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A Novel Collision-Aware Adaptive Data Rate
Algorithm for LoRaWAN Networks

Riccardo Marini, Walter Cerroni, Chiara Buratti

Abstract—Low Power Wide Area Network technologies are
used to interconnect a number of devices in a simple and efficient
way. One of these technologies, LoRaWAN, is deemed as one
of the most promising due to its capability to allow long range
communications with very small energy consumption. LoRaWAN
networks are managed by a network server implementing an
Adaptive Data Rate (ADR) algorithm to allocate proper data
rates to end devices. However, the standard ADR solution focuses
only on the link-level performance and assigns transmission
parameters to end devices one-by-one in an independent way.
In this paper we propose a novel and more efficient ADR
algorithm, denoted as Collision-Aware ADR (CA-ADR), which
tries to minimize the collision probability when assigning data
rates by considering the entire set of end devices in the network
and keeping the link-level performance under control. The per-
formance of CA-ADR is characterized and benchmarked against
the standard solution as well as another proposal presented in
the literature. An integrated simulation-experimental approach is
used to assess results for large-scale networks and to compare two
architectures based on cloud and fog computing. Results show
that CA-ADR outperforms standard solutions when connectivity
is good, whereas it behaves similarly in large areas. It is also
shown that the improvement w.r.t. the benchmark solutions does
not depend on the channel model considered (no shadowing,
uncorrelated and correlated shadowing). Finally, a fog-based
architecture is proved to be feasible, with the advantage of
reducing the end-to-end latency.

Index Terms—Adaptive Data Rate, Cloud/Fog Architectures,
Internet of Things, LoRa, LoRaWAN, Low Power Wide Area
Networks.

I. INTRODUCTION

The Internet of Things (IoT) is a system of interrelated
computing devices and everyday objects which are able to
transfer data over a network without requiring human-to-
human or human-to-machine interaction, by communicating
over the Internet [1]. The idea behind IoT is to revolution-
ize the way we live and work: smart city or smart home
applications [2], as well as smart agriculture [3] or Industry
4.0 [4], are a few among all the possible applications. Some
of these applications require short-range radio communication
technologies (like IEEE 802.15.4/ZigBee [5]), being the net-
work nodes confined in restricted areas; others, like precision
agriculture or smart city, may require communication solutions
able to cover distances up to (or more than) 10 km in rural
areas.

Recently, the interest of industry toward the latter category,
denoted as low power wide area networks (LPWANs), grew
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significantly [6]–[8]. Some proprietary solutions, working on
license-exempt spectrum bands, are already deployed in some
regions: as an example, Sigfox operates both as a technology
and a service provider for LPWANs [9]; another big player is
the LoRa Alliance, which was officially established in Mobile
World Congress 2015 and produced a proprietary solution
known as LoRaWAN working in the license-exempt band
and available in many countries. Due to its simplicity and
flexibility and thanks to the fact that it allows long range
communication with very low power consumption, LoRaWAN
is considered nowadays one of the most promising LPWAN
technology, suitable to many of the above cited applications
(see e.g., [10], [11]).

Fig. 1. LoRaWAN Network Architecture

In a LoRaWAN network (see Figure 1) End Devices (EDs),
representing IoT nodes, send packets to Gateways (GWs),
which, on their turn, are connected via other communication
technologies (e.g., Ethernet, 3G/4G), to a centralized Network
Server (NS) responsible for functions such as association and
traffic management. Being in charge of collecting data from
the GWs and forwarding them to relevant applications, the NS
is typically deployed in a cloud computing environment, which
is rarely located close to the source of data. Therefore, in
case of latency-critical services or limited connectivity toward
the Internet, deployments of LoRaWAN network components
based on edge and fog computing solutions have also been
considered [12], [13], bringing services, such as advanced
analytics and distributed storage, closer to the EDs [14].

One of the key operations performed by the NS is to
implement an Adaptive Data Rate (ADR) algorithm to dy-
namically set the data rate and transmit power to be used
by a given ED during its communication. This algorithm is
specifically designed to allow connectivity between EDs and
GWs. However, the standard algorithm does not take into ac-
count the interference problems that may be present when the
offered traffic increases. Indeed, since a simple ALOHA-based
protocol is used by EDs to access the channel, collisions and



JOURNAL OF INTERNET OF THINGS 2

packet losses may dramatically impair the network throughput,
especially when low data rates are used for transmissions [15].

In this paper we propose a novel ADR algorithm to be
implemented at the network server, denoted as Collision-
Aware ADR (CA-ADR), aiming at finding a set of data rates
to be assigned to EDs such that packet success rate and
network throughput improve w.r.t. the standard ADR solution.
The algorithm exploits orthogonality of signals emitted with
different data rates [15] and tries to minimize interference,
while maintaining connectivity toward the GW. The algorithm
has been tested and compared with the standard solution as
well as another approach presented in the literature [16], [17],
adopting an integrated methodology involving both simula-
tions and experiments. In particular, a small testbed composed
of one ED sending data to a GW, connected to a NS, has
been used to characterize delays, both in terms of processing
time and transmission time in the different links (wireless
and wired). A traffic emulator has been developed to stress
the NS and characterize its performance in the presence of
high network traffic. The outcomes of these experiments have
been provided as input to a simulator, evaluating the network-
level performance when considering a large number of EDs
deployed in a given area.

The performance of CA-ADR has been evaluated assuming
the LoRaWAN network deployed in both a cloud and a fog
computing scenario. In particular, two different setups for the
NS, in terms of computational capabilities and location, have
been considered. The impact of the NS deployment on the
network performance has been assessed.

