Constrained Random Phase Approximation

Initially, the cRPA method [44–46] was designed to calculate the U value in order to
merge density functional theory (DFT) with dynamical mean field theory (DMFT) [47–49]
for the low energy part of the effective electronic Hamiltonian [50–52]. Since the DFT+U
method can be regarded as the static limit of DFT+DMFT in terms of self-energy, the cRPA
method has also been used in the DFT+U method as a way to reduce dependence on the
parameter U in routine DFT+U calculations.

Within the framework of cRPA [44–46,53], the electronic system was subdivided into
two subspaces. One subspace describes the correlated degrees of freedom, which are
dominant close to the Fermi level (called target correlated subspace), and the remaining
part acts as an effective medium, which screens the interaction between the correlated
electrons in the correlated subspace. To avoid double counting, all polarization effects
between the correlated electrons χc that have already been accounted for by the +U term in
DFT+DMFT (or DFT+U) were removed from the total irreducible polarizability χ, leading
to the rest polarizability χr [45,46,53]

χr = χ− χc. (9)

The partially screened Coulomb interaction U was then calculated in the random phase
approximation (RPA) but using a “constrained" polarizability, i.e., the rest polarizability
χr [45,46,53]

U−1 = V−1 − χr, (10)

where V is the bare (unscreened) Coulomb interaction. From Equations (9) and (10), it is
trivial to show that the fully screened interaction W can be recovered by

W−1 = V−1 − χ = U−1 − χc. (11)

Finally, the matrix elements of U were evaluated by [45,46,53]

Uijkl(ω) =
∫∫

drdr′w∗i (r)w
∗
j (r
′)U(r, r′, ω)wk(r)wl(r

′), (12)

where w(r) is the atomic-like local orbtials such as the maximally localized Wannier func-
tions [54,55]. Clearly, the partially screened interaction is essentially frequency-dependent.
Its dynamical effects have been discussed in the DFT+DMFT and GW+DMFT meth-
ods [56,57]. For the DFT+U method, normally, the orbital-averaged value of static U
is adopted [53]:

U =
1

N2

N

∑
i

N

∑
j

Uijij(ω = 0), (13)

where N is the number of local orbtials within the correlated subspace.
A final note on cRPA is in place here. If the target correlated states form an isolated

manifold around the Fermi level, the removal of χc from χ in Equation (9) can be performed
straightforwardly either in the plane wave basis [46] or in the Wannier function basis [58,59].
However, when the correlated states are strongly entangled with those non-correlated



Appl. Sci. 2021, 11, 2527 5 of 26

(usually s or p) states of the system, the target correlated subspace becomes not trivially
defined and evaluation of χc must be treated carefully. To address this problem, Miyake
and Aryasetiawan [60] proposed a method that disentangles the states around the Fermi
level such that a minimal basis set in the Bloch domain within a given energy window
is developed. In this method, the calculated effective interactions depend strongly on
the choice of the energy window [60]. In order to achieve a good representation of the
entangled bands, additional non-correlated s/p-like states were suggested to be included
in the Wannier projection and the effective interaction was calculated using a weighted
polarizability, where the weights were defined as probabilities for Bloch states being
correlated [61–63]. Although the form of the polarizability was claimed to follow the
Kubo–Nakano formula for the correlated fluctuation response function [62], it was later
pointed out and shown by Kaltak [64] that the weights should be corrected by taking into
account the contributions to the polarizability from not only the diagonal elements but also
the non-diagonal terms of the correlated projectors. For a more detailed deviation of the
correlated polarizability based on the Kubo–Nakano formulism, we refer to Reference [64].

2.3. The GW Method

Thanks to the cRPA method, LSDA+U becomes de facto a parameter-free method
in the sense that the U value is not taken as an adjustable parameter but calculated from
first-principles. The LSDA+U method has thus been proven to be successful in describing
the ground state properties for many correlated materials. However, the LSDA+U method
is still limited to a one-electron single-determinant picture and cannot be expected to
correct for inherent shortcomings of LSDA [65]. In particular, its descriptions on excited
state properties such as band gaps and optical spectra are often not satisfactory.

The GW approximation to the exchange correlation is derived systematically from
many-body perturbation theory using the Green’s function formalism [66,67] and provides
a good approximation for the self-energy Σ of a many-body system of electrons by including
many-body effects in electron–electron interaction. In this method, the self-energy in real
space and imaginary time domain is approximated by Σ = −GW [66–68], where G is the
single-particle Green’s function and W is the fully screened Coulomb interaction calculated
by Equation (11) within the RPA. The GW method has been widely and successfully applied
to the calculations of quasiparticle energies for many types of systems (for reviews, see
References [69–71]), and the resulting band gaps are often very close to the experimentally
measured values [72–79].

In practical GW calculations, the initial G and W are usually constructed using the DFT
one-electron energies and orbtials. Among many existing different GW variants (e.g., in the
order of increasing complexities, single-shot GW (G0W0) [75], eigenvalue self-consistent
GW (evGW0) [78], quasiparticle self-consistent GW (QSGW) [77,80], fully self-consistent
GW (scGW) [81–84], and scGW including vertex corrections [85,86]), the G0W0 method
is usually the most common choice due to its good compromise between accuracy and
efficiency. To speed up the GW calculations and to extend their applications on large
systems, several efforts and advances in different directions have been made, e.g., by
lowering the number of unoccupied states [87], by completely eliminating the unoccupied
states [88–90], by reducing the scaling with respect to system size [91–94], and by optimizing
existing implementations on current high-performance computing systems [95]. However,
one should keep in mind that the reasonably satisfactory accuracy of the G0W0 method
mostly arises from error cancellation due to the lack of self-consistency and the absence
of vertex corrections. To achieve a desired accuracy, the starting one-electron energies
and orbtials become particularly important [96,97]. A common practice is to choose a
suitable exchange-correlation functional that can best represent the ground state of the
system under study. For instance, for systems with localized d or f states, DFT+U obtained
one-electron energies and orbitals are usually much closer to the ground state as compared
to DFT and, hence, is a better starting point for subsequent G0W0 calculations [98,99]. This
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is the case for iridates where we have shown that DFT+U with the U calculated from cRPA
predicts very similar band structures to that of G0W0 [100].

In addition to good prediction of quasiparticle energies, in particular, band gaps,
the GW method has also seen wide applications in other aspects. For instance, the GW
method enables an elegant combination with DMFT, i.e., GW+DMFT [44,101–103], since
GW self-energy can be diagrammatically formulated in the same many-body framework
as DMFT [48,49]. Therefore, for GW+DMFT, one actually knows which Feynman diagrams
are counted twice, and GW+DMFT thus overcomes the fundamental double counting
problems in LDA+DMFT [52]. Moreover, the RPA routines of GW implementation, with
moderate changes, can be readily applied to the cRPA method as well as the RPA to
the correlation energy [104,105], since all these methods share the common RPA frame-
work. Furthermore, accurate description of screening by the GW method enables it to
be very useful in optical spectra calculations when combined with the Bethe–Salpeter
equation [70,106,106–112], which will be briefly introduced in the next section.

2.4. The Bethe–Salpeter Equation

From an ab initio perspective, the established state-of-the-art method for calculating
neutral excitation energies and optical spectra is to solve the Bethe–Salpeter equation
(BSE) for full reducible two-particle polarizability Π by solving a four-point Dyson-like
equation [70,106,106–112]:

Π−1 = χ−1 − K, (14)

where χ is the independent irreducible two-particle polarizability and K is the interaction
kernel, which in the W approximation (δΣ/δG ≈ −W) can be expressed as [70,106,106–112]:

K = V −W, (15)

where V is the unscreened Coulomb interaction and W is the screened exchange interaction.
Diagrammatically, if the ladder diagrams caused by W are not considered, then the BSE
in Equation (14) reduces to the RPA . By taking into account both the bubble and ladder
diagrams, the BSE explicitly accounts for the excitonic effects resulting from electron–hole
interactions. For reviews on BSE, we refer to References [70,113,114].

In order to obtain precise peak positions in optical spectra, accurate calculations of
quasiparticle energies are important, in particular, the size of the band gap. In addition, the
electron–hole interactions have to be properly described. Hence, the natural procedure to
calculate the optical spectra consists in the solution of the BSE using the GW quasiparticle
(QP) energies, adopting the static screening W calculated from the RPA for the electron–
hole interactions [70]. This approach is referred to as GW+BSE and has been widely used
to predict the optical spectra of various systems, e.g., molecules, clusters, semiconductors,
and insulators [115–122].

In practice, the BSE is recast into the following generalized eigenvalue problem [70,123]:(
A B
B∗ A∗

)(
X
Y

)
= Ω

(
I 0
0 −I

)(
X
Y

)
, (16)

where matrices A and B read [123]

Aai,bj = (εa − εi)δi,jδa,b + 〈ib | K | aj〉, (17)

Bai,bj = 〈ij | K | ab〉. (18)

where indices i, j and a, b represent occupied and unoccupied states, respectively. Ω is
the eigenvalues of the BSE, i.e., the excitation energies of the system. X and Y are the
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two-particle electron–hole eigenstates in the product basis for the electron–hole pairs:
ψi(r)ψ∗a (r′) and ψa(r)ψ∗i (r

′)

〈(r, r′)|X, Y〉 = ∑
i,a

[
Xiaψi(r)ψ∗a (r

′) + Yiaψa(r)ψ∗i (r
′)
]
. (19)

Obviously, Equation (16) is a complex non-Hermitian eigenvalue problem that is
difficult to solve using standard eigenvalue solvers. A common practice to avoid this
difficulty in solid-state physics is to neglect the resonant–antiresonant coupling B, thereby
reducing the problem to a Hermitian eigenvalue problem. This is known as the Tamm–
Dancoff approximation (TDA). Although the full solution in Equation (16) that is beyond
the TDA can be recast into a solvable quadratic Hermitian eigenvalue problem by using the
time-inversion symmetry [123], it was shown that the TDA shows tiny differences in the
optical spectra of solids compared to the full solution of the BSE [123]. In addition, going
beyond TDA is technically intractable, when the spin–orbit coupling is considered [123].
Hence, for the iridates under study where the SOC plays important roles, the TDA has to
be employed [100]. With the BSE eigenvectors XΛ and eigenvalues ΩΛ in the TDA in hand,
the frequency-dependent macroscopic dielectric function can be calculated as [100,123]

ε(ω) = 1− lim
q→0

V(q)∑
Λ

(
1

ω−ΩΛ + iη
− 1

ω + ΩΛ − iη

)

×
{

∑
k

wk ∑
v,c
〈ψck|eiq·r|ψvk〉XΛ

cvk

}
×
{

c.c.

