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Background and Objectives: Maturation of the gut microbiota (GM) in infants is

critically affected by environmental factors, with potential long-lasting clinical

consequences. Continuous low-dose antibiotic prophylaxis (CAP) is the standard

of care for children with vesicoureteral reflux (VUR), in order to prevent recurrent urinary

tract infections. We aimed to assess short-term GM modifications induced by CAP

in infants.

Methods: We analyzed the GM structure in 87 infants (aged 1-5 months) with

high-grade VUR, previously exposed or naïve to CAP. Microbial DNA was extracted from

stool samples. GM profiling was achieved by 16S rRNA gene-based next-generation

sequencing. Fecal levels of short- and branched-chain fatty acids were also assessed.

Results: 36/87 patients had been taking daily CAP for a median time of

47 days, while 51/87 had not. In all patients, the GM was predominantly

composed by Bifidobacteriaceae and Enterobacteriaceae. Subgroup comparative

analysis revealed alterations in the GM composition of CAP-exposed infants at

phylum, family and genus level. CAP-exposed GM was enriched in members

of Enterobacteriaceae and Bacteroidetes, especially in the genera Bacteroides

and Parabacteroides, and showed a trend toward increased Klebsiella, often

associated with antibiotic resistance. In contrast, the GM of non-CAP children was

mostly enriched in Bifidobacterium. No differences were found in fatty acid levels.
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Conclusions: In infants with VUR, even a short exposure to CAP definitely alters the

GM composition, with increased relative abundance of opportunistic pathogens and

decreased proportions of health-promoting taxa. Early low-dose antibiotic exposure

might bear potential long-term clinical risks.
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INTRODUCTION

The gut microbiota (GM) is an individual-specific plethora
of microorganisms, living in the gastrointestinal tract with a
mutualistic relationship with the host and contributing to its
homeostasis (1, 2). GM is essential for metabolic, immunologic,
and neurological functions (3).

Established soon after birth, the GM describes a
developmental trajectory during infancy, reaching an almost
stable adult-like profile around 3 years of age (4, 5). In
particular, the first months of life are a critical time window
for GM maturation, during which various factors can affect its
eubiotic state and trajectory, such as mode of delivery, formula
or breast milk and, more importantly, the administration
of drugs (6–8). These modifications may have short- and
long-term consequences for health, as suggested by extensive
literature (1, 2, 6, 7). Specifically, GM changes induced by
early antibiotic exposure have been linked to weight gain and
subsequent development of asthma, allergy, eczema, atopy, and
inflammatory bowel disease (6, 7, 9, 10). Moreover, the GM of
antibiotic-exposed infants can become an important reservoir of
antibiotic-resistance genes, potentially leading to life-threatening
complications (9, 11).

Although controversial, continuous antibiotic prophylaxis
(CAP) administered at a sub-therapeutic daily dose, is currently
considered the standard of care for infants with high-grade
vesicoureteral reflux (VUR) in order to prevent recurrent
urinary tract infections (UTIs), renal scarring, and chronic
kidney damage (12–14). Moreover, antibiotic prophylaxis is
recommended for various clinical conditions and altogether
it may account for up to 28.6% of prescribed antibiotics in
hospitalized children (15).

The ongoing randomized PREDICT trial was designed in the
context of the controversial CAP cost-benefit ratio (EudraCT
2013-000309-21), aiming to clarify the efficacy of CAP in
preventing the first symptomatic UTIs in infants with high-grade
VUR. A nested study was planned to evaluate the GM trajectory
during the first years of life, comparing patients randomized to
CAP or not.

Here, we present a cross-sectional analysis of stool samples
collected from 87 infants during the pre-trial screening phase,
to assess the effect of the exposure to a sub-therapeutic dose of
antibiotics on the GM composition in very young children.

METHODS

Patient Selection
We performed a cross-sectional study, analyzing the GM
composition and fecal levels of short- and branched-chain fatty

acids (SCFAs and BCFAs, respectively) in a cohort of patients
screened for the PREDICT trial from October 2014 to November
2018. The trial enrolls infants <5 months of age with high-grade
VUR (III-V), without previous UTIs and with gestational age ≥
35 weeks, who are randomized to prophylaxis or not and followed
for 5 years. We identified all screened patients with a viable
stool sample and available data regarding CAP exposure before
randomization. Selected patients were divided in two groups:
non-CAP vs. CAP patients (Supplementary Figure 1). The use
of CAP before stool collection was only related to local practice
and did not interfere with subsequent patient randomization. The
long-term effect of CAP on the GM trajectories or UTIs is not
object of this study.