The rest of the paper is organized as follows. Section
II reviews the state of the art, with particular emphasis on
LoRaWAN and the current research trends. Section III is
dedicated to the description of the system model considered.
Section IV reviews the ADR algorithm, providing description
of the current implementation as well as of the novel CA-ADR
solution. Section V reports the identified Key Performance
Indicators and, finally, Sections VI and VII present numerical
results and conclusions, respectively.

II. BACKGROUND AND RELATED WORK

In this section we first describe the LoRa/LoRaWAN stan-
dard and then we review some related work.

A. LoRaWAN Overview

LoRaWAN networks rely on two main components, LoRa
and LoRaWAN, each corresponding to a different layer in
the protocol stack. The former is a proprietary physical layer
solution developed by Semtech Corporation1, while the lat-
ter, described in an open specification issued by the LoRa
Alliance, constitutes the medium access control (MAC) and
network layers [18].

LoRa physical layer is based on Chirp Spread Spectrum
modulation, which enables long range communications, even
though this results in low data rate, with integrated forward er-
ror correction; in addition, it brings robustness against channel

1https://www.semtech.com/lora

effects such as interference, frequency selectivity and Doppler
effect. LoRa can work in different bands depending on re-
gional constraints, as described in [19]. The main transmission
parameters are: i) the Spreading Factor, hereafter denoted as
SF , that is the ratio between the symbol rate and the chirp
rate, which is directly proportional to the communication range
and inversely proportional to the bit rate; ii) the bandwidth,
hereafter denoted as BW , which is the spectrum occupied by
a symbol; and iii) the coding rate, hereafter denoted as CR.
As a result, the bit rate, Rb, changes by modifying the above
parameters, according to the following formula [20]:

Rb = SF ·
CR

4+CR

2SF

BW

[bit/s] (1)

The bit rate has a direct impact on the Time on Air (ToA),
that is the time needed to transmit a packet on the wireless
channel.

A LoRaWAN network is deployed as a star-of-stars topol-
ogy, in which the communication between EDs and GWs is
realized via LoRa, whereas the NS is connected with GWs
via standard Internet Protocol (IP) connections, such as Wi-
Fi, Ethernet, 3G/4G (see Figure 1). In particular, EDs are
not associated to a specific GW but rather to a NS and all
GWs receiving data from an ED forward it to the NS. As
a result, the complexity of the network is concentrated at
the NS, in charge of controlling ED transmission parameters
(SF and transmit power) via the ADR algorithm (see Section
IV), discarding duplicated packets (i.e., same data packets
received from multiple GWs) and selecting the GW to be
used for sending the acknowledgement to a given uplink data
packet (if requested). Indeed, uplink transmissions can either
be confirmed or unconfirmed. In the former case, the ED waits
for an acknowledgment (ACK) packet from the NS (through
the GW) after its transmission, and it keeps sending the same
message if no ACK is received; in the latter case, no ACK
and retransmissions are used.

LoRaWAN defines three classes of devices: A, B and C.
• Class A devices allow for bidirectional communication

whereby each uplink transmission is followed by two
short downlink receive slots after two different fixed
RECEIVE WINDOW DELAY intervals (by default 1 s
delay between the uplink communication and the first
receive window and 2 s delay between the uplink com-
munication and the second receive window), which last
at least the amount of time needed for demodulating the
received packet. This class of devices is characterized by
the lowest power consumption, so it is intended for sensor
nodes, which are usually battery powered.

• Class B devices allow for more than two receive slots,
opening extra receive windows at scheduled times.

• Class C devices have nearly continuous open receive
window except for the time spent in uplink transmission,
so they are always reachable, at the cost of high power
consumption.

B. Related work
Many recent studies focus on the evaluation of performance

of LoRaWAN networks. In [21] and [22], LoRaWAN technol-



JOURNAL OF INTERNET OF THINGS 3

ogy was compared to other LPWAN technologies, that are
Sigfox and NB-IoT, to point out the advantages of LoRaWAN
in terms of battery lifetime and capacity in many scenarios.
The coverage of LoRa communications has been addressed in
[23], where Authors show that the maximum communication
range can reach up to 10 km with a small percentage of
packets lost. A theoretical analysis of the achievable uplink
throughput has been carried out in [24], where the effect of the
SF allocation and the impact of SF imperfect orthogonality
on the overall throughput are taken into account.

There exist also a number of works focused on the ADR
mechanism. In [16], [17] it is proposed to estimate the link
quality to be used as input to the ADR algorithm based
on the average signal-to-noise ratio (SNR), rather than the
maximum SNR as done in the standard solution. This approach
is also considered as a benchmark to evaluate the CA-ADR
algorithm. In [17], Authors also propose a hysteresis algorithm
to mitigate the problem of a link for which the link margin
lies approximately at the midpoint between two decision levels
and the ADR algorithm may lead to oscillations between
a sub-optimal and an optimal solution for the transmission
parameters. Another study worth mentioning is [25], where
Authors propose that each ED chooses its transmission pa-
rameters locally, to minimize the Time on Air and maximize
lifetime. This approach, though, does not take into account
the possible connection problem the ED could experience
without a proper mechanism to set such parameters according
to the conditions the ED is working in. Authors in [26]
propose a way to optimize the throughput with respect to the
standard implementation by increasing the number of devices
using small SF s, even though this leads to lower packet
success probability. In [27] two SF allocation mechanisms are
proposed: EXP-SF, where SF are equally distributed among
nodes (i.e., each cluster of N/6 nodes is assigned a specific
SF , where N is the total number of nodes), whereas in EXP-
AT, SF s are assigned to EDs so as to attempt to achieve the
same Time on Air for each group of (potential) interferers.