}
,

(20)

with the oscillator strengths SΛ associated with the optical transitions defined by [100]

SΛ = Tr

[{
∑
k

wk ∑
v,c
〈ψck|eiq·r|ψvk〉XΛ

cvk

}
×
{

c.c.
}]

. (21)

where V is the bare Coulomb interaction, η is a positive infinitesimal, and wk is the k-
point weights. ψvk and ψck refer to occupied and unoccupied one-electron wave functions,
respectively. From ε(ω), the real part of the optical conductivity is then derived by

Re[σ(ω)] =
ω

4π
Im[ε(ω)]. (22)

Despite of the success of the GW+BSE approach, its high computational cost due to
unfavorable scaling has limited its use to small or moderate systems. Time-dependent
density functional theory (TDDFT) [70,124–126] provides an alternative approach that has
been widely used. In this approach, the interacting polarizability Π is obtained by solving
the following two-point Dyson-like equation [70]

Π−1 = χ−1 − (V + fxc), (23)

where fxc is the exchange-correlation kernel, which is defined as the derivative of the
time-dependent exchange-correlation potential vxc with respect to the time-dependent den-
sity [70]. Comparing Equations (14) and (15), one clearly sees that the difference between
TDDFT and BSE lies in the interaction kernels, though the two methods are formulated in
different notations (two-point vs. four-point). However, like vxc, the exact fxc is unknown,
and hence, how to explore an approximate but appropriate form for fxc becomes a central
challenging task in the community of TDDFT. Among the existing approximate exchange-
correlation kernels, the nanoquanta kernel [127–130] and bootstrap kernel of Sharma [131]
are particularly successful in yielding a satisfactory description of the excitonic effects.
Nevertheless, the nanoquanta kernel in TDDFT is computationally as expensive as solving
the BSE, since the kernel is essentially derived from the BSE and explicit calculations of the
two-electron four-orbital integrals are needed. The bootstrap kernel is not derived from
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first-principles and its description of bound excitons is not satisfactory [132]. To overcome
the slow performances of the GW+BSE while maintaining its accuracy to a large extent,
several approaches have been proposed focusing on improving the band gaps by using
hybrid-functional calculations and/or improving the screening effects by introducing a
material-specific model screening-dependent dielectric function [133–138].

3. Computational Details

All first-principles calculations were performed using the Vienna Ab initio Simulation
Package (VASP) [139,140]. The Perdew–Burke–Ernzerhof (PBE) [141] approximation was
employed for the exchange-correlation functional. The spin–orbit coupling was included.
The noncollinear LSDA+U model of Dudarev et al. [37] was used to treat the noncollinear
magnetism. The cRPA method based on the Kubo–Nakano formulism developed by
Kaltak [64] was employed to estimate the U values. The single-shot G0W0 method using
the LSDA+U obtained one-electron energies and orbitals as a starting point was used
to calculate the QP energies. The optical spectra were computed by solving the BSE
in the TDA [123]. For detailed information on the computational settings, we refer to
References [14,100,142].

4. Results and Discussions
4.1. Crystal Structures

The RP series of iridates Srn+1IrnO3n+1 is a family of materials, with n being the
number of SrIrO3 perovskite layers sandwiched between SrO layers [143]. Figure 1 displays
the crystal structures of the three iridates. Sr2IrO4 is a single-layered quasi-two-dimensional
(2D) compound for which the symmetry is lowered from I4/mmm to I41/acd due to the
rotation of IrO6 octahedra along the c axis by about 11.5◦ [144]. Besides rotation, the IrO6
octahedra is elongated along the c axis, giving rise to a bond length ratio c/a ≈ 1.04 [144].
Sr3Ir2O7 exhibits a similar crystal structure to Sr2IrO4, but it consists of stacking bilayers
of corner-shared IrO6 octahedra along the c axis [145]. The octahedral rotations for the
neighboring IrO6 octahedra in Sr3Ir2O7 are opposite not only within each layer but also
between the two layers (see Figure 1b). The perovskite-like SrIrO3 is a high-pressure phase
and has an orthorhombic three-dimensional (3D) structure [146,147].

5

with the oscillator strengths SΛ associated with the optical
transitions defined by [100]

SΛ = Tr
[{∑

k

wk

∑

v,c

⟨ψck|eiq·r|ψvk⟩XΛcvk

}
×

{
c.c.

}]
. (21)

Here, V is the bare Coulomb interaction, η is a positive in-
finitesimal, and wk are the k-point weights. ψvk and ψck refer
to occupied and unoccupied one-electron wave functions, re-
spectively. From ε(ω), the real part of the optical conductivity
is then derived by

Re[σ(ω)] =
ω

4π
Im[ε(ω)]. (22)

Despite of the success of the GW+BSE approach, its high
computational cost due to the unfavorable scaling has limited
its use to small or moderate systems. Time-dependent density
functional theory (TDDFT) [70, 124–126] provides an alter-
native approach that has been widely used. In this approach,
the interacting polarizability Π is obtained by solving the fol-
lowing two-point Dyson-like equation [70]

Π−1 = χ−1 − (V + fxc), (23)

where fxc is the exchange-correlation kernel, which is defined
as the derivative of the time-dependent exchange-correlation
potential vxc with respect to the time-dependent density [70].
Comparing Eqs. (14) and (15), one clearly sees that the differ-
ence between TDDFT and BSE lies in the interaction kernels,
though the two methods are formulated in different notations
(two-point vs. four-point). However, like vxc, the exact fxc is
unknown, and hence, how to explore an approximate but ap-
propriate form for fxc becomes a central challenging task in
the community of TDDFT. Among the existing approximate
exchange-correlation kernels, the nanoquanta kernel [127–
130] and bootstrap kernel of Sharma [131] are particularly
successful in yielding a satisfactory description of the exci-
tonic effects. Nevertheless, the nanoquanta kernel in TDDFT
is computationally as expensive as solving the BSE, since the
kernel is essentially derived from the BSE and explicit calcu-
lations of the two-electron four-orbital integrals are needed.
The bootstrap kernel is not derived from first principles and
its description of bound excitons is not satisfactory [132]. To
overcome the slow performances of the GW+BSE but keep its
accuracy to a large extent, several approaches have been pro-
posed focusing on improving the band gaps by using hybrid-
functional calculations and/or improving the screening effects
by introducing a material-specific model screening-dependent
dielectric function [133–138].

III. COMPUTATIONAL DETAILS

All first-principles calculations were performed using the
Vienna Ab initio Simulation Package (VASP) [139, 140]. The
Perdew-Burke-Ernzerhof (PBE) [141] approximation was
employed for the exchange-correlation functional. The spin-
orbit coupling was included. The noncollinear LSDA+U
model of Dudarev et al. [37] was used to treat the noncollinear

magnetism. The cRPA method based on the Kubo-Nakano
formulism developed by Kaltak [64] was employed to esti-
mate the U values. The single-shot G0W0 method using the
LSDA+U obtained one-electron energies and orbitals as a s-
tarting point was used to calculate the QP energies. The op-
tical spectra were computed by solving the BSE in the T-
DA [123]. For detailed information on the computational set-
tings, we refer to Refs. [14, 100, 142].

IV. RESULTS AND DISCUSSIONS

A. Crystal structures

The RP series of iridates Srn+1IrnO3n+1 is a family of ma-
terials with n being the number of SrIrO3 perovskite layers
sandwiched between SrO layers [143]. Fig. 1 displays the
crystal structures of the three iridates. Sr2IrO4 is a single-
layered quasi-two-dimensional (2D) compound whose sym-
metry is lowered from I4/mmm to I41/acd due to the rotation
of IrO6 octahedra along the c axis by about 11.5◦ [144]. Be-
sides rotation, the IrO6 octahedra is elongated along the c axis,
giving rise to a bond length ratio c/a ≈ 1.04 [144]. Sr3Ir2O7
exhibits a similar crystal structure to Sr2IrO4, but it consist-
s of stacking bilayers of corner-shared IrO6 octahedra along
the c axis [145]. The octahedral rotations for the neighboring
IrO6 octahedra in Sr3Ir2O7 are opposite not only within each
layer but also between the two layers [see Fig. 1(b)]. The
perovskite-like SrIrO3 is a high-pressure phase and has an or-
thorhombic three-dimensional (3D) structure [146, 147].

In our calculations, we have adopted the experimental lat-
tice parameters and fully relaxed internal atomic position-
s by the LSDA+U+SOC method until forces are smaller
than 0.01 eV/Å. Experimentally measured magnetic orderings
(n = 1: in-plane canted AFM [15, 17]; n = 2: c-collinear
AFM [30–33] and n = ∞: non-magnetic [147]) were adopt-

(a) Sr IrO2 4 (b) Sr Ir O3 2 7 (c) SrIrO3

a
b

c

FIG. 1. Crystal structure of RP series of perovskite-like iridates
Srn+1IrnO3n+1 (n=1, 2, and∞). Sr, Ir and O atoms are shown in green,
blue, and red, respectively.

Figure 1. Crystal structure of the Ruddlesden–Popper (RP) series of perovskite-like iridates
Srn+1IrnO3n+1 (n = 1, 2, and ∞). Sr, Ir, and O atoms are shown in green, blue, and red, respec-
tively. Reproduced with permission from Reference [100]. Copyright 2018 by the American Physical
Society.
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In our calculations, we adopted the experimental lattice parameters and fully relaxed
internal atomic positions using the LSDA+U+SOC method until the forces were smaller
than 0.01 eV/Å. Experimentally measured magnetic orderings (n = 1: in-plane canted
AFM [15,17]; n = 2: c-collinear AFM [30–33], and n = ∞: nonmagnetic [147]) were adopted.
The detailed optimized structural and magnetic data are given in Reference [100].