The study was approved by the Institutional Review Board
of all participating centers and written informed consent was
provided by all parents or legal guardians (ethical approval code
of the coordinating center: 106/2013/O/Sper).

Samples and Data Collection
Stool samples were collected for each patient and immediately
frozen at−80◦Cwithout processing. Samples were shipped in dry
ice to the Department Pharmacy and Biotechnology, University
of Bologna (Bologna, Italy) for GM and SCFA/BCFA analysis.

From the PREDICT trial database, data regarding patients
(age, gender, VUR), previous antibiotic prophylaxis (agent,
dose, and duration) and other potential GM-perturbing
factors (feeding modality, delivery mode, gestational age, drug
consumption, and probiotics use) were extracted.

Microbial DNA Extraction, Library
Preparation, and Sequencing
Microbial DNAwas extracted from feces using the repeated bead-
beating plus column method, as previously described (16). DNA
concentration and quality were assessed with NanoDrop ND-100
(NanoDrop Technologies, Wilmington, DE, USA).

For library preparation, the V3-V4 hypervariable region of
the 16S rRNA gene was amplified using 341F and 785R primers,
as previously reported (16). PCR products were purified using
a magnetic bead-based clean-up system (Agencourt AMPure
XP, Beckman Coulter, Brea, CA, USA). A limited-cycle PCR
was performed to obtain the indexed library using Nextera
technology. Final libraries were sequenced on an Illumina MiSeq
platform with a 2 x 250 bp paired-end protocol according to
the manufacturer’s instructions (Illumina, San Diego, CA, USA).
Sequencing reads were deposited in the National Center for
Biotechnology Information Sequence Read Archive (NCBI SRA;
BioProject ID PRJNA706153).
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GC–MS Determination of Fecal SCFAs and
BCFAs
Approximately 0.25 g of feces were analyzed for levels of
SCFAs (acetic, propionic, butyric, and valeric acids) and BCFAs
(isobutyric and isovaleric acids). Sample preparation was
performed by head space-solid phase microextraction (HS-
SPME), followed by gas chromatography–mass spectrometry
(GC-MS) analysis, as previously described (17). The
chromatogram acquisition was obtained with Total Ion
Current (TIC) and Single Ion Monitoring (SIM) scan modes.

Bioinformatics and Statistics
Between-group differences in patient characteristics were
assessed using the Chi-square test or Wilcoxon test, to rule out
potential confounders in the GM analysis.

For GM, raw sequences were processed using QIIME 2 (18).
Length and quality-filtered reads were binned into amplicon
sequence variants (ASVs) using DADA2 (19). Taxonomic
assignment was carried out using the Greengenes database (May
2013 release). Chimeras were discarded during analysis. Alpha
diversity was calculated using the number of observed ASVs and
Faith’s Phylogenetic Diversity, while beta diversity was estimated
by computing UniFrac distances, which were used as input for
Principal Coordinates Analysis (PCoA). All statistical analysis
was performed using R (https://www.r-project.org/). PCoA plots
were generated using the “vegan” and “Made4” packages, and
data separation was tested by a permutation test with pseudo-
F ratios (function “Adonis” in “vegan”). The bacterial genera
most contributing to the ordination space were identified using
the function “envfit” of “vegan”. Wilcoxon test was used to
assess significant differences in alpha diversity, taxon relative
abundance, and SCFA/BCFA levels between groups. A p-value
≤ 0.05 was considered statistically significant, while a p-value
between 0.05 and 0.1 as a trend.

RESULTS

Population
Eighty-seven patients aged 1-5 months with grade III-V VUR
were enrolled. Sixty-seven (77%) were males, none of them was
circumcised. All patients were Caucasian, coming from seven
Countries in Europe (Turkey 32, Italy 25, Poland 14, Lithuania
11, Belgium 3, Portugal 1, France 1). The main demographic and
clinical characteristics are listed in Table 1.

Regarding CAP exposure, at the time of analysis 51/87 patients
had not received any CAP (non-CAP group), while 36/87 patients
were taking CAP (CAP group). The median duration of CAP
was 47 days (range: 16-140 days). The use of different classes
of antibiotics in the CAP group was as follows: amoxicillin
or amoxicillin + clavulanic acid 21 (58.3%), trimethoprim
7 (19.4%), oral cephalosporins 6 (16.7%), and nitrofurantoin
2 (5.5%).