In contrast with the above cited works, CA-ADR takes
into account the collision probability at the network level in
order to improve the overall packet success probability. This
is something other works do not focus on, since their goal
is to improve performances in terms of energy consumption
and link-level throughput, but eventually reducing the network
success probability. This new approach, instead, allows to
achieve fairness among all nodes distributed in the network,
whatever the SF they are using, reducing the number of
collisions they will experience, which is particularly suitable
for large dense networks.

The advantages of deploying LoRaWAN network compo-
nents on edge and fog computing infrastructures have also
been investigated, especially in case of latency-critical ser-
vices or limited connectivity toward the Internet. An edge-
assisted IoT architecture has been proposed and demonstrated
with proof-of-concept implementation, showing how to enable
advanced services and distributed storage closer to the end-
devices [14]. Another approach consists in augmenting the
existing LoRaWAN architecture with a middleware solution
that enables IoT data analytics at the edge, allowing appli-

cation data sharing among multiple customers [28]. To this
purpose, a proof-of-concept prototype named IoTRACE has
been implemented, which allows multiple data subscribers to
deploy their analytics applications at the edge, demonstrating
how edge analytics can be combined with cloud analytics. An
edge-fog-IoT architecture has also been proposed and applied
to the use case of urban traffic management and monitoring
[29]. Devices located at edge and fog layers are used to offload
time-sensitive data processing tasks and to provide localized
gateway and storage functions. Another work presents the
design and deployment of a LoRaWAN infrastructure capable
of providing novel applications in a smart campus [30]. The
architecture enables to deploy fog computing nodes throughout
the campus to support physically distributed, low-latency, and
location-aware applications that decrease the network traffic
and the computational load of traditional cloud computing
systems. However, in most of the previous works the NS
functionality is still deployed in the cloud, with processing-
enabled GWs located at edge or fog nodes. Although the
IoTRACE architecture assumes that NS can be deployed even
at the edge, this solution has not been quantitatively evaluated.
In general, to the best of our knowledge, no previous studies
have been carried out to characterize the difference between a
cloud-based and a fog-based deployment of a LoRaWAN NS
in terms of performance of the ADR algorithm.

III. SYSTEM MODEL

In this section we report assumptions and models according
to the scenario we considered. We consider a set N of EDs,
whose size is N = |N |, randomly and uniformly distributed
in a square area of side D [m]. A set G of GWs are deployed
in the area, with G = |G|. We assume that EDs generate a
packet of payload B [bytes] in an instant that is randomly
and uniformly distributed within a time period T [s]. As a
result, the offered throughput, O, defined as the number of
bits per second generated in a network of N EDs, is given
by2:

O =
8 ·B ·N

T
[bit/s] (2)

A. Channel Model

We compute the power received by a GW, PR, as a function
of the transmit power, PT, as: PR[dBm] = PT[dBm]−L[dB].
The path loss, L, in dB is modeled using the well known
Okumura-Hata model [31]:

L =69.55 + 26.16 log10(f)− 13.82 log10(hb)− CH+

(44.9− 6.55 log10(hb)) · log10(d) + s
(3)

where f is the frequency in MHz; hb and hm represent the
height of the GW and the ED in m, respectively; d is the
transmitter-receiver distance in km and CH is the antenna
height correction factor, which depends on the size of the city
and the frequency. In particular, for large urban areas, that

2We do not explicitly consider duty cycle constraints, but the results shown
in the paper are valid even in the presence of duty cycle, provided that the
offered throughput O given by eq. (2) is generated each time an ED wakes
up to transmit its data.
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represent the scenarios of interest here, and f = 868 MHz, it
is given by [31]:

CH = 3.2(log10(11.75hm))2 − 4.97 (4)

Finally, s represents random channel fluctuations due to shad-
owing, modelled via a Gaussian random variable, with zero
mean and standard deviation σ, that is s ∼ N (0, σ2). Both
uncorrelated and correlated shadowing samples are considered
in the following. For the correlated case, we used the well-
known Gilbert-Elliot model [32], [33], since it gives a negative
exponential correlation function, which is exactly the correla-
tion function that can be observed for shadowing in outdoor
environments [33]. According to [32] the channel is modelled
via a two-state Markov chain (see Figure 1 in [32]), where
the two states represent: Good channel, where shadowing is
characterized by a low value of the standard deviation, σG
and Bad channel, where shadowing is characterized by a high
value of the standard deviation, σB. We also set the probability
of remaining in a given state (Good or Bad) equal to p and
we analyze performance by varying p.

B. Packet Capture Model

We assume a packet is correctly received at the receiver
side, if:

1) PR ≥ PRmin(SF ) and
2) PR/

∑
i PRi

≥ γ
where PR is the useful received power, that is the power
received by the GW when the ED is transmitting (in case of
multiple GWs, we consider the strongest one, that is the one
receiving the largest received power); PRmin

is the receiver
sensitivity; PRi

is the power the GW is receiving from the
i− th interfering ED.

The second condition represents the capture effect: even
in the presence of collisions, there is a possibility that the
receiver (i.e., the GW) is able to capture the frame if the
signal-to-interference ratio (SIR) is above a given threshold
(capture threshold) [34]. The term PR/

∑
i PRi

represents the
SIR, where the denominator includes the sum of the interfering
powers, while γ is the capture threshold, which varies by
varying the spreading factor. γ has been measured in [15] via
experiments performed with the same devices as the ones used
in this paper (see Table III of [15] for details). Finally, note
that, as stated above, LoRaWAN uses a simple ALOHA-based
multiple access protocol, meaning that an ED sends its data
whenever available and interferers will be represented by all
the other transmitters in the area whose packets are partially
or entirely overlapping in time with the useful one.