4.2. Electronic Structures
4.2.1. Interplay between U and SOC

For the RP series of iridates, the spin–orbit coupling, electron–electron correlations,
and spin–exchange interactions operate with comparable strengths, and depending on
their subtle interplay, different phases can develop. Therefore, it is essential to first study
how the interplay between U and SOC influences the electronic and magnetic states as well
as the transition from one phase to another. Figure 2 shows the metal–insulator transition
(MIT) and magnetic phase diagrams of three iridates as a function of Hubbard U and
SOC strength. To characterize the strength of SOC, we introduced a factor λ in the SOC
term of the Hamiltonian. In this way, one can enhance the effect of the SOC by taking
λ >1 or can reduce it by taking λ <1, where λ =1 refers to the self-consistent reference
value. The phase diagram displayed in Figure 2 show that the cooperation of U and SOC
and dimensionality (n) lead to the formation of different phases: (i) In the limit U = 0, all
compounds are nonmagnetic metals (NM-M), It can be seen from Figure 2 that, without
U (U = 0), the three compounds are nonmagnetic metals (NM-M), regardless of the SOC
strength. (ii) In the limit of full quenching of SOC strength λ = 0, a MIT induced by the
electron correlation is only achieved for nonphysically large U > 3 eV. For smaller U, the
systems enter a transient magnetically ordered metal state (AFM-M for n = 1, 2 and a more
complex magnetic-metal state for n = ∞, generally denoted M-M, which will be discussed
later on). (iii) The opening of the gap in the Dirac–Mott insulator, n = 1 and n = 2, is
clearly driven by the cooperative action of SOC and U: The general tendency is that, the
stronger the SOC strength, the smaller the critical interaction Uc required for opening the
gap. For λ =1, a moderate U ≈ 1 eV is sufficient to initiate the MIT in the n = 1 and
n = 2 compounds, whereas a substantially larger value of U ≈ 2 eV is required for SrIrO3
(n = ∞), the only non-insulating member of the considered series. As we will see, the
overall predicted ground state, marked by a cross and corresponding to λ = 1 and U set to
the calculated cRPA value, is in excellent agreement with expectations for each member of
the series. Our calculated phase diagram for SrIrO3 is consistent with the one reported by
Zeb et al. [148]. 6

FIG. 2. MIT and magnetic phase diagrams of three iridates in the U − λ space (λ characterises the SOC strength with λ = 1 being the
self-consistent SOC strength). Filled circles are the computed points. The crosses correspond to the cRPA calculated U and therefore mark
the first principles derived ground state. The right coloured bar indicates the value of the band gap (in eV) in the insulating regime. NM-M,
AFM-M, AFM-I, M-M, and M-I represent the non-magnetic metal, antiferromagentic metal, antiferromagentic insulator, magnetic metal, and
magnetic insulator, respectively.

ed. The detailed optimized structural and magnetic data have
been given in Ref. [100].

B. Electronic structures

1. Interplay between U and SOC

For the RP series of iridates, the spin-orbit coupling,
electron-electron correlations, and spin-exchange interaction-
s operate with comparable strengths, and depending on their
subtle interplay, different phases can develop. Therefore, it
is essential to first study how the interplay between U and
SOC influences the electronic and magnetic states as well as
the transition from one phase to another. Fig. 2 shows the
metal-insulator transition (MIT) and magnetic phase diagrams
of three iridates as a function of Hubbard U and SOC strength.
To characterize the strength of SOC, we have introduced a fac-
tor λ in the SOC term of the Hamiltonian. In this way, one can
enhance the effect of the SOC by taking λ >1 or reduce it by
taking λ <1, where λ =1 refers to the self-consistent reference
value. The phase diagram displayed in Fig. 2 show that the
cooperation of U and SOC and dimensionality (n) lead to the
formation of different phases: (i) In the limit U = 0, all com-
pounds are non-magnetic metals (NM-M), It can be seen from
Fig. 2 that without U (U = 0) the three compounds are non-
magnetic metals (NM-M), regardless of the SOC strength. (ii)
In the limit of full quenching of the SOC strength λ = 0, a MIT
induced by electron-correlation is only achieved for nonphys-
ically large U > 3 eV. For smaller U the systems enter a tran-
sient magnetically ordered metal state (AFM-M for n = 1, 2
and a more complex magnetic-metal state for n = ∞, general-
ly denoted M-M, which will be discussed later on). (iii) The
opening of the gap in the Dirac-Mott insulator n = 1 and n = 2
is clearly driven by the cooperative action of SOC and U: The
general tendency is that the stronger the SOC strength, the s-
maller is the critical interaction Uc required for opening the
gap. For λ =1 a moderate U ≈1 eV is sufficient to initiate the
MIT in the n = 1 and n = 2 compounds, whereas a substan-
tially larger value of U ≈2 eV is required for SrIrO3 (n = ∞),

the only non-insulating member of the considered series. As
we will see, the overall predicted ground state, marked by a
cross and corresponding to λ =1 and U set to the calculated
cRPA value, is in excellent agreement with expectations for
each member of the series. Our calculated phase diagram for
SrIrO3 is consistent with the one reported by Zeb et al. [148].

To further examine the combined effects of U and SOC,
we analyze the band structures shown in Fig. 3. In the non-
relativistic (λ = 0) DFT (U = 0) case [Figs. 3(a1), (b1) and
(c1)] all three iridates are metallic due to a partial filling of
the t5

2g bands that crosses the Fermi level. When the SOC is
taken into account [Figs. 3(a1), (b2) and (c2)], the t2g bands
are split into the upper Jeff=1/2 and low-lying Jeff=3/2 band-
s (blue curves). Due to the similar crystal structure Sr2IrO4
and Sr3Ir2O7 show overall analogous electronic dispersions:
the band energies are strongly SOC-split at Γ and lifted at the
M point. Compared to the non-relativistic DFT calculated t2g
bands, the bandwidth of the Jeff=1/2 manifolds is largely nar-
rowed by the SOC, giving rise to the enhanced Mott insta-
bility. In this situation, even a moderate Hubbard U is able
to open the band gap, leading to the Mott MIT [Figs. 3(a3)
and (b3)]. In the 3D perovskite SrIrO3, SOC induces to a
k-uniform band-splitting and leads to the emergence of the
characteristic Dirac-like crossing at the high-symmetry point
U [148], which is robust against electronic correlation: a mod-
erate U = 1 eV is not sufficient to destroy the Dirac crossing
as shown in Fig. 3(c3).

As the Hubbard U is increased further, the band gap formed
by the upper and lower Hubbard bands (UHB and LHB, re-
spectively) is increased for n=1 and 2 as well [Figs. 3(a4) and
(b4)] and the bands forming the Dirac crossing are split for
n = ∞ [Figs. 3(c4)], causing the vanishing of the Dirac state.
The larger critical Uc necessary to open the gap increases with
dimensionality n and is correlated to the bandwidth, which
increases with increasing n. The combined effect of SOC
and U is schematized in the model density of states shown in
Figs. 3(d1)-(d4), showing the transition from a non-correlated
and non-relativistic metal [Fig. 3(d1)] to a full Dirac-Mott s-
tate [Fig. 3(d4)] through transient states distinguished by the
degree of splitting between the lower and upper Jeff=1/2 bands

Figure 2. Metal–insulator transition (MIT) and magnetic phase diagrams of three iridates in the U− λ space (λ characterises
the spin–orbit coupling (SOC) strength, with λ = 1 being the self-consistent SOC strength). The filled circles are the
computed points. The crosses correspond to the constrained random phase approximation (cRPA)-calculated U and
therefore mark the first-principle-derived ground state. The right colored bar indicates the value of the band gap (in eV) in
the insulating regime. NM-M, AFM-M, AFM-I, M-M, and M-I represent the nonmagnetic metal, antiferromagentic metal,
antiferromagentic insulator, magnetic metal, and magnetic insulator, respectively.
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To further examine the combined effects of U and SOC, we analyzed the band struc-
tures shown in Figure 3. In the nonrelativistic (λ = 0) DFT (U = 0) case (Figure 3(a1,b1,c1)),
all three iridates are metallic due to partial filling of the t5

2g bands that crosses the Fermi
level. When the SOC is taken into account (Figure 3(a1,b2,c2)), the t2g bands are split
into the upper Jeff = 1/2 and low-lying Jeff = 3/2 bands (blue curves). Due to the similar
crystal structures, Sr2IrO4 and Sr3Ir2O7 show overall analogous electronic dispersions:
the band energies are strongly SOC split at Γ and lifted at the M point. Compared to
the nonrelativistic DFT-calculated t2g bands, the bandwidth of the Jeff = 1/2 manifolds is
largely narrowed by the SOC, giving rise to the enhanced Mott instability. In this situation,
even a moderate Hubbard U is able to open the band gap, leading to the Mott MIT (Figure
3(a3,b3)). In the 3D perovskite SrIrO3, SOC induces to a k-uniform band-splitting and leads
to the emergence of characteristic Dirac-like crossing at the high-symmetry point U [148],
which is robust against electronic correlation: a moderate U = 1 eV is not sufficient to
destroy the Dirac crossing, as shown in Figure 3(c3). 7

FIG. 3. Band structures evolution as a function of Hubbard U and SOC strength λ for three iridates. The Fermi energy has been aligned to
zero. The rightmost panel schematically shows the corresponding density of states with ξsoc being the SOC energy. Note that to achieve a
similar electronic state as in Sr2IrO4, a increasingly larger U is used for Sr3Ir2O7 and SrIrO3 in the third and fourth rows.

[Figs. 3(d2) and (d3)]. The SOC controls the intra-band split-
ting, causing the formation of Jeff=1/2 and Jeff=3/2 features:
U, on the other hand, governs the inter-band splitting between
LHB and UHB.