Comparison of Potential Confounding
Factors
No short cycles of antibiotics for any acute infection were
reported. The groups did not differ by gender, feeding

modality, gestational age, and probiotics consumption (Table 1).
According to their age between 1 and 5 months, all patients were
within the development phase of GM maturation as recently
established (4). Delivery mode differed between groups, with a
higher proportion of children born by cesarean section in the
non-CAP group than in the CAP group (p = 0.001, Chi-square
test). As mentioned before, all patients were Caucasians and all
male were uncircumcised, regardless of the group.

Gut Microbiota of CAP vs. Non-CAP Infants
The 16S rRNA gene-based sequencing yielded a total of
908,524 high-quality reads, with an average of 10,443 ± 2,920
sequences per sample, binned into 3,075 ASVs. No differences
in alpha diversity were observed between CAP and non-
CAP patients (p ≥ 0.2, Wilcoxon test) (Figure 1A). Principal
Coordinates Analysis (PCoA) of inter-individual variation, based
on weighted UniFrac distances, revealed significant separation
between groups (p = 0.015, permutation test with pseudo-
F ratios- Figure 1B). By contrast, no significant differences
were detected according to the unweighted UniFrac metrics
(Supplementary Figure 2). Interestingly, no separation was
observed with regards to any of the potential confounders
evaluated, such as gender, age group, feeding modality,
gestational age, probiotics consumption, delivery mode, VUR
grade, class of antibiotics, and geographical origin (Figure 2).

The GM of CAP and non-CAP infants was dominated by the
phyla Actinobacteria, Proteobacteria, and Firmicutes. However,
CAP patients were significantly enriched in Bacteroidetes (p
= 0.03, Wilcoxon test) (Figure 3A). Although the family-level
GM layout of both groups was generally characterized by a
preponderance of Bifidobacteriaceae and Enterobacteriaceae
(Figure 3B), significant differences emerged. Specifically,
compared to non-CAP infants, those exposed to CAP showed
significant enrichment in Bacteroidaceae (p = 0.03) and
Enterobacteriaceae (p = 0.05), as well as a trend toward reduced
proportions of Bifidobacteriaceae (p = 0.09). As expected, the
ratio of Enterobacteriaceae to Bifidobacteriaceae, a validated
index to measure intestinal health and microbial colonization
resistance, with a higher value reflecting a compromised
ecosystem (20), was significantly higher in CAP group than in
the non-CAP group (p= 0.05) (Figure 3C).

In order to identify the genera responsible for the separation
between CAP and non-CAP infants, relative abundance vectors
with a statistically significant contribution were overlaid
onto the weighted UniFrac ordination space of Figure 1B

(p ≤ 0.05, “envfit” function). Bacteroides and unclassified
genera of Enterobacteriaceae were associated with CAP, while
Bifidobacterium,Haemophilus, and Streptococcus were associated
with the non-CAP group (p ≤ 0.05) (Figure 3D). Furthermore,
the GM profile of CAP patients was characterized by increased
proportions of Parabacteroides (p = 0.05), as well as by
a tendency toward increased amounts of Klebsiella and
Prevotella and reduced amounts of Lactobacillus (p ≤ 0.1)
(Figure 3D).

Most of the differences in GM diversity and composition
between CAP and non-CAP infants persisted or tended to persist
even after excluding patients who were receiving probiotics
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TABLE 1 | Clinical characteristic of enrolled patients.

Non-CAP (n = 51) CAP (n = 36) Tot (n = 87) P-value Odds ratio (95% CI)

Gender Males 37 (72.5%) 30 (83.3%) 67 (77%) 0.24 0.53 (0.18, 1.54)

Females 14 (27.5%) 6 (16.7%) 20 (23%)

Age (months) Median (IQR) 3.6 (2.6-4.3) 2.6 (1.7-3.53) 3.1 (2.2-3.9) 0. 002

Feeding modality Breastfeeding 30 (60.0%) 28 (80.0%) 58 (68.2%) 0.14 Breastfeeding vs. Formula0.54 (0.09, 3.16)

Mixed 16 (32.0%) 5 (14.3%) 21 (24.7%)