According to specifications [35], the receiver sensitivity,
PRmin

, is defined as:

PRmin
[dBm] = 10 log10(k ·BW ·T0(F −1))+SNRmin (5)

where the first term represents the noise power, given that k
is the Boltzmann constant, BW is the bandwidth, T0 = 290
Kelvin degrees is the standard noise temperature, F = 6 dB is
the receiver noise figure; SNRmin is reported in Table I and
it represents the minimum SNR required for demodulation
[36].

TABLE I: SNRmin values for different SF with BW=125
kHz.

Data Rate SF SNRmin[dB]
0 12 -20
1 11 -17.5
2 10 -15
3 9 -12.5
4 8 -10
5 7 -7.5

Since a collision happens if two packets are overlapping in
time, it is important to derive the ToA, being the time needed
to transmit a packet, which depends on the SF value and it
is computed as follows [35]:

Tsymbol(SF ) =
2SF

BW
(6)

Tpreamble(SF ) = (Lpreamble + 4.25) · Tsymbol(SF ) (7)

Lpayload = 8+

⌈
(8B − 4SF + 28 + 16− 20H)

(4SF )

⌉
· (CR+4)

(8)
Tpayload(SF ) = Lpayload · Tsymbol(SF ) (9)

ToA(SF ) = Tpreamble(SF ) + Tpayload(SF ) [s] (10)

where B is the payload size, H can be 0 or 1 and represents the
presence of the physical layer header, Lpreamble and Lpayload

are the length in symbols of the preamble and the payload
respectively.

IV. ADAPTIVE DATA RATE ALGORITHM

A. Standard ADR Algorithm

The standard ADR tries to assign the lowest value of
SF , allowing connectivity between the ED and the GW, in
order to reduce as much as possible the energy consumption.
The algorithm working on the NS is designed by the server
developer, while the one working on the ED is specified by
LoRa Alliance [18]. For the NS algorithm, we refer to the
most widespread implementation, that is the one used by The
Things Network or ChirpStack, which is based on Semtech’s
recommended algorithm [36].

EDs are in charge of deciding if ADR should be used or not.
When activated, the NS will control the transmission parame-
ters of the device sending ADR-specific commands. Besides,
the device should periodically check whether the NS still
receives its uplink frames, otherwise it should autonomously
set its SF .

Algorithm 1 shows the implementation at the NS used to
decide about the transmission parameters (specifically, SF
and PT) each ED connected to the NS should set. The NS
runs the algorithm each time an uplink packet from a given
ED is received (i.e., every T in our scenario) and decisions
on data rates are based on measurements performed over the
last k packets received from the ED (by default, k = 20).
In particular, at first the Signal-to-Noise ratio (SNR) margin,
SNRmargin, is measured as reported in Algorithm 1, where
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Algorithm 1: NS ADR Algorithm for a given ED in
a given instant, t.
Input: SFtemp = SF (t), PTtemp = PT(t), SFmin = 7
SNRmax = max{last k uplink packets received},
SNRmin given in Table I by setting SF (t),
SNRmargin = SNRmax − SNRmin −M ,
Nstep =

⌊
SNRmargin

3

⌋
Output: SF (t+ T ), PT(t+ T )

1 if Nstep > 0 then
2 while Nstep > 0 & SFtemp > SFmin do
3 SFtemp = SFtemp − 1
4 Nstep = Nstep − 1
5 while Nstep > 0 & PTtemp

> PTmin
do

6 PTtemp = PTtemp − 3 dB
7 Nstep = Nstep − 1
8 else
9 while Nstep < 0 & PTtemp

< PTmax
do

10 PTtemp
= PTtemp

+ 3 dB
11 Nstep = Nstep + 1
12 return SF (t+ T ) = SFtemp, PT(t+ T ) = PTtemp

SNRmax is the maximum SNR among the last k collected
packets, M is a margin set a priori (M = 10 dB by default),
and SNRmin is the minimum SNR required to correctly
demodulate the received signal, computed considering the
initial value of SF (see Table I). Then, an iterative process
starts. SNRmargin is used to compute Nstep, which indicates
how many times the iteration will run. In particular, if Nstep

is greater than 0, both Nstep and the SF are decremented by
one unit at each step, until either the minimum SF is reached
(SF = 7) or Nstep reaches zero. If the iteration has not been
completed yet (Nstep > 0), then the transmitted power is
also decremented by 3 dB at each further step, until either
it reaches the minimum value (2 dBm in our scenario) or the
iteration terminates (Nstep = 0). On the other hand, if the
initial value of Nstep is lower than 0, then both Nstep and
the transmitted power are incremented at each step (by one
unit and 3 dB, respectively) until either the maximum power
(14 dBm) or the last iteration (Nstep = 0) is reached. In both
cases, the algorithm stops at most after Nstep steps.

As far as the ED is concerned, it will receive information
from the NS about the SF to be used, but then it will
continuously track the connection with the NS. Algorithm
2 reports the implementation at each ED. We consider here
the case of confirmed transmission mode (extension to the
unconfirmed mode is straightforward [18]). Each time an ED
sends an uplink packet without receiving an ACK, the counter
ADR ACK CNT is incremented; after ADR ACK LIMIT
(by default 64) messages without any downlink response, the
device sends a request to NS, which must respond within
the next ADR ACK DELAY (by default 32) frames with a
downlink frame. If no reply is received, the ED must try to
reconnect to the network, by first setting the transmitted power
to its default value and then possibly switching to the next
lower data rate. The device must lower its data rate every
time the ADR ACK DELAY expires.