2. Quantification of relevant energy scales

To quantify the degree of electronic correlations of three
iridates and determine the ground state of each compound in
the phase diagram, we have calculated the Hubbard U and ex-
change J by cRPA. The Ir-t2g states are chosen as target corre-
lated subspace. This choice has been justified by good match
between the non-magnetic DFT bands and the corresponding
ones for the Ir-t2g manifold obtained by Wannier interpolation
(see Fig. 4). Table I summarizes the obtained matrix elements
of Ui j and Ji j. According to Eq. (13), we obtained an aver-
aged U value of 1.82, 1.67, and 1.37 eV for Sr2IrO4, Sr3Ir2O7,
and SrIrO3, respectively. This is expected, since the gradual
increase of the bandwidth associated with the increase of di-
mensionality leads to enhanced screening. With these cRPA
values of U the corresponding DFT+U predicted ground state
for n = 1, 2 and ∞, marked with a cross in the phase dia-
gram shown in Fig. 2 very well reproduces the experimentally
detected electronic ground state: insulating for n = 1, 2 and
metal for n = ∞.

To complete the quantification of the other relevant interac-

TABLE I. On-site Coulomb and exchange interactions (in eV) cal-
culated by cRPA for three RP iridates. Ui j = Ui ji j(ω = 0) and
Ji j = Ui j ji(ω = 0) with i and j representing t2g-like Wannier orbitals.
See Eq. (12) for the notations used.

Ui j Ji j
Sr2IrO4 dyz dzx dxy dyz dzx dxy
dyz 2.30 1.72 1.57 – 0.23 0.22
dzx 1.72 2.30 1.57 0.23 – 0.22
dxy 1.57 1.57 2.03 0.22 0.22 –
Sr3Ir2O7 dyz dzx dxy dyz dzx dxy
dyz 2.16 1.58 1.43 – 0.23 0.22
dzx 1.58 2.16 1.43 0.23 – 0.22
dxy 1.43 1.43 1.85 0.22 0.22 –
SrIrO3 dyz dzx dxy dyz dzx dxy
dyz 1.78 1.21 1.19 – 0.22 0.22
dzx 1.21 1.73 1.22 0.22 – 0.22
dxy 1.19 1.22 1.74 0.22 0.22 –

tions, we have also estimated the crystal field energies 10Dq,
the SOC constant λsoc and the band gap. The data are shown
in Table II. The 10Dq is evaluated from the central mass of
density of states between the eg and t2g bands without U and
SOC. The λsoc is approximated as λsoc≃2/3ξsoc with ξsoc be-
ing the SOC energy which is estimated from the total energy
difference with and without the inclusion of SOC. One can
observe that crystal field energies are the largest energy scale
(over 3 eV) and it is thus reasonable to assume the t2g states

Figure 3. Band structure evolution as a function of Hubbard U and SOC strength λ for three iridates. The Fermi energy has
been aligned to zero. The rightmost panel schematically shows the corresponding density of states, with ξsoc being the SOC
energy. Note that, to achieve a similar electronic state as in Sr2IrO4, a increasingly larger U is used for Sr3Ir2O7 and SrIrO3

in the third and fourth rows.

As the Hubbard U is increased further, the band gap formed by the upper and
lower Hubbard bands (UHB and LHB, respectively) is increased for n = 1 and 2 as
well (Figure 3(a4,b4)) and the bands forming the Dirac crossing are split for n = ∞
(Figure 3(c4)), causing vanishing of the Dirac state. The larger critical Uc necessary to
open the gap increases with dimensionality n and is correlated to the bandwidth, which
increases with increasing n. The combined effect of SOC and U is schematized in the model
density of states shown in Figure 3(d1–d4), showing the transition from a non-correlated
and nonrelativistic metal (Figure 3(d1)) to a full Dirac–Mott state (Figure 3(d4)) through
transient states distinguished by the degree of splitting between the lower and upper
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Jeff = 1/2 bands (Figure 3(d2,d3)). The SOC controls intra-band splitting, causing the
formation of Jeff = 1/2 and Jeff = 3/2 features: U, on the other hand, governs the inter-band
splitting between LHB and UHB.

4.2.2. Quantification of Relevant Energy Scales

To quantify the degree of electronic correlations of three iridates and to determine
the ground state of each compound in the phase diagram, we calculated the Hubbard U
and exchange J by cRPA. The Ir-t2g states are chosen as a target correlated subspace. This
choice has been justified by a good match between the nonmagnetic DFT bands and the
corresponding ones for the Ir-t2g manifold obtained by Wannier interpolation (see Figure 4).
Table 1 summarizes the obtained matrix elements of Uij and Jij. According to Equation (13),
we obtained averaged U values of 1.82, 1.67, and 1.37 eV for Sr2IrO4, Sr3Ir2O7, and SrIrO3,
respectively. This is expected, since the gradual increase in bandwidth associated with the
increase in dimensionality leads to enhanced screening. With these cRPA values of U, the
corresponding DFT+U-predicted ground state for n = 1, 2, and ∞, marked with a cross in
the phase diagram shown in Figure 2, very well reproduces the experimentally detected
electronic ground state: insulating for n = 1, 2 and being a metal for n = ∞.

Table 1. On-site Coulomb and exchange interactions (in eV) calculated by cRPA for three RP iridates.
Uij = Uijij(ω = 0) and Jij = Uijji(ω = 0) with i and j representing t2g-like Wannier orbitals. See
Equation (12) for the notations used. Reproduced with permission from Reference [100]. Copyright
2018 by the American Physical Society.

Uij Jij

Sr2IrO4 dyz dzx dxy dyz dzx dxy
dyz 2.30 1.72 1.57 – 0.23 0.22
dzx 1.72 2.30 1.57 0.23 – 0.22
dxy 1.57 1.57 2.03 0.22 0.22 –

Sr3Ir2O7 dyz dzx dxy dyz dzx dxy
dyz 2.16 1.58 1.43 – 0.23 0.22
dzx 1.58 2.16 1.43 0.23 – 0.22
dxy 1.43 1.43 1.85 0.22 0.22 –

SrIrO3 dyz dzx dxy dyz dzx dxy
dyz 1.78 1.21 1.19 – 0.22 0.22
dzx 1.21 1.73 1.22 0.22 – 0.22
dxy 1.19 1.22 1.74 0.22 0.22 – 8
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FIG. 4. The non-magnetic DFT bands (black line) superposed with Wannier interpolated bands (red dashed line).

as the effective total angular momentum Leff = −1. The SOC
constant λsoc for three iridates are estimated to be about 0.5
eV, in line with electron spin resonance measurements (0.40-
0.5 eV) [149]. The estimation of the band gap is discussed in
the following session where we assess and compare the GW
and DFT+U.

TABLE II. A summary of the space group, Hubbard U, exchange
J, crystal field energy 10Dq, and SOC constant λsoc (eV) as well as
DFT+U+SOC and GW+SOC predicted band gaps. The energy unit
is in eV. Experimental gaps are also given for comparison.

Sr2IrO4 Sr3Ir2O7 SrIrO3

Space group I41/acd (142) Ccce (68) Pbnm (62)

U 1.82 1.67 1.39
J 0.22 0.22 0.22

10Dq 3.70 3.80 4.24
λsoc 0.47 0.49 0.45

Magnetic ordering ab-canted c-collinear NM
AFM AFM

DFT+U+SOC gap 0.23 0.14 metal
GW+SOC gap 0.25 0.16 metal

Expt. gap 0.30[18] 0.13[29] metal[146, 147]

3. GW vs. LSDA+U

In this Section, we focus on analyzing the ground-
state electronic structures in more detail by comparing the
LSDA+U+SOC band structure (computed using the cRPA
values of U) with the quasiparticle energies obtained by
GW+SOC.

As shown Fig. 5, both approaches reproduce well the
Jeff=1/2 spin-orbital Mott insulating state of Sr2IrO4 and
Sr3Ir2O7, and correctly predict SrIrO3 as a semimetal. The
obtained fundamental gaps agree well with experimental mea-
surements (see Table II). However, residual differences are ob-
served between the two methods: GW pushes down the O-2p
states by about 0.5 eV, which in turn decreases the hybridiza-

tions between Ir-d states and O-2p states.

As already mentioned Sr2IrO4 and Sr3Ir2O7 exhibit very
similar bands. The most noticeable difference is the split-
ting at the top of the valence band at Γ induced by the bi-
layer structure in Sr3Ir2O7. The computed splitting energy for
Sr3Ir2O7 is about 0.23 eV, consistent with the one obtained by
ARPES [28]. It is important to note that for both Sr2IrO4 and
Sr3Ir2O7 the Jeff=1/2 LHB and Jeff=3/2 states are not separat-
ed by a well-defined gap, in contrast to the ideal Jeff=1/2 pic-
ture. The band structure of SrIrO3 is semi-metallic and clearly
different from the other two compounds. The most important
characteristic is the Dirac cone at the U point that is protected
by the lattice symmetry [148, 150]. The Dirac cone is the only
crossing between the conduction and valence band in the en-
tire Brillouin zone, and is associated with a pseudogap at the
Fermi energy [see Figs. 5(f) and (l)], in agreement with the
experimentally measured small charge carrier density [151],
proving the semi-metallic character of SrIrO3.

We note that although both GW+SOC and LSDA+U+SOC
capture the main features of three iridates, their description-
s on relative binding energies between the top of the valence
band at Γ and X for Sr2IrO4 and Sr3Ir2O7 are not satisfactory.
For instance, ARPES indicates that the maximum of the LHB
at Γ lays 150-250 meV lower compared to X for both Sr2IrO4
and Sr3Ir2O7 [8, 25, 28, 152, 153]. However, LSDA+U+SOC
predicts that the Γ point is 20 and 70 meV higher in energy
than the X point for Sr2IrO4 and Sr3Ir2O7, respectively. GW
improves the description only marginally for Sr2IrO4, where
the top of the valence band at X is found 10 meV higher than
at Γ, but fails in reproducing the correct order for Sr3Ir2O7,
even though the QP difference Γ − X is reduced to 40 meV.
A second drawback of the employed level of theory is the re-
duced degree of electronic correlation for SrIrO3. In fact, GW
gives a renormalization factor Z for the Jeff = 1/2 bands close
to the Fermi level of 0.61, yielding a mass enhancement of
1.64, far lower than the experimental value of 6 [11]. This
is also reflected by the absence of the characteristic QP peak
close to the Fermi level detected by ARPES [152]. These fail-
ures imply that the type and degree of correlations included in
the GW self-energy are not adequate enough to describe accu-
rately the local band topology of Sr2IrO4 and Sr3Ir2O7 as well
as the correlated metallic state of SrIrO3 and going beyond the

Figure 4. The nonmagnetic DFT bands (black line) superposed with Wannier interpolated bands (red dashed line).
Reproduced with permission from Reference [100]. Copyright 2018 by the American Physical Society.