Formula 4 (8%) 2 (5.7%) 6 (7.1%)

Gestational age Term 45 (88.2%) 34 (94.4%) 79 (90.8%) 0.53 Term vs. Preterm0.53 (0.10, 2.90)

Preterm 5 (9.8%) 2 (5.6%) 7 (8%)

Postterm 1 (2%) 0 1 (1.1%)

Probiotics consumption Yes 8 (15.7%) 4 (11.1%) 12 (13.8%) 0.54 1.49 (0.41, 5.38)

No 43 (84.3%) 32 (88.9%) 75 (86.2%)

Mode of delivery Cesarean section 27 (54.0%) 6 (18.8%) 33 (40.2%) 0. 001 5.09 (1.78, 14.50)

Spontaneous delivery 23 (46.0%) 26 (81.2%) 49 (59.8%)

Grade of VUR Grade III n (%) 13 (25.5%) 8 (22.2%) 21 (24.1%) 0.37 Grade III vs. IV/V1.20 (0.44, 3.28)

Grade IV n (%) 18 (35.3%) 18 (50%) 36 (41.4%)

Grade V n (%) 20 (39.2%) 10 (27.8%) 30 (34.5%)

VUR, vesicoureteral reflux; 95% CI, 95% confidence interval. P-values were obtained by Chi squared test for categorical variables and Wilcoxon test for continuous variables (significant

values are reported in bold).

FIGURE 1 | The gut microbiota of infants exposed to CAP segregates from that of non-CAP infants. (A) Alpha diversity estimated according to Faith’s Phylogenetic

Diversity and the number of observed ASVs. No significant differences were found (p ≥ 0.2, Wilcoxon test). (B) Principal Coordinates Analysis (PCoA) based on

weighted UniFrac distances between fecal samples. A significant separation between groups was observed (p = 0.015, permutation test with pseudo-F ratios).

Ellipses include 95% confidence area based on the standard error of the weighted average of sample coordinates. Bacterial genera with the largest contribution to the

ordination space are indicated with blue arrows (p ≤ 0.05, permutational correlation test, “envfit” function).

(Supplementary Figure 3), which further reinforces that GM
dysbiosis in CAP infants is independent of potential confounding
factors, such as intake of probiotics.

Fecal Levels of SCFAs and BCFAs
SCFA and BCFA fecal levels were determined on 52/87 infants,
of whom 29 were not taking prophylaxis whereas 23 were under
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FIGURE 2 | The GM dysbiosis in CAP infants is independent of potential confounding factors. Principal Coordinates Analysis (PCoA) based on weighted UniFrac

distances between fecal samples from CAP vs. non-CAP infants, stratified by gender (male vs. female, A), age group (1-5 months, B), feeding modality (breastfeeding

vs. formula vs. mixed, C), gestational age (term vs. preterm vs. postterm, D), probiotics consumption (yes vs. no, E), delivery mode (cesarean section vs. spontaneous

delivery, F) VUR grade (grade III vs. IV vs. V, G), class of antibiotics (amoxicillin or amoxicillin + clavulanic acid, trimethoprim, oral cephalosporins, and nitrofurantoin, H)

and geographical origin (Italian, Belgian, French, Lithuanian, Polish, Portuguese, and Turkish, I). No significant separation was found (p ≥ 0.118, permutation test with

pseudo-F ratios). Ellipses include 95% confidence area based on the standard error of the weighted average of sample coordinates. See also Figure 1.

CAP. No significant differences were found between groups
in the total amount of SCFAs, as well as in the individual
amounts of acetic, butyric, propionic, and valeric acid (p > 0.05).
Similarly, total BCFA levels and those of isobutyric and isovaleric
acid were not different according to CAP exposure (p > 0.05)
(Supplementary Figure 4).

DISCUSSION

GMmaturation is a fine process shaped by various environmental
factors (21). The first months of life are a critical time window
during which GM-host cross-talk lays the foundations for future
health (8). Concerns are rising about the influence of antibiotics
on the highly dynamic infantile GM (7).

Infants with VUR often receive prolonged CAP to prevent
UTIs, but the potential benefits have to be balanced against
long-term side effects.