Algorithm 2: ED ADR Algorithm.
Input: SFtemp set to the current SF value assigned,

ADR ACK CNT = 0
Output: New value of SF

1 while uplink transmission do
2 if no ACK received then
3 ADR ACK CNT=ADR ACK CNT+1
4 if ADR ACK CNT=ADR ACK LIMIT then
5 request downlink response from NS
6 if ADR ACK CNT ≥

ADR ACK LIMIT+ADR ACK DELAY then
7 SFtemp = SFtemp + 1
8 else
9 ADR ACK CNT = 0

10 return SFtemp

B. Collision-Aware ADR Algorithm

The idea behind the new algorithm is to assign SF in order
to guarantee a given success probability in delivering a packet,
accounting not only for the link-level performance (connectiv-
ity with the GW), but also for the collision probability (MAC-
level performance). The algorithm exploits the orthogonality
among signals transmitted with different SF s, as demonstrated
in previous work (see, e.g., [15], [37]).

Algorithm 3: Collision-Aware ADR Algorithm
Input: p̂mac = 1, SF = {7, 8, 9, 10, 11, 12}
Output: SF (n) for n ∈ N

1 foreach SF ∈ SF do
2 ncount(SF ) = 0

3 nmax(SF ) =
⌊(

1
2 log(1−ToA(SF )

T )
(p̂mac)

)
+ 1
⌋

4 foreach n ∈ N do
5 SFmin(n) = min{SF s.t. PR(n) ≥ PRmin(SF )}
6 SFtemp(n) = SFmin(n)
7 foreach n ∈ N do
8 if ncount(SFtemp(n)) < nmax(SFtemp(n)) then
9 SFres(n) = SFtemp(n)

10 ncount(SFtemp(n)) = ncount(SFtemp(n)) + 1
11 else
12 SFtemp(n) = SFtemp(n) + 1
13 if SFtemp(n) ≤ 12 then
14 go to 8
15 if

∑
SF∈SF (ncount(SF )) = N then

16 return SF (n) = SFres(n) for n ∈ N
17 else
18 if p̂mac > 0.01 then
19 p̂mac = p̂mac − 0.01
20 go to 1

In the algorithm we denote with pmac(SF ) the packet
success probability for an ED using spreading factor SF ,
taking into account collisions at the MAC layer. In particular,
pmac(SF ) is the probability that no other transmissions will
occur during the vulnerability period of ALOHA, that coin-
cides with 2 · ToA, being ToA given by eq. (10). Therefore
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we have [38]:

pmac(SF ) =

(
1− ToA(SF )

T

)2(n(SF )−1)

(11)

where n(SF ) is the number of devices using spreading factor
SF . In the algorithm, for the sake of simplicity, we do not
account for the capture effect; therefore, we try to assign SFs
in order to limit as much as possible the collision probability.
When running the simulation, after the SF values assignment,
we then account for the capture effect, as described in section
III, to evaluate if a packet is correctly received by the GW.

The CA-ADR algorithm is reported in Algorithm 3 and it
works as follows. We first set pmac(SF ) to a target value,
p̂mac = 1, and then we compute the maximum number of
EDs that can use a specific SF , nmax(SF ), according to the
equation reported in line 3 of the algorithm (i.e., reversing eq.
(11)). Then, for each node n we derive the minimum value
of SF the ED can use, that is the minimum SF satisfying
PR(n) ≥ PRmin

(SF ) (see line 5 of the algorithm). PR(n)
is the average power received by the GW when the ED is
transmitting (averaged over the last k packets received) and
PRmin(SF ) is reported in Table II. The algorithm then tries to
assign the obtained minimum SF to each ED, as long as the
number of nodes already assigned that SF value (ncount(SF ))
does not exceed the maximum allowed (nmax(SF )). If the
limit is reached, then the algorithm tries to assign a higher SF
following the same process, and keeps increasing it up to the
maximum value (SF = 12). When ncount(SF ) = nmax(SF )
even for the highest SF value, no SF assignment is carried out
for that specific ED. At the end of the process, the algorithm
checks if it was able to assign a SF to each ED, by comparing
the sum of the ncount(SF ) to N . If they are equal, it means
that each ED has a correct SF assigned, otherwise p̂mac is
decremented by 0.01 and the algorithm runs again from the
beginning, as long as p̂mac > 0.01.

Differently from the reference ADR implementation, the
CA-ADR algorithm running on the NS goes through a number
of iterations to make sure that all EDs are assigned the
best SF values such that nmax(SF ) is never exceeded. It
is thus important to assess the complexity of the CA-ADR
algorithm. In the worst case when all the iterations must be
executed, the number of operations to be performed is given
by (|SF |+N · |SF |+N + |SF |) · 100. Considering that the
set SF is very small, the CA-ADR complexity is O(N).

TABLE II: SF sets for different PRmin with BW=125 kHz.