To complete the quantification of the other relevant interactions, we also estimated the
crystal field energies 10Dq, the SOC constant λsoc, and the band gap. The data are shown
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in Table 2. The 10Dq is evaluated from the central mass of density of states between the
eg and t2g bands without U and SOC. The λsoc is approximated as λsoc ' 2/3ξsoc, with
ξsoc being the SOC energy, which is estimated from the total energy difference with and
without the inclusion of SOC. One can observe that crystal field energies are the largest
energy scale (over 3 eV), and it is thus reasonable to assume the t2g states as the effective
total angular momentum Leff = −1. The SOC constant λsoc for three iridates are estimated
to be about 0.5 eV, in line with electron-spin resonance measurements (0.40–0.5 eV) [149].
Estimation of the band gap is discussed in the following session, where we assess and
compare GW and DFT+U.

Table 2. A summary of the space group, Hubbard U, exchange J, crystal field energy 10Dq, and SOC
constant λsoc (eV) as well as DFT+U+SOC- and GW+SOC-predicted band gaps. The energy unit is in
eV. Experimental gaps are also given for comparison.

Sr2IrO4 Sr3Ir2O7 SrIrO3

Space group I41/acd (142) Ccce (68) Pbnm (62)

U 1.82 1.67 1.39
J 0.22 0.22 0.22

10Dq 3.70 3.80 4.24
λsoc 0.47 0.49 0.45

Magnetic ordering ab-canted AFM c-collinear AFM NM
DFT+U+SOC gap 0.23 0.14 metal

GW+SOC gap 0.25 0.16 metal
Expt. gap 0.30 [18] 0.13 [29] metal [146,147]

4.2.3. GW vs. LSDA+U

In this section, we focus on analyzing the ground-state electronic structures in more
detail by comparing the LSDA+U+SOC band structure (computed using the cRPA values
of U) with the quasiparticle energies obtained by GW+SOC.

As shown Figure 5, both approaches reproduce the Jeff = 1/2 spin-orbital Mott in-
sulating state of Sr2IrO4 and Sr3Ir2O7 well and correctly predict SrIrO3 as a semimetal.
The obtained fundamental gaps agree well with experimental measurements (see Table 2).
However, residual differences are observed between the two methods: GW pushes down
the O-2p states by about 0.5 eV, which in turn decreases the hybridizations between Ir-d
states and O-2p states.

As already mentioned, Sr2IrO4 and Sr3Ir2O7 exhibit very similar bands. The most
noticeable difference is the splitting at the top of the valence band at Γ induced by the
bilayer structure in Sr3Ir2O7. The computed splitting energy for Sr3Ir2O7 is about 0.23 eV,
consistent with the one obtained by ARPES [28]. It is important to note that, for both Sr2IrO4
and Sr3Ir2O7, the Jeff = 1/2 LHB and Jeff = 3/2 states are not separated by a well-defined
gap in contrast to the ideal Jeff = 1/2 picture. The band structure of SrIrO3 is semi-metallic
and clearly different from the other two compounds. The most important characteristic
is the Dirac cone at the U point that is protected by the lattice symmetry [148,150]. The
Dirac cone is the only crossing between the conduction and valence band in the entire
Brillouin zone and is associated with a pseudogap at the Fermi energy (see Figure 5f,l), in
agreement with the experimentally measured small charge carrier density [151], proving
the semi-metallic character of SrIrO3.

We note that, although both GW+SOC and LSDA+U+SOC capture the main features
of three iridates, their descriptions on relative binding energies between the top of the
valence band at Γ and X for Sr2IrO4 and Sr3Ir2O7 are not satisfactory. For instance, ARPES
indicates that the maximum of the LHB at Γ lies 150–250 meV lower compared to X for
both Sr2IrO4 and Sr3Ir2O7 [8,25,28,152,153]. However, LSDA+U+SOC predicts that the
Γ point is 20 and 70 meV higher in energy than the X points for Sr2IrO4 and Sr3Ir2O7,
respectively. GW improves the description only marginally for Sr2IrO4, where the top of
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FIG. 5. Electronic band structures and density of states (DOS) obtained from (a-f) LSDA+U+SOC with U calculated from cRPA and (g-l)
GW+SOC calculations for three iridates (upper panel for Sr2IrO4, middle panel for Sr3Ir2O7 and bottom panel for SrIrO3). The Fermi energy
has been aligned to zero. The high-energy Ir-eg states are not shown due to the large crystal field.

GW approximation is needed, such as DFT+DMFT [154].

FIG. 6. Collapse of the Dirac-Mott gap in electron doped Sr2IrO4

(Sr2−xLaxIrO4). Comparison between calculated bands [left, (a), (d)
and (g)] and corresponding Fermi surface [142] [middle, (b), (e) and
(h)] with the corresponding experimental Fermi surface [153] [right,
(c), (f) and (i)].

Finally, we would like to mention that the gap in Sr2IrO4 is

unstable upon doping: both electron and hole doping induce
an insulating to metal transition associated with the emer-
gence of a Fermi surface [153, 155, 156]. The basic features
of the transition are well captured by LSDA+U [142]. Fig. 6
show a comparison between calculated (middle panels) and
experimental (right panels) Fermi surfaces of Sr2−xLaxIrO4
for different doping concentrations (x =0, 6.25% and 12.5%).
The Fermi surface are extracted from La-doped supercell us-
ing the band-unfolding techniques (left panels), whereas the
measured data refer to ARPES. The closing of the gap is at-
tributed to a progressive reduction of the electronic correla-
tion in electron-doped samples and by the gradual filling of
the bottom of the conduction bands. The agreement between
theory and experiment is excellent, apart from the feature at
Γ in the simulated undoped Fermi surface due to the overes-
timation of the top of the valence band at Γ, as previously
mentioned.

C. Magnetic properties

Now we turn to a more detailed analysis of the magnetic
properties. Fig. 7 shows the representative magnetic order-
ings for the three iridates predicted by LSDA+U+SOC cal-
culations. The computed local magnetic moments includ-
ing the orbital and spin contributions have been given in
Ref. [100]. Sr2IrO4 exhibits an in-plane canted antiferro-
magnetic ordering with a weak ferromagnetic moment with-
in the ab-plane. The predicted weak ferromagnetic moment

Figure 5. Electronic band structures and density of states (DOS) obtained from (a–f) LSDA+U+SOC with U calculated from
cRPA and (g–l) GW+SOC calculations for three iridates (upper panel for Sr2IrO4, middle panel for Sr3Ir2O7, and bottom
panel for SrIrO3). The Fermi energy has been aligned to zero. The high-energy Ir-eg states are not shown due to the large
crystal field. Reproduced with permission from Reference [100]. Copyright 2018 by the American Physical Society.

the valence band at X is found 10 meV higher than at Γ but fails in reproducing the correct
order for Sr3Ir2O7, even though the QP difference Γ− X is reduced to 40 meV. A second
drawback of the employed level of theory is the reduced degree of electronic correlation for
SrIrO3. In fact, GW gives a renormalization factor Z for the Jeff = 1/2 bands close to the
Fermi level of 0.61, yielding a mass enhancement of 1.64, far lower than the experimental
value of 6 [11]. This is also reflected by the absence of the characteristic QP peak close to
the Fermi level detected by ARPES [152]. These failures imply that the type and degree of
correlations included in the GW self-energy are not adequate enough to accurately describe
the local band topology of Sr2IrO4 and Sr3Ir2O7 as well as the correlated metallic state of
SrIrO3 and that going beyond the GW approximation is needed, such as DFT+DMFT [154].

Finally, we would like to mention that the gap in Sr2IrO4 is unstable upon doping:
both electron and hole doping induce an insulator-to-metal transition associated with
the emergence of a Fermi surface [153,155,156]. The basic features of the transition are
well captured by LSDA+U [142]. Figure 6 show a comparison between calculated (middle
panels) and experimental (right panels) Fermi surfaces of Sr2−xLaxIrO4 for different doping
concentrations (x = 0, 6.25%, and 12.5%). The Fermi surface are extracted from La-doped
supercell using the band-unfolding techniques (left panels), whereas the measured data
refer to ARPES. The closing of the gap is attributed to a progressive reduction in the
electronic correlation in electron-doped samples and by gradual filling of the bottom of the
conduction bands. The agreement between theory and experiment is excellent, apart from
the feature at Γ in the simulated undoped Fermi surface due to the overestimation of the
top of the valence band at Γ, as previously mentioned.
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Figure 6. Collapse of the Dirac–Mott gap in electron-doped Sr2IrO4 (Sr2−xLaxIrO4). Comparison
between calculated bands (left, (a,d,g)) and the corresponding Fermi surface [142] (middle, (b,e,h))
with the corresponding experimental Fermi surface [153] (right, (c,f,i)). Reproduced with permission
from Reference [142]. Copyright 2016 by the American Physical Society.

4.3. Magnetic Properties

Now, we turn to a more detailed analysis of the magnetic properties. Figure 7 shows
the representative magnetic orderings for the three iridates predicted by LSDA+U+SOC
calculations. The computed local magnetic moments including the orbital and spin con-
tributions have been given in Reference [100]. Sr2IrO4 exhibits an in-plane canted an-
tiferromagnetic ordering with a weak ferromagnetic moment within the ab-plane. The
predicted weak ferromagnetic moment is about 0.08 µB/Ir, in line with the magnetic
susceptibility measurements 0.06–0.14 µB/Ir [144,157]. The canting angle of magnetic mo-
ment is calculated as 12.5◦, in accordance with the x-ray resonant scattering measurement
(12.2(8)◦) [158].

In contrast to Sr2IrO4, Sr3Ir2O7 displays an out-of-plane c-collinear antiferromagnetic
ordering, indicating stronger interlayer couplings. which has been confirmed by the
resonant x-ray diffraction [30,32,33]. The nearly zero in-plane magnetic moment is also in
agreement with tiny hysteresis in the magnetic susceptibility experiments [30].