Comparing infants with VUR previously treated with CAP
and those naïve, our study showed an altered GM composition
even after a short (47 days) exposure to a sub-therapeutic
dosage of antibiotics. GM changes involved the loss of typical
features of the eubiotic infant-type ecosystem, with decreased
proportions of Bifidobacterium, a keystone taxon in the infant
GM, which dominates the ecosystem at least until breastfeeding
has ceasesed (4). Bifidobacterium spp. are indeed able to
thrive on human milk oligosaccharides and are associated with
many health-promoting functions, including the development
of the immune system (22). Conversely, compared to non-
CAP patients, the GM of CAP infants was enriched in
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FIGURE 3 | Gut microbiota structure in CAP vs. non-CAP infants. (A,B) Bar plots representing the relative abundance of the major phyla (A) and families (B) in the

GM of CAP and non-CAP infants. (C,D) Box plots showing the relative abundance distribution of bacterial families (C) and genera (D) with a significant difference (p ≤

0.05, Wilcoxon test; asterisk) or a trend (0.05 < p ≤ 0.1; hashtag) between the two groups. Only taxa with relative abundance >0.1% in at least two samples were

considered.

Bacteroides and Parabacteroides, and showed a trend toward
increased proportions of Prevotella. According to the TEDDY
study, which followed the GM trajectory in 903 children
from 3 to 46 months of age (4), Bacteroides is associated
with increased GM diversity and faster maturation during
early life, regardless of the birth mode. Analogously, Prevotella
is another well-known marker of the adult GM, although
associated with host variables, including diet and geography
(17). It is worth noting that three enterotype-like clusters
dominated by Bacteroides, Prevotella, and Bifidobacterium,
have recently been detected in the microbiota of school-aged
children and suggested to represent stratified developmental
trends of GM toward the adult configuration, with the

Bifidobacterium enterotype being the less mature (23). It is
therefore tempting to speculate that CAP exposure may induce a
non-eubiotic, accelerated maturation of the infant GM toward an
adult-like profile.

Moreover, the GM of CAP patients was enriched in
Enterobacteriaceae, specifically Klebsiella (albeit with poor
significance), a well-known clinically relevant nosocomial
pathogen, associated with systemic infections, including
antibiotic-resistant UTIs (24). In addition to indicating
ineffectiveness of prophylaxis in controlling its spread, the
high amounts of Klebsiella in the CAP group could represent
a non-negligible risk factor for the development of more
difficult-to-treat UTIs in this highly vulnerable population.
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While several potential confounders such as feeding modality,
age, gender, VUR grade, class of antibiotics, and geographical
origin, did not differ between groups, a higher number of non-
CAP infants had undergone cesarean section. Although this
may have partially biased our results, particularly regarding
Bacteroides, which has sometimes been found enriched in infants
born vaginally (25), we did not find a significant impact of the
delivery mode on GM composition, when we performed a sub-
analysis according to all assessed confounding factors. Similarly,
we did not observe a significant separation in the GM structures
by intake of probiotics and even excluding patients who were
receiving them, we obtained the same diversity findings and
recovered the main discriminating taxa (although sometimes
only trends due to the decreased sample size). This confirms the
specific impact of antibiotics on CAP-related dysbiosis.

Previous reports have analyzed the impact of antibiotics on
infantile GM, but in different settings, with less homogeneous
populations. In 2014, a study on preterm infants demonstrated
decreased diversity after 5-7 days of empiric antibiotic therapy
with either ampicillin or gentamicin, resulting in compositional
imbalances, such as increased Enterobacter (26). In 2016,
Bokulich and coworkers showed in 43 healthy infants that
prenatal and postnatal antibiotic exposure to different classes
and doses of antibiotics delays GM maturation and suppresses
important pathobionts (8). A study on 39 children aged 0-3
years observed lower diversity and a peak of resistance genes
after multiple courses (9–15) of full-dose antibiotic therapy
(27). Persistent GM differences, not prevented by probiotics
consumption, were demonstrated in 149 newborns exposed to
perinatal (prenatal and/or postnatal) antibiotics compared to
controls (28). On the other hand, Akagawa et al. showed a non-
significant effect of long-term CAP (up to 6 months) on the
GM of 35 patients younger than 3 years (29). However, CAP
was administered to older children who had previously received
antibiotic treatment for UTIs, making any comparisons with our
data meaningless.