PRmin [dBm] SFmin SF
-137 12 {12}

-134.5 11 {11, 12}
-132 10 {10, 11, 12}

-129.5 9 {9, 10, 11, 12}
-127 8 {8, 9, 10, 11, 12}

-124.5 7 {7, 8, 9, 10, 11, 12}

V. KEY PERFORMANCE INDICATORS

The performance of the CA-ADR algorithm is evaluated in
terms of: i) Packet Success Rate, Ps; ii) Network Throughput,
S; iii) Latency, L, and iv) Round Trip Time, RTT .
Ps is the percentage of packets that are correctly received

at the GW, given that both conditions 1 and 2 in Subsection
III-B are satisfied. Consequently, the Network Throughput, S,
has been defined as:

S =
B ·N · Ps

T
[bit/s] (12)

Fig. 2. Latency

Latency L has been defined as the interval of time between
the generation of a packet at the ED and its reception at the
NS. As shown in Fig. 2, L can be expressed as

L =T
(proc)
ED + ToAUL(SF ) + T

(proc)
GW

+ τGW−NS + T
(proc)
NS [s]

(13)

where T
(proc)
ED is the time needed by an ED to generate a

packet, ToAUL(SF ) is the ToA for transmitting the uplink
data for a given value of SF , T (proc)

GW is the processing time
needed by the GW (which just performs packet forwarding),
τGW−NS is the propagation delay needed to reach the NS
from the GW (via Internet), and T (proc)

NS is the processing time
required at the network server.

Finally, RTT has been defined as the interval of time
between the generation of a query at the NS, to be sent in
downlink to a given ED, and the instant when the NS receives
the reply in uplink from the ED itself. This delay strongly
depends on the operating class used by the ED. In particular,
since in Class A the receive window is opened only after an
uplink message, the NS is able to send a downlink message
(which contains the query) only after the correct transmission
by the ED. This means that if an uplink packet is lost, the
NS will not know that the receive window of the ED is open
and it will not send the downlink message, waiting for the
next uplink packet. Therefore, in the case of Class A devices,
the packet to be sent in downlink remains at the NS for a
certain amount of time, denoted as T (wait)

NS , which depends on
the periodicity with which packets are generated and on the
probability that they are successfully received at the GW/NS.
Therefore, RTT for Class A devices, RTTA, is given by:

RTTA =T
(wait)
NS + ToAUL(SF ) + T

(RXwind)
ED +

+ ToADL(SF ) + L [s]
(14)

where T
(wait)
NS = T

2 + T · (1 − Ps) is the average waiting
time of the packet at the NS, given that EDs generate packets
in uplink every T and these packets have a probability to be
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correctly received Ps, and T (RXwind)
ED is the interval between

the uplink transmission and the beginning of the first receive
window opened by the ED, denoted in the standard as RE-
CEIVE DELAY1.

In Class C, instead, as described in Section II, the NS can
send a packet to the ED at almost every instant (except during
ED transmissions and taking into account possible duty cycle
limitation), therefore, there is no need to wait for an uplink
message from the ED. The RTT for Class C devices, RTTC,
is given by:

RTTC =τNS−GW + ToADL(SF ) + L [s] (15)

VI. NUMERICAL RESULTS

A. Methodology and Experimental Results

CA-ADR algorithm has been tested and compared with the
standard solution, considering an integrated approach exploit-
ing simulations and experiments.

As far as the simulation is concerned, a proprietary MAT-
LAB® simulator, implementing the models presented in Sec-
tion III and the ADR algorithms reported in Section IV, has
been developed. At each transmission, after the SF assign-
ment, the simulator checks if collisions among packets sent
with the same SF happen and if they result in a loss (see
condition 2 in Subsection III-B). This allows to compute Ps

and S.
In addition, experiments have been conducted to char-

acterize delays. For this purpose, we used the Chirpstack
project to setup our LoRaWAN network (i.e., the network
server). As for the GW we used the LoRaWANTM EMB-
GW1301-O gateway, based on the Semtech SX 1301 chipset
working at 868 MHz, with network connectivity provided via
Ethernet. Finally, concerning EDs, we used a board (Idesio
Rigers Board 1.0) equipped with the microchip RN2483 radio
transceiver, fully certified 433/868 MHz SX1276 LoRa module
and supporting LoRaWAN Class A devices.

The above described setup has been replicated in two
different architectures: i) cloud-based case, where the NS and
all its components were installed on a powerful computing
machine and we assumed the NS was located in the cloud
(see below); ii) fog-based case, where the NS was running on
a Raspberry Pi 3 Model B, connected via the University Local
Area Network (LAN) to the GW.

We started measuring the propagation delay, τGW−NS ,
introduced when considering the two architectures. For this
purpose, ping sessions of 30 minutes each have been carried
out considering a public remote NS provided by A2A Smart
City3, which can be reasonably assumed as a cloud server, as
well as the Raspberry Pi server implementation, connected
via our LAN to the GW for the fog case. Results of the
measurements are provided in Table III.

We then measured the processing time at the EDs, T (proc)
ED :

results are reported in Table IV and, as we can see, this time
increases with SF . As for the processing time at the GW and
NS, T (proc)

GW and T (proc)
NS , negligible times have been measured

in all traffic conditions analyzed.

3https://www.a2asmartcity.it/

TABLE III: Propagation Delays

τ Average Standard Deviation
τGW−NS (Cloud) 26.2 ms 16.9 ms
τGW−NS (Fog) 0.4 ms 0.2 ms

TABLE IV: T (proc)
ED

SF Average Standard Deviation
SF7 61,6 ms 4,26 ms
SF8 68,5 ms 1,9 ms
SF9 90,8 ms 2,78 ms
SF10 132,6 ms 2,33 ms
SF11 260,3 ms 2,6 ms
SF12 389,9 ms 0,98 ms

Finally, in order to understand the limits, in terms of
computing capabilities, of the Raspberry Pi implementation
for the NS, we have investigated a situation of high traffic
conditions. Since we had at our disposal only 15 real EDs, we
used the Lorhammer traffic emulator4, that is an open-source
tool able to emulate LoRaWAN traffic and redirect it to the
NS, that was implemented on our Raspberry Pi. Such tool
offers the possibility to specify the number of GWs and EDs
in the network, the frequency with which EDs send packets
and the packets size, that is the offered throughput as defined
in eq. (2).