Although the magnetic ground state of SrIrO3 is nonmagnetic, its magnetic ordering
in the magnetic regime is more complicated due to its distorted three-dimensional crystal
structure (see Figure 1c). As illustrated in Figure 7c, the magnetic ordering depends strongly
on U and λ. For instance, for U = 2.0 and λ = 0.4, the system shows a canted antiferromagnetic
order with a large ferromagnetic component in the ab plane (Figure 7(c1)). As λ increases to
1.0, the system becomes a canted A-type antiferromagnet and the moments are largely aligned
to the c axis (Figure 7(c2)). Keeping λ = 1.0 and increasing U (compare Figure 7(c2,c3)), the
agenetic moments are aligned in a very different way, but the average magnetization per unit
cell is zero.
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FIG. 7. Magnetic orderings of three iridates predicted by the
LSDA+U+SOC method. (a) Sr2IrO4 with U=1.82 eV and λ=1.0, (b)
Sr3Ir2O7 with U=1.67 eV and λ=1.0, and (c) SrIrO3 whose magnetic
structure depends strongly on the values of U and λ in the magnetic
regime (see Fig. 2). The arrows denote the magnetic moment of each
Ir atom. Sr and Ir are shown in green and blue, respectively. O atoms
are not shown.

is about 0.08 µB/Ir, in line with the magnetic susceptibility
measurements 0.06-0.14 µB/Ir [144, 157]. The canting an-
gle of magnetic moment is calculated to be 12.5◦, in nice
accordance with the x-ray resonant scattering measurement
[12.2(8)◦] [158].

In contrast to Sr2IrO4, Sr3Ir2O7 displays an out-of-plane c-
collinear antiferromagnetic ordering, indicating the stronger
interlayer couplings. which has been confirmed by the res-
onant x-ray diffraction [30, 32, 33]. The nearly zero in-plane
magnetic moment is also in agreement with the tiny hysteresis
in the magnetic susceptibility experiments [30].

Although the magnetic ground state of SrIrO3 is non-
magnetic, its magnetic ordering in the magnetic regime is
much complicated due to its distorted three-dimensional crys-
tal structure [see Fig. 1(c)]. As illustrated in Fig. 7(c), the
magnetic ordering depends strongly on the U and λ. For in-
stance, for U=2.0 and λ=0.4 the system shows a canted anti-
ferromagnetic order with a large ferromagnetic component in
the ab plane [Fig. 7(c1)]. As λ increases to 1.0, the system
becomes a canted A-type antiferromagnet and the moments
are largely aligned to the c axis [Fig. 7(c2)]. Keeping λ=1.0

FIG. 8. The spin-dependent total energy as a function of the in-plane
spin canting angle θs decomposed over the isotropic AFM exchange
(EX), SSA and DM contributions.The zero is set such that the DM
energy becomes zero for θs=0◦.

and increasing U [compare Fig. 7(c2) and Fig. 7(c3)], the
agenetic moments are aligned in a very different way but the
average magnetization per unit cell is zero.

Having obtained the magnetic ground states for three iri-
dates, we are now in a position to explain why Sr2IrO4 exhibit-
s an unusual ab-canted AFM, whereas the structurally sim-
ilar compound Sr3Ir2O7 shows a c-collinear AFM. The for-
mer have been largely discussed in Ref. [14]. Here, we just
summarize the main points. To study the anisotropic mag-
netic couplings in Sr2IrO4, we have put forward a scheme by
mapping fully relativistic constrained noncollinear LSDA+U
calculations onto a general spin model Hamiltonian,

∆E = −
∑

i< j

Ji jSi · S j +
∑

i

εi
an(Si) +

∑

i< j

Di j · [Si × S j], (24)

where the first, second and last term represent the isotrop-
ic AFM exchange, the single-site anisotropy (SSA) and
Dzyaloshinskii-Moriya interactions, respectively. After tak-
ing the sum over all the Ir ions in the conventional unit cell,
Eq. (24) reduces to,

∆E = 16JS 2 cos(2θs) + 8K cos(4θs) − 16DzS 2 sin(2θs) (25)

where J, K and Dz are the nearest-neighbor isotropic ex-
change, SSA and DM coupling parameters, respectively, and
S and θs are the magnitude and canted angle of the in-plane
spin moment, respectively. Fig. 8 shows the spin-dependent
total energy as a function of the in-plane spin canting angle θs
decomposed over the isotropic AFM exchange, SSA and DM
contributions. The magnetic coupling parameters can be ex-
tracted by fitting the first-principles calculated data using the
model Eq. (25), yielding JS 2 = -0.32 meV, K = -0.1 meV, and
DzS 2 = 0.25 meV, comparable with available phenomenolog-
ical data in literature [21, 159]. The AFM isotropic exchange,
favoring a collinear alignment of the spins, aids the stabiliza-
tion of the AFM ordering. The DM interaction, which prefers

Figure 7. Magnetic orderings of three iridates predicted by the LSDA+U+SOC method: (a) Sr2IrO4

with U = 1.82 eV and λ = 1.0; (b) Sr3Ir2O7 with U = 1.67 eV and λ = 1.0; and (c) SrIrO3, for which the
magnetic structure depends strongly on the values of U and λ in the magnetic regime (see Figure 2).
The arrows denote the magnetic moment of each Ir atom. Sr and Ir are shown in green and blue,
respectively. O atoms are not shown.

Having obtained the magnetic ground states for three iridates, we are now in a position
to explain why Sr2IrO4 exhibits an unusual ab-canted AFM, whereas the structurally similar
compound Sr3Ir2O7 shows a c-collinear AFM. The former has been largely discussed in
Reference [14]. Here, we just summarize the main points. To study the anisotropic magnetic
couplings in Sr2IrO4, we put forward a scheme by mapping fully relativistic constrained
noncollinear LSDA+U calculations onto a general spin model Hamiltonian:

∆E = −∑
i<j

JijSi · Sj + ∑
i

εi
an(Si) + ∑

i<j
Dij · [Si × Sj], (24)

where the first, second, and last terms represent the isotropic AFM exchange, the single-site
anisotropy (SSA), and Dzyaloshinskii–Moriya interactions, respectively. After taking the
sum over all the Ir ions in the conventional unit cell, Equation (24) reduces to

∆E = 16JS2 cos(2θs) + 8K cos(4θs)− 16DzS2 sin(2θs) (25)

where J, K, and Dz are the nearest-neighbor isotropic exchange, SSA, and DM coupling
parameters, respectively, and S and θs are the magnitude and canted angle of the in-plane
spin moment, respectively. Figure 8 shows the spin-dependent total energy as a function
of the in-plane spin canting angle θs decomposed over the isotropic AFM exchange, SSA,
and DM contributions. The magnetic coupling parameters can be extracted by fitting the
first-principles calculated data using the model Equation (25), yielding JS2 = −0.32 meV,
K =−0.1 meV, and DzS2 = 0.25 meV, comparable with available phenomenological data
in literature [21,159]. The AFM isotropic exchange, favoring a collinear alignment of the
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spins, aids the stabilization of the AFM ordering. The DM interaction, which prefers an
orthogonal coupling of the spins, assists the formation of a canted spin arrangement. The
SSA is smaller than isotropic and DM interactions but favors in-plane magnetism at small
canting angles. As expected, the evolution of the DM and isotropic exchange energies
follows a different trend with respect to θs. The formation of the in-plane canted AFM state
at θs = 14.4◦ is the result of the subtle competition between these three terms: JS2, DzS2,
and K.

10

FIG. 7. Magnetic orderings of three iridates predicted by the
LSDA+U+SOC method. (a) Sr2IrO4 with U=1.82 eV and λ=1.0, (b)
Sr3Ir2O7 with U=1.67 eV and λ=1.0, and (c) SrIrO3 whose magnetic
structure depends strongly on the values of U and λ in the magnetic
regime (see Fig. 2). The arrows denote the magnetic moment of each
Ir atom. Sr and Ir are shown in green and blue, respectively. O atoms
are not shown.

is about 0.08 µB/Ir, in line with the magnetic susceptibility
measurements 0.06-0.14 µB/Ir [144, 157]. The canting an-
gle of magnetic moment is calculated to be 12.5◦, in nice
accordance with the x-ray resonant scattering measurement
[12.2(8)◦] [158].

In contrast to Sr2IrO4, Sr3Ir2O7 displays an out-of-plane c-
collinear antiferromagnetic ordering, indicating the stronger
interlayer couplings. which has been confirmed by the res-
onant x-ray diffraction [30, 32, 33]. The nearly zero in-plane
magnetic moment is also in agreement with the tiny hysteresis
in the magnetic susceptibility experiments [30].

Although the magnetic ground state of SrIrO3 is non-
magnetic, its magnetic ordering in the magnetic regime is
much complicated due to its distorted three-dimensional crys-
tal structure [see Fig. 1(c)]. As illustrated in Fig. 7(c), the
magnetic ordering depends strongly on the U and λ. For in-
stance, for U=2.0 and λ=0.4 the system shows a canted anti-
ferromagnetic order with a large ferromagnetic component in
the ab plane [Fig. 7(c1)]. As λ increases to 1.0, the system
becomes a canted A-type antiferromagnet and the moments
are largely aligned to the c axis [Fig. 7(c2)]. Keeping λ=1.0

FIG. 8. The spin-dependent total energy as a function of the in-plane
spin canting angle θs decomposed over the isotropic AFM exchange
(EX), SSA and DM contributions.The zero is set such that the DM
energy becomes zero for θs=0◦.

and increasing U [compare Fig. 7(c2) and Fig. 7(c3)], the
agenetic moments are aligned in a very different way but the
average magnetization per unit cell is zero.