Our analysis sheds further light on the impact of antibiotics
on GM in infants, revealing that even a short exposure to a
sub-therapeutic dose of antibiotics in the absence of previous
infections, results in detectable GM modification, in such a
delicate moment for GM maturation. The observed deviation
probably implies an impairment of the barrier effect, as supported
by the almost significant increase in Klebsiella. Although the
CAP-associated dysbiosis did not lead to imbalanced SCFA and
BCFA production, a delayed effect in the following months/years
of life cannot be excluded, when a more fermentative ecosystem
is being established. Indeed, it has been demonstrated that early
deviations from a eubiotic GM layout can provide long-lasting
pathophysiological problems, as a result of a compromised GM-
host dialogue that fails in GM-dependent immunological and
metabolic programming (6, 9).

The GM dysbiosis observed after a short exposure to CAP
points to potentially even deeper alterations that may be caused
by the extended, typically 2-year courses commonly prescribed to
VUR patients. Some authors suggest that GM disruption during
a critical age contributes to an increased risk of diseases such as
asthma, obesity, and allergies (6, 7, 30, 31). Two different studies

including over 23,000 children proved that antibiotic exposure
before 6 months is linked to increased body mass later in
infancy (32, 33). This association is believed to be related to GM
modifications (8). Mouse models have provided clear evidence
for a role of the GM in growth regulation, metabolism and fat
storage (9, 34). Furthermore, GM dysbiosis has been linked to
cardiovascular morbidity in children with chronic kidney disease
(35). Finally, antibiotic pressure increases drug-resistance genes
in GM microorganisms (“resistome”), with potential horizontal
transfer (7).

The study has some limitations. The relatively small sample
size may have underestimated between-group differences, with
particular reference to Klebsiella, Prevotella, and Lactobacillus.
Nonetheless, the number of patients enrolled is comparable to
the available literature and the other observed differences in the
GM composition are supported by the statistical analysis. In
addition, the distribution of patients born by cesarean section
was unbalanced, CAP consisted of different types of antibiotics
and some patients were receiving probiotics. These factors (birth
mode, antibiotic type, and probiotic use) are known to be
associated with GM variation. Nonetheless, the respective sub-
analyses showed no significant impact on the GM structure, as
for all the other potential confounders considered, suggesting
that the observed changes are likely attributable to prophylaxis
per se.

Given the observational and cross-sectional design, further
prospective studies in larger cohorts will be needed to confirm
the persistence of GM alterations and their impact on children
health, later in life. In this regard, the ongoing randomized
controlled PREDICT trial, prospectively monitoring the GM
trajectories of CAP-exposed and unexposed infants together with
clinical information regarding obesity, allergies, or multidrug-
resistant infections, is expected to define the real long-term
impact of CAP.
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Supplementary Figure 1 | Flow diagram of screened and enrolled population.

Supplementary Figure 2 | Principal Coordinates Analysis (PCoA) based on

unweighted UniFrac distances between fecal samples from CAP vs. non-CAP

infants. No significant separation between groups was found (p = 0.346,

permutation test with pseudo-F ratios). Ellipses include 95% confidence area

based on the standard error of the weighted average of sample coordinates.

Supplementary Figure 3 | The GM dybsiosis in CAP infants is independent of

probiotics intake. (A) Alpha diversity estimated according to Faith’s Phylogenetic

Diversity and the number of observed ASVs. No significant differences were found

(p ≥ 0.1, Wilcoxon test). (B) Principal Coordinates Analysis (PCoA) based on

weighted UniFrac distances between fecal samples. A significant separation

between groups was observed (p = 0.05, permutation test with pseudo-F ratios).

Ellipses include 95% confidence area based on the standard error of the weighted

average of sample coordinates. Bacterial genera with the largest contribution to

the ordination space are indicated with blue arrows (p ≤ 0.05, permutational

correlation test, “envfit” function). (C) Boxplots showing the relative abundance

distribution of bacterial taxa that tended to be differentially represented between

the two groups (0.05 < p ≤ 0.1, Wilcoxon test). Only taxa with relative abundance

> 0.1% in at least two samples were considered. For this analysis, only patients

who were not receiving probiotics were included (i.e., 32 vs. 43 in the CAP vs.

non-CAP group). See also Table 1.

Supplementary Figure 4 | Fecal levels of SCFAs and BCFAs in infants exposed

or not to CAP. Boxplots showing the absolute amount distribution for SCFAs

(acetic, propionic, butyric, and valeric acids) and BCFAs (isobutyric and isovaleric

acids) measured in µmol/g. No significant differences were found (p > 0.05,

Wilcoxon test).
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