The outcomes of the above experiments have been provided
as input to a simulator, characterizing the network-level per-
formance, to derive the latency and RTT as defined above.
Figure 3 shows such methodology.

Fig. 3. Evaluation methodology.

B. Benchmarking the CA-ADR algorithm

The considered scenario is shown in Figure 4, where two
GWs are deployed in a fixed position and EDs are randomly
distributed in a squared area. The parameters used in the
simulation are reported in Table V. If not otherwise specified,
the case of uncorrelated shadowing with standard deviation σ
is considered.

In order to understand the limitations of the new algorithm
in terms of the number of devices it is able to handle, we
plotted the Packet Success Rate and the Network Throughput

4http://lorhammer.itk.fr/
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Fig. 4. Reference Scenario.

TABLE V: Simulation Parameters.

f 868, 5 MHz BW 125 kHz
CR 4/5 PT 14 dBm
N 100 G 2
T 5 s D 3 km
γ 1.5 B 16 bytes
β 3 σ 3 dB

PTmax 14 dBm PTmin 2 dBm
Lpreamble 8 H 1

hb 30 m hm 1 m
σG 1 dB σB 6 dB

as a function of N . In Figure 5, the Packet Success Rate as a
function of the number of the EDs in the network is presented.
As expected, the success probability decreases with N due to
the increasing of the collision probability. The new CA-ADR
algorithm performs notably better because it takes into account
the overall distribution of EDs in the network, assigning SF s
in a more fair way. Collisions are not taken into account by
the standard algorithm, which assigns the lowest SF possible
to all devices by looking only at the link-level performance.
Our algorithm, instead, reduces as much as possible the set of
nodes using the same spreading factor, by keeping track of the
number of EDs already using a given SF and assigning (when
possible from the connectivity viewpoint) a different value of
SF , reducing the collision probability. In the figure we report
also results obtained with the ADR algorithm proposed in [16],
[17]. As expected, the latter protocol performs better than the
standard one, since it assigns spreading factors based on the
measure of the average SNR, rather than the maximum one.
However, our solution outperforms also this benchmark, since
it uses average SNR measure as done in [16], [17] and, in
addition, includes features to reduce collisions, not considered
in [16], [17].

In Figure 6 we show the Network Throughput as a function
of the number of EDs. Performance, in this case, is a direct
consequence of the behavior of the Packet Success Rate.
Indeed, for low values of N , S increases with N , being
proportional to it (see eq. (12)) and being Ps high; on the
contrary, when N becomes too large, Ps starts decreasing

Fig. 5. Packet Success Rate, Ps, as a function of the number
of EDs, N .

dramatically, resulting in a saturation effect for S. Therefore,
the improvement of the proposed solution w.r.t. the standard
one increases by increasing N .

Fig. 6. Network Throughput, S, as a function of the number
of EDs, N .

In Figure 7 we report the behaviour of the Network
Throughput by varying the area size. The new algorithm
performs better w.r.t. the standard solution, until a given area
size is reached, after which they converge. S for the CA-ADR
case decreases with D, since this algorithm is only limited
by connectivity problems, so its performance is maximized
for small areas. With increasing values of D, the algorithm
needs to assign SF = 12 to more and more nodes in order to
reach the GW, resulting in an increased number of collisions.
On the contrary, the standard solution presents an optimum
value of D maximizing S: for small area sizes, it tends to
assign SF = 7 to all nodes, which is enough to reach the
GW, and this results in many collisions (many nodes using
the same SF ), while for large areas, as in the case of CA-
ADR, the algorithm tends to assign SF = 12 to all nodes
to overcome connectivity problems, resulting again in many
collisions (this is the reason why the two algorithms converge
for D > 8000 m). The peak value of S for the standard
solution is reached for D = 6000 m, where some EDs use
a higher SF to maintain connectivity, so the overall number
of nodes using the same SF is lower with respect to smaller
areas, resulting in less collisions. The solution in [16], [17]
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shows some improvements, because it takes into account the
average of the SNR values, so it is more conservative and it
assigns a low SF value with less probability w.r.t. the standard.
However, CA-ADR still performs better for areas with side
D < 5000 m.

Fig. 7. Network Throughput, S, as a function of the area side,
D [m].

Fig. 8. Packet Success Rate, Ps, as a function of the area side,
D [m] with shadowing analysis.

Figure 8 shows the impact of the shadowing on the perfor-
mance of the algorithms. The inclusion of shadowing strongly
reduces performance for both solutions, standard and CA.
However, performance does not change significantly when
considering different channel models in the presence of shad-
owing, that is for the uncorrelated or correlated channels by
varying p (i.e., the probability of remaining in Good or Bad
channel conditions). However, it is important to notice that,
in all cases, the proposed solution is always better than the
standard one, because the assignment of the SF is always
carried out in order to reduce collisions, when possible.