Having obtained the magnetic ground states for three iri-
dates, we are now in a position to explain why Sr2IrO4 exhibit-
s an unusual ab-canted AFM, whereas the structurally sim-
ilar compound Sr3Ir2O7 shows a c-collinear AFM. The for-
mer have been largely discussed in Ref. [14]. Here, we just
summarize the main points. To study the anisotropic mag-
netic couplings in Sr2IrO4, we have put forward a scheme by
mapping fully relativistic constrained noncollinear LSDA+U
calculations onto a general spin model Hamiltonian,

∆E = −
∑

i< j

Ji jSi · S j +
∑

i

εi
an(Si) +

∑

i< j

Di j · [Si × S j], (24)

where the first, second and last term represent the isotrop-
ic AFM exchange, the single-site anisotropy (SSA) and
Dzyaloshinskii-Moriya interactions, respectively. After tak-
ing the sum over all the Ir ions in the conventional unit cell,
Eq. (24) reduces to,

∆E = 16JS 2 cos(2θs) + 8K cos(4θs) − 16DzS 2 sin(2θs) (25)

where J, K and Dz are the nearest-neighbor isotropic ex-
change, SSA and DM coupling parameters, respectively, and
S and θs are the magnitude and canted angle of the in-plane
spin moment, respectively. Fig. 8 shows the spin-dependent
total energy as a function of the in-plane spin canting angle θs
decomposed over the isotropic AFM exchange, SSA and DM
contributions. The magnetic coupling parameters can be ex-
tracted by fitting the first-principles calculated data using the
model Eq. (25), yielding JS 2 = -0.32 meV, K = -0.1 meV, and
DzS 2 = 0.25 meV, comparable with available phenomenolog-
ical data in literature [21, 159]. The AFM isotropic exchange,
favoring a collinear alignment of the spins, aids the stabiliza-
tion of the AFM ordering. The DM interaction, which prefers

Figure 8. The spin-dependent total energy as a function of the in-plane spin canting angle θs

decomposed over the isotropic AFM exchange (EX), SSA, and DM contributions.The zero is set such
that the DM energy becomes zero for θs = 0◦. Reproduced with permission from Reference [14].
Copyright 2015 by the American Physical Society.

The ab-canted AFM state in Sr2IrO4 represents a stable magnetic ground state, but
it has been found that it is susceptible to external perturbation such as small changes in
the octahedral rotation angle [160], tetragonal distortions [10,14], and doping [142]. Two
different types of magnetic phase transition have been predicted: ab-canted to ab-collinear
by reducing the octahedral rotation angle and a transition to a c-collinear ordering by
increasing the octahedral tetragonal distortion (c/a ≈ 1.1). The former has been confirmed
by high-pressure experimental findings [14,160].

Next, we turn to the c-collinear AFM magnetism of Sr3Ir2O7. Based on the microscopic
model Hamiltonian approach, Kim [33] showed that the spin–flop transition in Sr3Ir2O7
is due to strong competition among intra- and interlayer bond-directional pseudodipolar
interactions of the spin-orbit-entangled Jeff = 1/2 moments. Hence, a natural interesting
question is how the magnetic ordering changes with respect to the interlayer distance,
which directly controls the competition and balance between intra- and interlayer magentic
couplings. Therefore, we performed an theoretical experiment by artificially increasing the
interlayer distance while keeping the other local structures fixed, followed by noncollinear
self-consistent total energy calculations adopting two different spin configurations: ab-
canted AFM and c-collinear AFM. Figure 9 shows the total energy difference between the
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ab-canted AFM and c-collinear AFM phases as a function of the interlayer distance. In the
ground state of Sr3Ir2O7, the interlayer distance is about 4.088 Å, where the c-collinear
AFM phase is significantly favored compared to the ab-canted AFM phase. However, as
the interlayer distance increases to 4.38 Å, the ab-canted AFM phase becomes the most
energetically stable phase due to the reduced the interlayer magnetic coupling (see Figure 9).
Our theoretical experiment thus suggests the important role played by interlayer coupling
in the formation of the c-collinear AFM state of Sr3Ir2O7.
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an orthogonal coupling of the spins, assists the formation of
a canted spin arrangement. The SSA is smaller than isotropic
and DM interactions, but favors in-plane magnetism at smal-
l canting angles. As expected, the evolution of the DM and
isotropic exchange energies follows a different trend with re-
spect to θs. The formation of the in-plane canted AFM state
at θs = 14.4◦ is the result of the subtle competition between
these three terms, JS 2, DzS 2 and K.

The ab-canted AFM state in Sr2IrO4 represents a stable
magnetic ground state, but it has been found that it is sus-
ceptible to external perturbation such as small changes of the
octahedra rotation angle [160], tetragonal distortions [10, 14]
and doping [142]. Two different types of magnetic phase tran-
sition have been predicted, ab-canted to ab-collinear by reduc-
ing the canting angle and a transition to a c-collinear ordering
for elongation of the c axis (c/a ≈ 1.1). The latter has been
confirmed by high-pressure experimental finding [14, 160].

FIG. 9. (color online) The total energy difference between the ab-
canted AFM and c-collinear AFM phases as a function of the in-
terlayer distance, which is schematically shown in the inset. The
ground-state structure is marked by GS.

Next we turn to the c-collinear AFM magnetism of
Sr3Ir2O7. Based on microscopic model Hamiltonian ap-
proach, Kim [33] has shown that the spin-flop transition in
Sr3Ir2O7 is due to strong competition among intra- and inter-
layer bond-directional pseudodipolar interactions of the spin-
orbit entangled Jeff=1/2 moments. Hence, a natural interest-
ing question is how the magnetic ordering changes with re-
spect to the interlayer distance, which directly controls the
competition and balance between intra- and interlayer ma-
gentic couplings. Therefore, we performed an theoretical ex-
periment by artificially increasing the interlayer distance, but
keeping other local structures fixed, followed by noncollinear
self-consistent total energy calculations adopting two differen-
t spin configurations: ab-canted AFM and c-collinear AFM.
Fig. 9 shows the total energy difference between the ab-canted
AFM and c-collinear AFM phases as a function of the inter-
layer distance. In the ground state of Sr3Ir2O7, the interlayer
distance is about 4.088 Å, where the c-collinear AFM phase
is significantly favored as compared to the ab-canted AFM
phase. However, as the interlayer distance increases to 4.38
Å, the ab-canted AFM phase becomes the most energetically

stable phase due to the reduced the interlayer magnetic cou-
pling (see Fig. 9). Our theoretical experiment thus suggests
the important role played by the interlayer coupling in the for-
mation of the c-collinear AFM state of Sr3Ir2O7.

D. Optical spectra

To conclude with the presentation of the fundamental prop-
erties of the RP iridates family, we briefly survey the optical
characteristics in this Section.

Fig. 10 shows our computed optical conductivity for the
considered iridates through the solution of the BSE using the
QP energies and screened interactions W derived from the
GW calculations. For comparison, DMFT calculated result-
s [154] and experimental data [18, 31, 36] are also given. We
found that all compounds are characterized by a double-peak
structure (α and β), consistent with experiments [18, 31, 36].
However, the agreement depends on the level of theory and
is materials dependent. For instance, though both BSE and
RPA are able to reproduce the two dominant peaks, a good
quantitative agreement with experiments is only obtained at
the BSE level for Sr2IrO4 and Sr3Ir2O7, for which the calcu-
lated and measured α and β transitions are centered almost at
the same excitation energies. As compared to RPA, the dra-
matic redshift of the α and β peaks predicted by BSE indicates
strong excitonic effects, but no bound exciton is discerned in
our BSE calculations. A double-peak structure was also ob-
served in SrIrO3, which is qualitatively consistent with the
recent experimental findings by Fujioka [36]. However, the
agreement between theory and experiment is less satisfacto-
ry as compared to the n=1 and n=2 cases. For example, the
calculated α and β peaks are centered at higher energies than
the experimental ones [36], and the Drude peak is broader and
more intense. We note that for SrIrO3 the DMFT calculation-
s [154] reproduce relatively well the β peak, but the α peak is
not detected.

To identify the character of the optical transitions, the B-
SE oscillator strengths SΛ [Eq. (21)] have been calculated
and shown as histograms in Figs. 10(a)-(c) . The oscillator
strengths are associated with the dominant k-point dependent
interband transitions which are represented by arrows in the
band structure plots of Figs. 10(d)-(f). We note that the width
of the arrows is proportional to the corresponding amplitude
of BSE eigenvectors. This analysis clearly demonstrates that
the α peak arises from the optical transition from the Jeff=1/2
LHB to the Jeff=1/2 UHB, whereas the β peak comes from
Jeff=3/2 to Jeff=1/2 UHB excitations, as schematically evi-
denced in the DOS given in Figs. 10(g)-(i). Since the Jeff=1/2
LHB and UHB are rather flat and parallel for Sr2IrO4 in partic-
ular along the X-M direction, the α-type excitations are par-
ticularly strong as compared to the β-type excitations, lead-
ing to a relatively narrower width of the α peak. Moving to
Sr3Ir2O7, the LHB and UHB split and are less parallel than
those in Sr2IrO4. As a result, the α peak becomes less intense
and broader. For SrIrO3, the Jeff=1/2 band topology is strong-
ly perturbed due to the substantial hybridization between Ir-5d
and O-2p orbitals originating from the underlying distorted

Figure 9. The total energy difference between the ab-canted AFM and c-collinear AFM phases as
a function of the interlayer distance, which is schematically shown in the inset. The ground-state
structure is marked as GS.

4.4. Optical Spectra

To conclude with the presentation of the fundamental properties of the RP iridates
family, we briefly survey the optical characteristics in this section.