Figure 9 shows the Packet Success Rate as a function
of T . Since the CA-ADR algorithm is specifically designed
to reduce collisions, the lower is T , the higher will be the
offered throughput, and the larger will be the gap w.r.t. the
standard, because collisions are better managed by CA-ADR.
In addition, the figure shows the impact of the presence of
external interference. A situation where Ni = 50 interfering
nodes are randomly and uniformly deployed in the area has
been simulated; they generate a data packet, assumed to be
transmitted with the same transmit power used by LoRa

Fig. 9. Packet Success Rate, Ps, as a function of the packet
periodicity, T [s].

devices and assuming that the packet occupies the channel
for 100 ms. Results have been obtained by modifying the
frequency of generation of packets from the interferers, that
is varying the level of interference generated in the network;
in particular, they are assumed to transmit every Ti = 5 s and
Ti = 15 s. As it can be seen, even though the performance is
generally worse due to the presence of external interference,
the CA-ADR still performs better, although the difference with
the standard algorithm becomes smaller.

We also tried to investigate the differences in terms of delay
the two algorithm provide as a result of their decision. Figure
10 shows the RTT as a function of the number of EDs. In case
of Class A, the factor which has more relevance is the collision
probability, because an uplink packet needs to be received by
the NS before it could be able to transmit a packet in downlink.
Therefore, the CA-ADR algorithm performs better (i.e., the
RTT is lower) w.r.t. the standard solution. In case of Class
C, instead, RTT does not depend on PS because the ED is
always listening, so the NS can send downlink packets even
if it has not received anything from the ED. Therefore, the
standard solution performs better, because it tends to assign
lower SFs (i.e., minimum value of SF allowing connectivity),
resulting in lower transmission times, on average. Such results
have been computed considering the cloud implementation.

Fig. 10. Round Trip Time, RTT , as a function of the number
of EDs, N .

As a final benchmark, considering that the complexity of the
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CA-ADR algorithm grows linearly with the number of nodes
N , we measured during our experiments with the simulator
that in the worst case analyzed (N = 500 and T = 5 s), the
algorithm execution time never exceeded a few milliseconds.

C. Comparing Cloud and Fog Architectures

In our scenario we consider two GWs, which can either
be managed by a single centralized NS (cloud case), or are
associated to two separated NSs (fog case). Therefore, in the
first case, CA-ADR algorithm runs considering all EDs in
the area, while in the second case, EDs are divided into two
subsets according to the RSSI value (for the sake of simplicity,
the strongest GW is selected) and the algorithm runs on the
two separated subsets. No substantial differences have been
observed in terms of SF allocation to EDs, therefore no sig-
nificant differences in terms of Ps can be observed (see Table
VI). In particular, it can be seen that the advantage achievable
in the cloud configuration (where a joint optimization of the
entire area is considered) is negligible. On the other hand,
it is expected that the cloud architecture will bring to larger
latency, and this is analyzed in the following.

TABLE VI: Success rate in Cloud and Fog architectures

N Ps Cloud Ps Fog
10 0.997 0.986
50 0.962 0.960
100 0.922 0.921
150 0.884 0.884
200 0.852 0.849

Figure 11 shows how the latency evolves when increasing
the area size, for the two architectures. By increasing D, higher
SF are needed to reach the GWs, therefore the ToA of the
packet and then the latency increase. In addition, as expected,
the cloud architecture results in larger latency, due to the time
needed to reach the cloud infrastructure, where the NS is
deployed.

Fig. 11. Latency, L, as a function of the area side, D

The above results show that the cloud architecture works
worsening in terms of latency, while slightly improving the
network throughput performance. However, to draw final con-
clusions, it is necessary also to check if a fog-based solution

is feasible also in terms of computing capabilities. To this
aim, we derived an upper bound in terms of the maximum
amount of traffic (in bit/s) the network server is able to process
without crashing or causing relevant delay for the user. In our
experiments we fixed the packet size to 100 bytes and the
packet periodicity equal to 0.1 s and we varied the number of
EDs generating data. For each value of N we emulated 10000
packets transmissions to check the CPU usage and to check
possible crashing of the NS. The Raspberry Pi implementation
proved to handle up to an offered traffic of 40 Mbit/s, reached
by setting N = 5000, with almost 100% of CPU usage. Such
limit is largely compliant with all LPWAN applications, as
identified in [15], which demonstrates that the fog solution is
sufficiently powerful to manage a LoRaWAN network and this
architecture does not present particular drawbacks.

VII. CONCLUSION

In this paper, a new Adaptive Data Rate algorithm for
LoRaWAN network, called Collision-Aware ADR, has been
proposed, which takes into account collision probability at the
MAC layer to assign data rates to end devices. Simulation
and experimental approaches have been jointly used in order
to compare the new algorithm with two benchmark solutions,
considering different performance metrics. Results show that
CA-ADR outperforms the standard solution for networks that
are not strongly limited by connectivity issues (in this case
the two algorithms provides the same performance). This is
because CA-ADR exploits orthogonality of signals emitted
with different data rates, a fact that allows to drastically reduce
collisions among transmissions. It is also shown that random
channel fluctuations degrade the performance, but this happens
with any solution, as any ADR algorithm presents some issues
when applied to dynamic channel scenarios.

In addition, cloud- and fog-based architectures have been
setup and compared in terms of network throughput, latency
and processing capabilities. Results demonstrate that the fog
architecture is feasible, since even if the NS is deployed on a
common Raspberry Pi, it is still able to manage a sufficient
amount of traffic for many real-life IoT applications. In
addition, the fog architecture allows to reduce the end-to-end
latency as expected, while maintaining very good performance
in terms of network throughput when compared to the cloud-
based scenario. Finally, we underline that the lower latency
achievable with the fog architecture can help also in reacting
to dynamic environmental changes, i.e. the NS can quickly
send commands to EDs to change transmission parameters.
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