Figure 10 shows our computed optical conductivity for the considered iridates through
the solution of the BSE using the QP energies and screened interactions W derived from
the GW calculations. For comparison, DMFT-calculated results [154] and experimental
data [18,31,36] are also given. We found that all the compounds are characterized by a
double-peak structure (α and β), consistent with the experiments [18,31,36]. However, the
agreement depends on the level of theory and is material-dependent. For instance, though
both BSE and RPA are able to reproduce the two dominant peaks, a good quantitative
agreement with experiments is only obtained at the BSE level for Sr2IrO4 and Sr3Ir2O7,
for which the calculated and measured α and β transitions are centered almost at the
same excitation energies. As compared to RPA, the dramatic redshift of the α and β peaks
predicted by BSE indicates strong excitonic effects, but no bound exciton is discerned
in our BSE calculations. A double-peak structure was also observed in SrIrO3, which is
qualitatively consistent with the recent experimental findings by Fujioka [36]. However,
the agreement between theory and experiment is less satisfactory compared to the n = 1
and n = 2 cases. For example, the calculated α and β peaks are centered at higher energies
than the experimental ones [36] and the Drude peak is broader and more intense. We note
that, for SrIrO3, the DMFT calculations [154] reproduce relatively well the β peak but that
the α peak is not detected.
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12

FIG. 10. The experimental and calculated optical conductivity spectra σ(ω) of (a) Sr2IrO4, (b) Sr3Ir2O7 and (c) SrIrO3. The experimental data
at 10 K are adapted from Ref. [18] for Sr2IrO4 single crystals, Ref. [31] for Sr3Ir2O7 single crystals and Ref. [36] for SrIrO3 polycrystalline
samples. Note that the sharp peaks below 0.1 eV in the experimental spectra arise from optical phonon modes. The DMFT simulated spectra
are taken from Ref. [154]. The grey vertical lines represent the oscillator strength (divided by 104 here) whose contributions to α and β peaks
are highlighted in red and blue colors, respectively. (d, e, f) GW band structure. (g, h, i) GW total density of states. The red and blue arrows
in (d, e, f) represent the dominant interband transitions for the α and β peaks, respectively. The width of the arrows denotes the normalized
amplitude of BSE eigenvectors |XΛcvk|. Arrows in (g, h, i) show the involved optical transitions schematically.

three-dimensional orthorhombic crystal structure. Ultimately,
this leads to an admixing of the Jeff=3/2 states with the lower
Jeff=1/2 band. As a result, the α and β peaks are much broader.
However, the agreement with experiment is not satisfactory.
The reasons are twofold: First, GW does not properly accoun-
t for the strong bandwidth renormalization observed experi-
mentally [152], which drastically changes the band topology
near the Fermi level and thus affects the optical excitations.
Second, it appears that there are experimental complications
(difficulties in synthesizing stoichiometric crystals, degrada-
tion in ambient conditions, sensitivity to lithographic process-
ing, presence of oxygen vacancies) that make it difficult to
perform systematic and reproducible measurements of trans-
port properties [161–163]. This clearly hinders a direct com-
parison with theory. In fact, depending on the specific type
of sample (polycrystalline [36] or SrIrO3 films grown on M-
gO [11] or SrTiO3 [164]) different optical conductivity spectra
have been reported in literatures which differ even in funda-
mental aspects such as the presence or absence of the α peak.

Finally, we found that by going from n = 1 to n = ∞, the
α and β peaks are progressively shifted towards lower ener-
gies, in agreement with experimental observations [11]. This
trend is correlated with the progressive decrease of the inter-

action U (see Table II) and with the gradual closing of the GW
gap [100].

V. CONCLUSIONS

In summary, we have reviewed the fundamental proper-
ties of RP iridates (n = 1, 2 and ∞) using an array of ad-
vanced methodological approaches: fully relativistic non-
collinear LSDA+U, cRPA, GW+SOC and BSE+SOC. Be-
sides collecting in a thematically focused context the results
that we have obtained in the last five years, we have also in-
cluded some original results, specifically the complete U/SOC
phase diagram and the analysis of the band structures disen-
tangling the role of U and SOC. In addition, we have extended
the quantification of the most relevant energy scale of all three
compounds.

For three compounds, the estimated crystal field energy
(about 4 eV) represent the dominant energy scale, and there-
fore, the low-energy physics can be described by using the
low-lying t2g states of Ir only. The SOC strength is relatively
small (≈ 0.5 eV), but comparable to the strength of the Hub-
bard U (≈ 1.5 eV) quantified by cRPA. The MIT transition

Figure 10. The experimental and calculated optical conductivity spectra σ(ω) of (a) Sr2IrO4, (b) Sr3Ir2O7, and (c) SrIrO3.
The experimental data at 10 K are adapted from Reference [18] for Sr2IrO4 single crystals, Reference [31] for Sr3Ir2O7 single
crystals, and Reference [36] for SrIrO3 polycrystalline samples. Note that the sharp peaks below 0.1 eV in the experimental
spectra arise from optical phonon modes. The DMFT simulated spectra are taken from Reference [154]. The grey vertical
lines represent the oscillator strength (divided by 104 here) for which the contributions to α and β peaks are highlighted
in red and blue, respectively. (d–f) GW band structure. (g–i) GW total density of states. The red and blue arrows in (d–f)
represent the dominant interband transitions for the α and β peaks, respectively. The width of the arrows denotes the
normalized amplitude of BSE eigenvectors |XΛ

cvk|. The arrows in (g–i) show the involved optical transitions schematically.
Reproduced with permission from Reference [100]. Copyright 2018 by the American Physical Society.

To identify the character of the optical transitions, the BSE oscillator strengths SΛ
(Equation (21)) were calculated and shown as histograms in Figure 10a–c. The oscillator
strengths are associated with the dominant k-point dependent interband transitions, which
are represented by arrows in the band structure plots of Figure 10d–f. We note that the
width of the arrows is proportional to the corresponding amplitude of BSE eigenvectors.
This analysis clearly demonstrates that the α peak arises from the optical transition from the
Jeff = 1/2 LHB to the Jeff = 1/2 UHB whereas the β peak comes from Jeff = 3/2 to Jeff = 1/2
UHB excitations, as schematically evidenced in the DOS given in Figure 10g–i. Since the
Jeff = 1/2 LHB and UHB are rather flat and parallel for Sr2IrO4, in particular along the X–M
direction, the α-type excitations are particularly strong compared to the β-type excitations,
leading to a relatively narrower width of the α peak. Moving onto Sr3Ir2O7, the LHB and
UHB split and are less parallel than those in Sr2IrO4. As a result, the α peak becomes
less intense and broader. For SrIrO3, the Jeff = 1/2 band topology is strongly perturbed
due to the substantial hybridization between Ir-5d and O-2p orbitals originating from
the underlying distorted three-dimensional orthorhombic crystal structure. Ultimately,
this leads to admixing of the Jeff = 3/2 states with the lower Jeff = 1/2 band. As a result,
the α and β peaks are much broader. However, agreement with the experiment is not
satisfactory. The reasons are twofold: First, GW does not properly account for the strong
bandwidth renormalization observed experimentally [152], which drastically changes the
band topology near the Fermi level and thus affects the optical excitations. Second, it ap-
pears that there are experimental complications (difficulties in synthesizing stoichiometric
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crystals, degradation in ambient conditions, sensitivity to lithographic processing, and
presence of oxygen vacancies) that make it difficult to perform systematic and reproducible
measurements of transport properties [161–163]. This clearly hinders a direct comparison
with theory. In fact, depending on the specific type of sample (polycrystalline [36] or SrIrO3
films grown on MgO [11] or SrTiO3 [164]), different optical conductivity spectra have been
reported in the literature which differ even in fundamental aspects such as the presence or
absence of an α peak.

Finally, we found that, by going from n = 1 to n = ∞, the α and β peaks are progres-
sively shifted towards lower energies, in agreement with experimental observations [11].
This trend is correlated with the progressive decrease in interaction U (see Table 2) and
with the gradual closing of the GW gap [100].

5. Conclusions

In summary, we reviewed the fundamental properties of RP series of iridates
Srn+1IrnO3n+1 (n = 1, 2 and ∞) using an array of advanced methodological approaches:
fully relativistic noncollinear LSDA+U, cRPA, GW+SOC, and BSE+SOC. Besides collecting
the results that we obtained in the last five years in a thematically focused context, we
also included some original results, specifically a complete U/SOC phase diagram and
an analysis of the band structures disentangling the role of U and SOC. In addition, we
extended the quantification of the most relevant energy scales of all three compounds.

For three compounds, the estimated crystal field energy (about 4 eV) represents the
dominant energy scale, and therefore, the low-energy physics can be described by using the
low-lying t2g states of Ir only. The SOC strength is relatively small (≈0.5 eV) but comparable
to the strength of the Hubbard U (≈1.5 eV) quantified by cRPA. The MIT transition with
respect to the intermingled interactions of SOC and U provide clear evidence for the
relativistic Mott–Hubbard character of the insulating state in the n = 1 and n = 2 phases.
A comparative study between LSDA+U+SOC and GW+SOC shows that both methods
yield similar band structures except that GW pushes down the O-2p states by about 0.5 eV
and demonstrates that the predicted band gaps for Sr2IrO4 and Sr3Ir2O7 are in excellent
agreement with the measurements. However, both methods fail to describe the correlated
semi-metallic state of SrIrO3, incorrectly predicting a pseudogap at the Fermi level, and GW
finds a mass enhancement of only 1.64, largely underestimated compared to experimental
estimations.

Because of similar quasi-2D layered crystal structures, Sr2IrO4 and Sr3Ir2O7 exhibit
overall similar properties, in particular in terms of the MIT phase diagrams, electronic band
structures, and optical conductivity spectra, whereas their magnetic properties are radically
different. The formation of an ab-canted AFM state in Sr2IrO4 is a result of intermingled
competition between the isotropic exchange, single-ion anisotropy, and DM interactions,
and new magnetic phases (in-plane collinear AFM ordering and c-collinear AFM ordering)
can be developed by tuning the balance of these magnetic interactions through octahedral
distortions (octahedral rotations and tetragonal distortions). The c-collinear AFM ground
state of Sr3Ir2O7 is very robust due to strong interlayer magnetic coupling. The spin phase
transition to the ab-canted AFM phase can only be achieved by increasing the interplayer
distance to a very large and experimentally unobtainable value.

The computed GW+BSE optical conductivity spectra of three iridates show strong
excitonic effects and reproduce the experimentally observed double-peak structure very
well, in particular for Sr2IrO4 and Sr3Ir2O7. However, for SrIrO3, the description is less
satisfactory, since GW does not account well for the correlated metallic state of SrIrO3
and going beyond GW is necessary. Our analysis describes well the progressive redshift
of the main optical peaks as a function of dimensionality n, which is correlated with the
gradual decrease in electronic correlation U and gradual closing of the band gaps towards
the metallic n = ∞ limit.

The major physics of the bulk phases of RP iridates are presently very well understood.
Some discrepancies in the interpretation of the optical and electronic properties of the 3D
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end member remain, which will hopefully be resolved in forthcoming studies. One of
the most interesting conceptual and technologically relevant questions that has started to
attract the scientific community is the possibility to modify and functionalize the intrinsic
properties of RP iridates by means of strain engineering [165–167], which will possibly
further widen the interest on iridates.
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